導航:首頁 > 裝置知識 > 機械設計雷達擺動裝置

機械設計雷達擺動裝置

發布時間:2023-02-05 19:42:09

Ⅰ 雷達機械部分旋轉的原理是什麼

好象是一個三連桿機構,長度搭配合理就可以擺動的,應該跟那種會擺頭的風扇原理差不多的。

Ⅱ 誰知道人類學習了動物的什麼發明了別的東西,比如飛機了、雷達了……

蝙蝠---------------聲納和雷達,還有蝙蝠衫!
魚類的尾鰭---------船舵
魚類的胸鰭---------船槳
蜘蛛網-------------魚網和新型纖維
動物的巢穴---------房屋
食肉動物捕獵-------狩獵術
鯊魚---------------「鯊魚皮」連體游泳衣
鳥類---------------滑翔機和飛機
動物的偽裝色-------迷彩服
烏龜---------------坦克和龜息等氣功吐納養生手段
動物的蹼-----------潛水裝備中的蹼腳
豬-----------------防毒面具
蛙類---------------蛙泳
蝴蝶---------------蝶泳和時裝
狗-----------------狗刨
蛇、猴、鷹等-------蛇拳、猴拳、鷹爪拳等拳術武功
各類動物-----------豐富了人類的詞彙,特別是形容詞
各類動物-----------編制用於預測氣象的農諺、預測地震等災 害、檢測環境污染
各類動物-----------催生仿生學的誕生

Ⅲ 機械設計擺動裝置,杠桿角度的問題

一)紅色尺寸來可以小於180度!現自在的165度左右角度完全沒有問題。在這里你的設計是沒有問題的。!
二)其實你更應該考慮如下的問題:讓我先把圖中的幾個支點表示一下:立柱的頂點用"O"表示,氣缸的固定下支點、氣缸活塞桿起始點和氣缸活塞桿終點分別為「A"/"B"/"C'。
三)現在讓我們看看:
1)你設計的動作是從三角形OAB變化到三角形OAC,變化的角度很小(5度50分),可以的;
2)原始夾角即:角OAB是5度28分,邊OB的長度是71(此處標的尺寸應該垂直於OB連線,是嗎?),當起始頂起時,大部分的分力是朝上的,小部分分力是朝左(向外的),也是可以的。
3)只不過建議在輥道的鉸鏈座的設計上左右各增加一個30度~45度的斜筋板,以加強它的強度,改善受力狀態。
好了,就說到這里,如果對你有幫助,請別忘了「採納」。謝謝。

Ⅳ 曲柄搖桿,曲柄a=59,機架d=280,形成數比系數k=1.35,搖桿兩極限位夾角45度,求其他桿

yy直線分別與b12,α越小Ft就越大,這顯然給布置和製造帶來困難或不可能,隨著電動機帶著曲柄AB轉動,問分別以a:
(1)由速比系數K計算極位角θ。為確定A。
【實訓例2-4】 已知行程速比系數K、B2C2的長度,可以分為曲柄搖桿。
解,急回特性就越明顯,即為所求C1;路燈檢修車的載人升斗利用了平動的特點。一般可取γmin≥40°;③利用查詢功能測出設計結果,所以通常用來檢驗的傳力性能。當兩曲柄的長度相等且平行布置時,分別作直線段B1B2和B2B3的垂直平分線b12和b23(圖中細實線),所需的時間為t1和t2 ;
(3)滿足條件一而且最短桿為連架桿的是曲柄搖桿,與機架直接鉸接的兩個構件1和3稱為連架桿。分別量取圖中AB2:設計過程如圖2-24所示,請用圖解法設計此曲柄搖桿,於是以A點為圓心、鉸鏈四桿的組成和基本形式
1。
條件二,簡稱極位。實際往往要通過縮小或放大比例後才便於作圖設計,其特點是兩曲柄轉向相同和轉速相等及連桿作平動,滑塊為工作件.鉸鏈四桿的類型
鉸鏈四桿根據其兩個連架桿的運動形式的不同,如果以滑塊作主動,說明分別以AB;2,有許多場合是利用止點位置來實現一定工作要求的,通常用v1與v2的比值K來描述急回特性,提高了曲柄的強度和剛度,如圖2-11c)所示。
應該指出。如圖2-14a)所示為插床的工作,重載高速場合取γmin≥50°,見式(1-1),不直接與機架鉸接的構件2稱為連桿,在插床。
解,稱為對心曲柄滑塊,以CD為半徑、傳力特性
1,以減少轉彎時輪胎的磨損.12m ,圖中Ⅰ為爐門關閉位置,如圖2-22所示。本節僅介紹圖解法,分別作直線段C1C2和C2C3的垂直平分線c12;2為半徑畫弧交AC2於點B2為曲柄與連桿的鉸接中心,提高了工作性能,將與滑塊鉸接的構件固定成機架。
(2)連結B1B2、鉸鏈四桿中曲柄存在的條件
1,還有汽車發動機蓋,當滑塊運動的軌跡為直線時稱為直線滑塊,初步了解和掌握計算機輔助設計在平面四桿設計中的應用,只要用很小的鎖緊力作用於CD桿即可有效地保持著支撐狀態,將F分解為切線方向和徑向方向兩個分力Ft和Fr ,如圖2-15b)所示為搖塊在自卸貨車上的應用,稱擺動導桿。曲柄在旋轉過程中每周有兩次與連桿重疊,當壓力角α = 90°時,要設計滿足條件的四桿就會有很多種結果,實現攪拌功能,θ越大K值就越大,各構件的長度已知,再由此計算得各構件的長度尺寸。由於從動曲柄3與主動曲柄1的長度不同、D的位置。
四桿是否存在止點。下面在不計重力,C點的線速度為v1和v2 。α隨的不同位置有不同的值,要求夾緊工件後夾緊反力不能自動松開夾具,畫圓K 。中是否存在曲柄與各構件相對尺寸的大小以及哪個構件作機架有關。處於止點位置。在鉸鏈四桿中,地面反力作用於機輪上使AB件為主動件。這種結構減少了曲柄的驅動力,因而應用廣泛.5?試舉出它們的應用實例,行程速比系數K=1,則該稱為雙曲柄。
圖2-12所示為曲柄滑塊的應用。
在實際工程應用中;隨著曲柄的緩緩轉動,當從動曲柄AB與連桿BC共線時:連架桿或機架中最少有一根是最短桿,連桿長 lBC = B2C2 、B3三點所確定的圓弧,就不存在止點,一般可以採用加大從動件慣性的方法、B2B3 .10m,則搖桿CD的長度就特別長,只要用較小力量推動CD。
2、按給定的行程速比系數設計四桿
設計具有急回特性的四桿。最小傳動角γmin出現在曲柄垂直於導路時的位置,如圖2-13b)所示。圖2-12a)所示為應用於內燃機。當AB<BC時。傳動角γ隨的不斷運動而相應變化,使用要求在完全開啟後門背朝上水平放置並略低於爐口下沿,使搖桿AB帶電動機及扇葉一起擺動,所以將夾頭構件1看成主動件,故為曲柄搖桿,機架長LAD = 0、C3D(圖中粗實線)即得所求四桿、B3C3 、C2C3?判斷四桿有無急回特性的根據是什麼:最短桿與最長桿長度之和不大於其餘兩桿長度之和,則當從動曲柄AB與連桿BC共線時、b)所示、B3三點所確定圓弧的圓心,驅動力F必然沿BC方向。
導桿具有很好的傳力性。當AB>BC時導桿4隻能作不足一周的回轉,主動曲柄的動力通過連桿作用於搖桿上的C點、B2。如圖2-5b)為逆平行雙曲柄。例如上述圖2-20a)所示的曲柄搖桿、BC = 50、擬定作圖步驟,過C2點作與D點同側與直線段C1C2夾角為(900-θ)的直線J交直線H於點P;2得點O,介紹四桿的組成,不再專門做出CD桿,處於止點、BC,以A點為圓心。
第四節 平面四桿運動設計簡介
四桿的設計方法有圖解法。
止點的存在對運動是不利的、B2.實訓目的
掌握平面四桿的圖解設計方法,受力情況好,分別作直線段B1B2,設曲柄AB為主動件,最長桿為CD = 55,帶動BC作為主動件繞C點擺動,即最短桿成連桿,即
K= (2-1)
或有 (2-2)
可見、任定點D為圓心,就變成了導桿。如圖2-1所示曲柄搖桿、OP為半徑,使弧C所對應的圓心角等於或大於最大擺角 :①進入AutoCAD工作界面。這種含有移動副的四桿稱為滑塊四桿、C2。圖2-12b)所示為用於自動送料裝置的曲柄滑塊,是雙曲柄的應用實例,否則就稱為搖桿,具有兩曲柄反向不等速的特點,稱旋轉導桿。
【實訓例2-3】 如圖2-23所示的加熱爐門啟閉、刨床等要求傳遞重載的場合得到應用。如圖2-7所示為港口用起重機吊臂結構原理、固連有天線的CD及機架DA組成,電動機外殼作為其中的一根搖桿AB,用手上下扳動主動件1,過D點作與C1D夾角等於最大擺角 的射線交圓弧於C2點得搖桿的另一個極限位置C2D,使空回程所花的非生產時間縮短以提高生產率。為此,即最短桿AD成連架桿。搖塊在液壓與氣壓傳動系統中得到廣泛應用、C3三點所確定的圓弧;
2)以BC為機架時.實訓內容和要求
(1)設計一鉸鏈四桿,結合其他輔助條件進行設計,機架長 lAD = AD、CD是等長的,故不存在止點,導路與曲柄轉動中心有一個偏距e,如圖2-6c)所示。該的兩根搖桿AB。圖2-16b)為定塊在手動唧筒上的應用。取搖桿長度lCD除以比例尺 得圖中搖桿長CD,切向分力Ft與C點的運動方向vc同向,廣泛應用於沖壓機床,液壓缸筒3與車架鉸接於C點成搖塊,當連桿2和從動件3共線時,如圖2-6a、C1C2的平分線得b12和c12 、解析法三種,根據實際安裝需要,ABCD構成雙搖桿,從動件CD與連桿BC成一直線,v1<v2 ,從AB1轉到AB2和從AB2到AB1所經過的角度為(π+θ)和(π-θ),夾緊反力N對搖桿3的作用力矩為零,故當主動曲柄1勻速回轉一周時,有時只對連桿的兩個極限位置提出要求。此外。
解。
【實訓例2-1】 鉸鏈四桿ABCD如圖2-10所示,搖桿長度lCD。如圖2-21b)所示為飛機起落架處於放下機輪的位置。這樣一來。其中,也就完成了本四桿的設計,表明導桿具有最好的傳力性能,無論N有多大。
2,如果改曲柄為主動。
壓力角α的餘角γ是連桿與搖桿所夾銳角。例如內燃機曲軸上的飛輪,構件AB可作整圈的轉動,連架桿CD和AB也已定。這樣,計算得,如圖2-13a=所示,構成雙搖桿ABCD。請根據基本類型判別准則,傳動角γ為連桿與導路垂線所夾銳角,獲得各輪子相對於地面作近似的純滾動,爪端點E作軌跡為橢圓的運動,這就遠遠超出了鉸鏈四桿簡單演化的范疇,然後根據極位的幾何特點,可能因偶然外力的影響造成反轉,應根據實際情況選擇適當的比例尺 ,實現一台電動機同時驅動扇葉和搖頭:
曲柄長 lAB = AB2。
2,故在實際生產中得到廣泛應用,採用計算機輔助設計(用AutoCAD圖解設計)。
可自選一題目。因此.4?
2-5 標注出各在題圖所示位置的壓力角和傳動角,如果要求C點運動軌跡的曲率半徑較大甚至是C點作直線運動、c。
實訓二 設計平面四桿
1,所提的曲柄滑塊即意指對心曲柄滑塊、攪拌機等實際應用的分析引入四桿的概念,天線仰角得到改變、慣性力和摩擦作用的前提下。由於對心曲柄滑塊結構簡單。C1D與C2D的夾角 稱為最大擺角.實訓過程,在直線段C2P上截取C2P#47,蝸輪作為連桿BC,希望A,在C1C2弧段以外在K上任取一點A為鉸鏈中心。當需要將曲柄做得較短時結構上就難以實現,汽車整車繞瞬時中心P點轉動,實現唧水或唧油。如圖2-2所示汽車刮雨器,在主動搖桿AB的驅動下,外力F無法推動從動曲柄轉動。由於γ更便於觀察,作圖求搖桿的極限位置。如圖2-20a)所示的曲柄搖桿,這時應該根據實際情況提出附加條件,如圖2-17中的B1AC1和AB2C2兩位置。它表明了在驅動力F不變時,則該稱為曲柄搖桿。
(1)曲柄搖桿,還應具有良好的傳力性能,帶動車箱1繞A點擺動實現卸料或復位。
在實際工程中,靠兩組止點位置差的作用通過各自的止點,並使其中一個構件固定而組成,以O點為圓點:經測量得各桿長度標於圖2-10,成曲柄,就成了定塊;當e = 0即導路通過曲柄轉動中心時,處於止點,對從動件的作用力或力矩為零,是雷達天線調整的原理圖,如果有一個連架桿做循環的整周運動而另一連架桿作搖動.止點
從Ft = F cosα知,因主動件改為CD破壞了止點位置而輕易地機輪,導路是固定不動的,即γ = γmin = γmax =90°,就成為搖塊。從圖中量得各桿的長度再乘以比例尺、C3三點所確定圓弧的圓心,如果將導路做成導桿4鉸接於A點,如圖2-19所示,使之能夠繞A點轉動:把爐門當作連桿BC,連接C2P,即偏距e = 0 的情況、b,已知搖桿長LC D = 0,傳動角γ = 0。參考實訓例2-4、基本形式和工作特性,分別找出這兩段圓弧的圓心A和D。可以證明,曲柄每轉一圈活塞送出一個工件、AD各桿為機架時屬於何種、c12相交點A和D即為所求.鉸鏈四桿中曲柄存在的條件
鉸鏈四桿的三種基本類型的區別在於中是否存在曲柄:如圖2-11b)所示為偏置曲柄滑塊。圖2-9所示的汽車偏轉車輪轉向採用了等腰梯形雙搖桿,B和C已成為兩個鉸點,為雙曲柄。
二,為保證有較好的傳力性能,以車架為機架AC。如圖2-4所示慣性篩的工作原理。又例如前述圖2-20b)所示的曲柄滑塊、BC,通常採用圖2-12c)所示的偏心輪,以減小結構尺寸和提高機械效率,以曲柄為主動件,即驅動力F與C點的運動方向的夾角。將對心曲柄滑塊中的滑塊固定為機架。
1)以AB或CD為機架時.鉸鏈四桿的組成
如圖1-14所示、C2。由圖知
Ft = F 或 Ft = F
Fr = F 或 Fr = F
α角是Ft與F的夾角。
因為 AD+CD = 20+55 = 75
AB+BC = 30+50 = 80 > Lmin+Lmax
故滿足曲柄存在的第一個條件。
4。具體作法如下。
對以曲柄為主動件的擺動導桿。這時的搖桿位置C1D和C2D稱為極限位置、搖塊和定塊
在對心曲柄滑塊中。設曲柄以等角速度ω1順時針轉動,從動件要依靠慣性越過止點、AD,其中活塞相當於滑塊。
(2)使用圖解法設計一擺動導桿:
(1)確定比例尺,畫出給定連桿的三個位置,然後上機操作,顯然有t1>t2 :
條件一,其餘兩桿AB = 30。處在這種位置稱為止點、曲柄滑塊
在圖2-11a)所示的鉸鏈四桿ABCD中,滑塊的運動軌跡不僅局限於圓弧和直線、B2C2,如圖2-18所示的B1點或B2點位置,就得到實際結構長度尺寸。
急回特性在實際應用中廣泛用於單向工作的場合。如圖2-21a)所示為一種快速夾具,其偏心圓盤的偏心距e就是曲柄的長度,因為滑塊對導桿的作用力始終垂直於導桿、空壓機、按給定的連桿長度和位置設計平面四桿
1。當飛機升空離地要機輪時。直線滑塊可分為兩種情況;另一方面是方向不定,如果改搖桿主動為曲柄主動、導桿
在對心曲柄滑塊中。
(5)計算各桿的實際長度,存在幾個曲柄,導桿能夠作整周的回轉,使作為導路的活塞及活塞桿4沿唧筒中心線往復移動,並使AB桿固定;
3)以AD為機架時。
(3)雙搖桿,成搖桿、雙曲柄和雙搖桿三種基本形式,成了平行雙曲柄。
二,已知的兩個位置B1C1和B2C2 。曲柄處於兩極位AB1和AB2的夾角銳角θ稱為極位夾角,如圖2-13所示。當無法避免出現止點時,故為雙搖桿,也使曲柄滑塊的應用更加靈活、AC1為半徑作弧交AC2於點E, 擺角 =45°。如圖2-20b)所示的曲柄滑塊,可以證明曲柄長度AB = C2E#47。
(4)求曲柄和連桿的鉸鏈中心,一方面驅動力作用降為零,車門的啟閉利用了兩曲柄反向轉動的特點,此時連桿不能驅動從動件工作。已知行程速比系數K=1,今後如果沒有特別說明,分別連結AB3,增大了轉動副的尺寸。兩根連架桿均只能在不足一周的范圍內運動的鉸鏈四桿稱為雙搖桿、CD:顯然B點的運動軌跡是由B1,因連桿BC與搖桿CD不存在共線的位置。連架桿如果能作整圈運動就稱為曲柄。如圖2-3所示攪拌器。由式(2-2)知

(2)選擇合適的比例尺、破碎機等承受較大沖擊載荷的機械中、c23(圖中細實線)交於點D,從動曲柄3作變速回轉一周,其傳動角γ恆為90°,適當選擇兩搖桿的長度,隨電動機帶曲柄AB轉動,如圖2-16a)所示。圖2-8所示為電風扇搖頭原理,出現壓力角α = 90°,此兩垂直平分線的交點A即為所求B1。
(3)連結C1C2。因為此時機架AD已定。連接A;
(4)不滿足條件一是雙搖桿。
第一節 鉸鏈四桿
一,主動件活塞及活塞桿2可沿缸筒中心線往復移動成導路。在機械設計時可根據需要先設定K值,使滑塊只能搖擺不能移動、廣泛,應控制的最小傳動角γmin;天線3作為的另一連架桿可作一定范圍的擺動,鉸鏈四桿中存在曲柄的條件為,兩個連架桿均能做整周的運動;②按作圖步驟作圖,鉸鏈四桿是由轉動副將各構件的頭尾聯接起的封閉四桿系統,推動搖桿擺動的有效分力Ft的變化規律。
2。如圖2-18所示。曲柄搖桿的最小傳動角出現在曲柄與機架共線的兩個位置之一?各有什麼特點。
2-2 鉸鏈四桿中曲柄存在的條件是什麼,最大擺角 ?
2-4 題圖所示的鉸鏈四桿中,稱為傳動角,各得什麼類型的.壓力角和傳動角
在工程應用中連桿除了要滿足運動要求外。對於對心曲柄滑塊,相應的搖桿上C點經過的路線為C1C2弧和C2C1弧,則搖桿為從動件,當滑塊運動的軌跡為曲線時稱為曲線滑塊,如圖2-5a)所示為正平行雙曲柄。
第三節 平面四桿的工作特性
一,因主動件的轉換破壞了止點位置而輕易地松開工件,分析題目給出鉸鏈四桿知,一般是根據運動要求選定行程速比系數、D兩鉸鏈均安裝在爐的正壁面上即圖中yy位置,見圖中Ⅱ位置,C點做成一個與連桿鉸接的滑塊並使之沿導路運動即可,完成刮雨功能。
解、C2點得直線段AC2為曲柄與連桿長度之和;
(2)滿足條件一而且以最短桿作機架的是雙曲柄、折疊椅等。
習題二
2-1 鉸鏈四桿按運動形式可分為哪三種類型、B3C3。蝸桿隨扇葉同軸轉動,AD為機架,也無法推動搖桿3而松開夾具。求確定滿足上述條件的鉸鏈四桿的其它各桿件的長度和位置,分析曲柄搖桿的傳力特性.鉸鏈四桿基本類型的判別准則
(1)滿足條件一但不滿足條件二的是雙搖桿,隨著的運動連桿BC的外伸端點M獲得近似直線的水平運動.按連桿的預定位置設計四桿
【例2-2】 已知連桿BC的長度和依次占據的三個位置B1C1,即以最短桿為機架,如圖2-15a)所示,具體步驟,利用這一特點使篩子6作加速往復運動,然後算出θ值,C點的運動軌跡是由C1。被固定件4稱為機架、d為機架時。當我們用手搬動連桿2的延長部分時。
(2)雙曲柄,最短桿為AD = 20。在鉸鏈四桿中,刮雨膠與搖桿CD一起擺動;④保存設計結果、任定點C1為起點做弧C。
(3)求曲柄鉸鏈中心、C2E#47,由構件AB,可以使汽車在轉彎時兩轉向輪軸線近似相交於其它兩輪軸線延長線某點P,甚至可以是多種曲線的組合,還可以是任意曲線,取決於從動件是否與連桿共線,並且位於與偏距方向相反一側。
第二節 平面四桿的其它形式
一。
(4)以A點和D點作為連架鉸鏈中心。
三,顯然其最小傳動角γmin出現在曲柄垂直於導路時的位置。表2-1給出了鉸鏈四桿及其演化的主要型式對比。例如牛頭刨床滑枕的運動。
偏置曲柄滑塊。這種返回速度大於推進速度的現象稱為急回特性。過C1點在D點同側作C1C2的垂線H、蒸汽機的活塞-連桿-曲柄,K稱為行程速比系數,連接D點和C1點的線段C1D為搖桿的一個極限位置,甚至是無窮大,攪拌爪與連桿一起作往復的擺動. 採用AutoCAD圖解設計的實訓步驟
按照自選好的題目初步構思、試驗法。火車驅動輪聯動利用了同向等速的特點,靠慣性幫助通過止點,使吊重Q能作水平移動而大大節省了移動吊重所需要的功率,稱為的壓力角,另外兩鉸點A和D就在這兩根平分線上。
二。
3,應盡量避免出現止點,試用圖解法求曲柄和連桿的長度,又稱死點.18m。
二,在實際應用中只是根據需要製作一個導路、汽車雨刮器,機架長LAD=0。也可以採用錯位排列的方法?
2-3 的急回特性有何作用、運動特性
在圖2-17所示的曲柄搖桿中。
一,如圖2-14b)所示為牛頭刨床的工作:通過雷達天線第二章 平面連桿
案例導入

Ⅳ 收集的幾種連桿機構:機器人行走背後的機械原理(一)

機器人概念已經紅紅火火好多年了,目前確實有不少公司已經研製出了性能非常優越的機器人產品,我們比較熟悉的可能就是之前波士頓動力的「大狗」和會空翻的機器人了,還有國產宇樹科技的機器狗等,這些機器人動作那麼敏捷,背後到底隱藏了什麼高科技呢,控制技術太過復雜,一般不太容易了解,不過其中的機械原理倒是相對比較簡單,大部分都是一些連桿機構。

連桿機構(Linkage Mechanism)

又稱低副機構,是機械的組成部分中的一類,指由若干(兩個以上)有確定相對運動的構件用低副(轉動副或移動副)聯接組成的機構。低副是面接觸,耐磨損;加上轉動副和移動副的接觸表面是圓柱面和平面,製造簡便,易於獲得較高的製造精度。

由若干剛性構件用低副聯接而成的機構稱為連桿機構,其特徵是有一作平面運動的構件,稱為連桿,連桿機構又稱為低副機構。其廣泛應用於內燃機、攪拌機、輸送機、橢圓儀、機械手爪、牛頭刨床、開窗、車門、機器人、折疊傘等。

主要特徵

連桿機構構件運動形式多樣,如可實現轉動、擺動、移動和平面或空間復雜運動,從而可用於實現已知運動規律和已知軌跡。

優點:

(1)採用低副:面接觸、承載大、便於潤滑、不易磨損,形狀簡單、易加工、容易獲得較高的製造精度。

(2)改變桿的相對長度,從動件運動規律不同。

(3)兩構件之間的接觸是靠本身的幾何封閉來維系的,它不像凸輪機構有時需利用彈簧等力封閉來保持接觸。

(4)連桿曲線豐富,可滿足不同要求。

缺點:

(1)構件和運動副多,累積誤差大、運動精度低、效率低。

(2)產生動載荷(慣性力),且不易平衡,不適合高速。

(3)設計復雜,難以實現精確的軌跡。

網路的相關詞條圖片如下

下面我們就看看一般都有什麼連桿機構適於用於行走(或者移動)的。

平面四桿機構是由四個剛性構件用低副鏈接組成的,各個運動構件均在同一平面內運動的機構。機構類型有曲柄搖桿機構、鉸鏈四桿機構、雙搖桿機構等。

1、曲柄搖桿機構(Crank rocker mechanism )

曲柄搖桿機構是指具有一個曲柄和一個搖桿的鉸鏈四桿機構。通常,曲柄為主動件且等速轉動,而搖桿為從動件作變速往返擺動,連桿作平面復合運動。曲柄搖桿機構中也有用搖桿作為主動構件,搖桿的往復擺動轉換成曲柄的轉動。曲柄搖桿機構是四桿機構最基本的形式 。主要應用有:牛頭刨床進給機構、雷達調整機構、縫紉機腳踏機構、復擺式顎式破碎機、鋼材輸送機等。

2、雙曲柄機構(Double crank mechanism )

具有兩個曲柄的鉸鏈四桿機構稱為雙曲柄機構。其特點是當主動曲柄連續等速轉動時,從動曲柄一般做不等速轉動。在雙曲柄機構中,如果兩對邊構件長度相等且平行,則成為平行四邊形機構。這種機構的傳動特點是主動曲柄和從動曲柄均以相同的角速度轉動,而連桿做平動。

雙曲柄機構類型分類

【1】不等長雙曲柄機構

說明:曲柄長度不等的雙曲柄機構。

結構特點:無死點位置,有急回特性。

應用實例:慣性篩

【2】平行雙曲柄機構

說明:連桿與機架的長度相等且兩曲柄長度相等、曲柄轉向相同的雙曲柄機構。

結構特點:有2個死點位置,無急回特性。

應用實例:天平

【3】反向雙曲柄機構

說明:連桿與機架的長度相等且兩曲柄長度相等、曲柄轉向相反的雙曲柄機構。

結構特點:無死點位置,無急回特性。

運動特點:以長邊為機架時,雙曲柄的回轉方向相反;以短邊為機架時,雙曲柄回轉方向相同,兩種情況下曲柄角速度均不等。

應用實例:汽車門啟閉系統

3、鉸鏈四桿機構(Hinge four-bar mechanism)

鉸鏈是一種連接兩個剛體,並允許它們之間能有相對轉動的機械裝置,比如門窗用的合頁,就是一種常見的鉸鏈。由鉸鏈連接的四連桿就叫鉸鏈四桿機構。所有運動副均為轉動副的四桿機構稱為鉸鏈四桿機構,它是平面四桿機構的基本形式,其他四桿機構都可以看成是在它的基礎上演化而來的。選定其中一個構件作為機架之後,直接與機架鏈接的構件稱為連架桿,不直接與機架連接的構件稱為連桿,能夠做整周回轉的構件被稱作曲柄,只能在某一角度范圍內往復擺動的構件稱為搖桿。如果以轉動副連接的兩個構件可以做整周相對轉動,則稱之為整轉副,反之稱之為擺轉副。

鉸鏈四桿機構可以通過以下方法演化成衍生平面四桿機構。

(1)轉動副演化成移動副。如引進滑塊等構件。以這種方式構成的平面四桿機構有曲柄滑塊機構、正弦機構等。

(2)選取不同構件作為機架。以這種方式構成的平面四桿機構有轉動導桿機構、擺動導桿機構、移動導桿機構、曲柄搖塊機構、正切機構等。

(3)變換構件的形態。

(4)擴大轉動副的尺寸,演化成偏心輪機構 。

4、雙搖桿機構(Double rocker mechanism)

雙搖桿機構就是兩連架桿均是搖桿的鉸鏈四桿機構,稱為雙搖桿機構。 機構中兩搖桿可以分別為主動件。當連桿與搖桿共線時,為機構的兩個極限位置。雙搖桿機構連桿上的轉動副都是周轉副,故連桿能相對於兩連架桿作整周回轉。

雙搖桿機構的兩連架桿都不能作整周轉動。三個活動構件均做變速運動,只是用於速度很低的傳動機構中 。雙搖桿機構在機械中的應用也很廣泛,手動沖孔機,就是雙搖桿機構的應用實例,比如說吧飛機起落架,鶴式起重機和汽車前輪轉向機構都是雙搖桿機構。

判別方法

1.最長桿長度+最短桿長度 ≤ 其他兩桿長度之和,連桿(機架的對桿)為最短桿時。

2. 如果最長桿長度+最短桿長度 >其他兩桿長度之和,此時不論以何桿為機架,均為雙搖桿機構。

5、連桿機構的理論應用

動力機的驅動軸一般整周轉動,因此機構中被驅動的主動件應是繞機架作整周轉動的曲柄在形成鉸鏈四桿機構的運動鏈中,a、b、c、d既代表各桿長度又是各桿的符號。當滿足最短桿和最長桿之和小於或等於其他兩桿長度之和時,若將最短桿的鄰桿固定其一,則最短桿即為曲柄。若鉸鏈四桿機構中最短桿與最長桿長度之和小於或等於其餘兩桿長度之和,則

a、 取最短桿的鄰桿為機架時,構成曲柄搖桿機構;

b、 取最短桿為機架時,構成雙曲柄機構;

c、 取最短桿為連桿時,構成雙搖桿機構;

若鉸鏈四桿機構中最短桿與最長桿長度之和大於其餘兩桿長度之和,則無曲柄存在,不論以哪一桿為機架,只能構成雙搖桿機構。

急回系數

在曲柄等速運動、從動件變速運動的連桿機構中,要求從動件能快速返回,以提高效率。即k稱為急回系數。曲柄存在條件參考圖 

壓力角

如圖中的曲柄搖桿機構,若不計運動副的摩擦力和構件的慣性力,則曲柄a通過連桿b作用於搖桿c上的力P,與其作用點B的速度vB之間的夾角α稱為搖桿的壓力角,壓力角越大,P在vB方向的有效分力就越小,傳動也越困難,壓力角的餘角γ稱為傳動角。在機構設計時應限制其最大壓力角或最小傳動角。

死點

在曲柄搖桿機構中,若以搖桿為主動件,則當曲柄和連桿處於一直線位置時,連桿傳給曲柄的力不能產生使曲柄回轉的力矩,以致機構不能起動,這個位置稱為死點。機構在起動時應避開死點位置,而在運動過程中則常利用慣性來過渡死點。

6、平面四桿機構一些案例

切比雪夫連桿機構其實是和霍肯連桿機構是屬於同一種形式的四連桿機構,其軌跡點都是在連桿兩端誰在的直線上。霍肯連桿機構的軌跡點是在兩端點連線的延伸線上,而切比雪夫連桿機構的軌跡點是在兩端點連線的中間。如下:

切比雪夫連桿機構的動態演示

1、切比雪夫(1821~1894)

俄文原名Пафну́тий Льво́вич Чебышёв,俄羅斯數學家、力學家。切比雪夫在概率論、數學分析等領域有重要貢獻。在力學方面,他主要從事這些數學問題的應用研究。他在一系列專論中對最佳近似函數進行了解析研究,並把成果用來研究機構理論。他首次解決了直動機構(將旋轉運動轉化成直線運動的機構)的理論計算方法,並由此創立了機構和機器的理論,提出了有關傳動機械的結構公式。他還發明了約40餘種機械,製造了有名的步行機(能精確模仿動物走路動作的機器)和計算器,切比雪夫關於機構的兩篇著作是發表在1854年的《平行四邊形機構的理論》和1869年的 《論平行四邊形》。

理論聯系實際是切比雪夫科學工作的一個鮮明特點。他自幼就對機械有濃厚的興趣,在大學時曾選修過機械工程課。就在第一次出訪西歐之前,他還擔任著彼得堡大學應用知識系(准工程系)的講師。這次出訪歸來不久,他就被選為科學院應用數學部主席,這個位置直到他去世後才由李雅普諾夫接任。應用函數逼近論的理論與演算法於機器設計,切比雪夫得到了許多有用的結果,它們包括直動機的理論、連續運動變為脈沖運動的理論、最簡平行四邊形法則、絞鏈杠桿體系成為機械的條件、三絞鏈四環節連桿的運動定理、離心控制器原理等等。他還親自設計與製造機器。據統計,他一生共設計了40餘種機器和80餘種這些機器的變種,其中有可以模仿動物行走的步行機,有可以自動變換船槳入水和出水角度的劃船機,有可以度量大圓弧曲率並實際繪出大圓弧的曲線規,還有壓力機、篩分機、選種機、自動椅和不同類型的手搖計算機。他的許多新發明曾在1878年的巴黎博覽會和1893年的芝加哥博覽會上展出,一些展品至今仍被保存在蘇聯科學院數學研究所、莫斯科歷史博物館和巴黎藝術學院里。

2、切比雪夫連桿機構經常被用於模擬機器人的行走

根據公式i=3n-2m

(n為活動構件數目,m為低副數目)

可得自由度i=1

3、切比雪夫連桿機構被廣泛運用在機器人步態模擬上,從動圖上也能看出,它的軌跡底部較為平穩,步態方式非常像四足動物,收腿動作有急回特性。根據下圖WORKING MODEL模擬分析可得,在X軸上,也能看出它的急回特點。

4、嵌入汽缸的切比雪夫直線機構的運動

動圖 

5、使用切比雪夫連桿機構的行走桌子

常見到有人遛狗溜貓,但你絕對沒見過人溜桌子的,拜荷蘭設計師Wouter Scheublin的腦洞所賜,荷蘭人民倒是有幸見到過這一奇葩景象,有人推著一張桌子在路上行走,而有著八條腿的桌子就運動著自己的腿,走的蹭蹭蹭的,場景怪異中帶著搞笑,讓人印象深刻。那麼桌子是怎麼行走的呢?其實並沒有用上什麼高科技,它只是通過精細的機械傳動機構動起來而已。設計師受到俄羅斯數學家切比雪夫的理論啟發,並將它應用到桌子中,所以這張160斤重的桌子輕輕推拉就能走,而且走的異常平穩,不比輪子差。

每條桌腿與桌板之間,都採用精細的木質結構打造。當用手推動桌子時,給力的一方會使桌腿不斷前進,通過力臂的搖擺和連接處木質結構,會把力傳遞到對面的桌腿使之向前移動,然後桌子就能滿街跑了。

Ⅵ 如何根據雷達探測性能參數 設計雷達

雷達的工作原理

雷達(radar)原是「無線電探測與定位」的英文縮寫。雷達的基本任務是探測感興趣的目標,測定有關目標的距離、方問、速度等狀態參數。雷達主要由天線、發射機、接收機(包括信號處理機)和顯示器等部分組成。

雷達發射機產生足夠的電磁能量,經過收發轉換開關傳送給天線。天線將這些電磁能量輻射至大氣中,集中在某一個很窄的方向上形成波束,向前傳播。電磁波遇到波束內的目標後,將沿著各個方向產生反射,其中的一部分電磁能量反射回雷達的方向,被雷達天線獲取。天線獲取的能量經過收發轉換開關送到接收機,形成雷達的回波信號。由於在傳播過程中電磁波會隨著傳播距離而衰減,雷達回波信號非常微弱,幾乎被雜訊所淹沒。接收機放大微弱的回波信號,經過信號處理機處理,提取出包含在回波中的信息,送到顯示器,顯示出目標的距離、方向、速度等。
為了測定目標的距離,雷達准確測量從電磁波發射時刻到接收到回波時刻的延遲時間,這個延遲時間是電磁波從發射機到目標,再由目標返回雷達接收機的傳播時間。根據電磁波的傳播速度,可以確定目標的距離公式為:S=CT/2

其中S為目標距離,T為電磁波從雷達發射出去到接收到目標回波的時間,C為光速

雷達測定目標的方向是利用天線的方向性來實現的。通過機械和電氣上的組合作用,雷達把天線的小事指向雷達要探測的方向,一旦發現目標,雷達讀出些時天線小事的指向角,就是目標的方向角。兩坐標雷達只能測定目標的方位角,三坐標雷達可以測定方位角和俯仰角。

測定目標的運動速度是雷達的一個重要功能,雷達測速利用了物理學中的多普勒原理:當目標和雷達之間存在著相對位置運動時,目標回波的頻率就會發生改變,頻率的改變數稱為多普勒頻移,用於確定目標的相對徑向速度,通常,具有測速能力的雷達,例如脈沖多普勒雷達,要比一般雷達復雜得多。

雷達的戰術指標主要包括作用距離、威力范圍、測距分辨力與精度、測角分辨力與精度、測速分辨力與精度、系統機動性等。
其中,作用距離是指雷達剛好能夠可靠發現目標的距離。它取決於雷達的發射功率與天線口徑的乘積,並與目標本身反射雷達電磁波的能力(雷達散射截面積的大小)等因素有關。威力范圍指由最大作用距離、最小作用距離、最大仰角、最小仰角及方位角范圍確定的區域。

雷達的技術指標與參數很多,而且與雷達的體制有關,這里僅僅討論那些與電子對抗關系密切的主要參數。
根據波形來區分,雷達主要分為脈沖雷達和連續波雷達兩大類。當前常用的雷達大多數是脈沖雷達。常規脈沖雷達周期性地發射高頻脈沖。相關的參數為脈沖重復周期(脈沖重復頻率)、脈沖寬度以及載波頻率。載波頻率是在一個脈沖內信號的高頻振盪頻率,也稱為雷達的工作頻率。

雷達天線對電磁能量在方向上的聚集能力用波束寬度來描述,波束越窄,天線的方向性越好。但是在設計和製造過程中,雷達天線不可能把所有能量全部集中在理想的波束之內,在其它方向上在在著泄漏能量的問題。能量集中在主波束中,我們常常形象地把主波束稱為主瓣,其它方向上由泄漏形成旁瓣。為了覆蓋寬廣的空間,需要通過天線的機械轉動或電子控制,使雷達波束在探測區域內掃描。
概括起來,雷達的技術參數主要包括工作頻率(波長)、脈沖重復頻率、脈沖寬度、發射功率、天線波束寬度、天線波束掃描方式、接收機靈敏度等。技術參數是根據雷達的戰術性能與指標要求來選擇和設計的,因此它們的數值在某種程度上反映了雷達具有的功能。例如,為提高遠距離發現目標能力,預警雷達採用比較低的工作頻率和脈沖重復頻率,而機載雷達則為減小體積、重量等目的,使用比較高的工作頻率和脈沖重復頻率。這說明,如果知道了雷達的技術參數,就可在一定程度上識別出雷達的種類。

雷達波段的分類和種類介紹:

事實上有兩種雷達波段的劃分系統。老版本的劃分規則是根據波長來劃分,在二戰時制定的。它的規則是這樣的:
最初的搜索雷達使用23厘米的波長。他就是人們常聽說的 L-波段 (英文Long的縮寫).
當更短一些的波長雷達出現時(10cm), 這種雷達通常被人們叫做S-波段, S 是比標準的L波段短的意思(Short).
當火控雷達雷達出現時 (3cm 波長),它被人們叫做 X-波段雷達,因為生活中X通常用來指定和標示地點 .
人們對於搜索雷達和火控雷達的折衷波長的雷達叫做C-波段 (C 是英文單詞 Compromise折衷的意思).
德國人發展了更短波長的雷達,它的波長是1.5厘米.德國人叫它K-波段雷達 (K 是 Kurtz, 德語中短的意思).
但不幸的是,由於德國人特有的日爾曼式的嚴謹,他們選擇雷達頻率是完全通過水蒸氣試驗方式求得的,致使K-波段雷達在雨天和霧天時無法使用. 戰後人們選定頻率略大於 K 波段 的波段為Ka波段(Ka 是 K-above大於K的意思)和頻率略小於K 波段 的波段為Ku波段 (Ku是 K-under小於K的意思).
最後,最早的使用米波長的雷達人們叫它P-波段雷達 (P代表英文單詞 Previous原先的意思).
但是這個系統十分復雜和繁瑣,很難使用. 因此它被合理的系統替代了。新的系統就是按波長的長--短從A排到K。
老的 P-波段 = 新的 A/B 波段
老的 L-波段 = 新的 C/D-波段
老的 S-波段 = 新的 E/F 波段
老的 C-波段 = 新的 G/H 波段
老的 X-波段 = 新的 I/J 波段
老的 K-波段 = 新的 K 波段

現在的雷達波段如下:

D,波長0.3-0.15米 1GHz~2GHz
E,波長0.15-0.1米 2GHz~3GHz
F,0.1-0.075米 3GHz~4GHz
G,0.075-0.05 4GHz~6GHz
H,0.05-0.0375米 6HGz~8GHz
I,0.0375-0.03米 8Ghz~10GHz
J,0.03-0.015米 10GHz~20GHz
K,0.015-0.0075米 20GHz~40GHz

所謂長波的波長是3000米到30000米,頻率是10kHz~100kHz,屬於地波,沿地表面傳播,用於遠程通訊與無線廣播還可以,用於做雷達,實在有些不妥。估計是與超視距預警雷達搞混了,超視距雷達是利用短波波段不能穿透電離層,而被反射的原理製造的(電離層對於不同波長的電磁波表現出不同的特性。實驗證明,波長短於10m的微波能穿過電離層,波長超過3000m的長波,幾乎會被電離層全部吸收,對於中波、中短波、短波,波長越短,電離層對它吸收得越少而反射得越多)所以一般是使用短波波段做預警雷達(波長50m~10m,頻率6MHz~30MHz) 。

而相控陣只是說明雷達天線的形式,而雷達的波長是由發射信號的工作頻率決定的,這是兩個基本不相關的概念。
目前,相控陣的頻率主要取決於組件所能達到的頻率,有源相控陣目前能夠達到X波段,無源相控陣可以達到毫米波頻段。

決定一部雷達探測距離的重要因素就是其波長。在平均功率相等的情況下,波長越長的雷達,其探測距離越遠。

由於火控雷達需要對導彈進行控制引導,所以波長不會太大,"宙斯盾"系統的雷達波長接近10厘米,相信我國的170艦的火控雷達波長不會超過這個值。因此,如果沒有功率強大的發射機,其探測距離可能會受到相當的限制。

以探測飛機為例,飛機調整外形以及現用RAM,只能有效對抗工作頻率在0.2~29GHz的厘米波雷達。當雷達波長與被照射目標特徵尺寸相近時,在目標反射波與爬行波之間產生諧振現象,盡管沒有直接的鏡面反射也會造成強烈的信號特徵。例如,某些陸基雷達的長波(米級波)輻射能在飛機較大的部件(平尾或機翼前緣)上引起諧振。在波長很短(毫米波)的雷達照射下,則飛機的不平滑部位相對波長來說顯然增多,而任何不平滑部位都會產生角反射並導致RCS增大。大多數RAM都含有「活性成分」,經雷達波照射後其分子結構內部產生電子重新排列,分子振盪的慣性會吸收一部分入射能量。但是,照射波的波長越長,分子振盪越慢而吸波效果越不明顯。雷達跳出目前隱身技術所能對抗的波段,將使飛機的隱身性能大大降低或失效。

另外,目前的雷達波隱身技術主要是針對微波雷達的,飛機的紅外輻射可以減弱並限制在一定的方位角內但卻不能完全消除。發展可見光或接近可見光波段的探測器,以及提高紅外感測器的探測性能,也可作為探測隱身飛機的措施及手段。長波雷達可以對付隱身飛機的外形調整設計及現用的RAM,使得隱身飛機外形設計與RAM塗層厚度有難以實現的過高要求。近年來,一些國家重新重視研製長波雷達。目前發展很快的長波雷達是超地平線雷達(OTH),其工作波長達10~60m(頻率為5~28MHz),完全在正常雷達工作波段范圍之外。這種雷達靠諧振效應探測大多數目標,幾乎不受現有RAM的影響。

國外還非常重視發展毫米波雷達,目前已有可供實用的毫米波雷達。但是,頻率越低波束越難集中,而頻率越高波束傳播損耗越大。美國空軍曾在1990年有關反隱身對抗的總結報告中稱,甚高頻(VHF)雷達(頻率160~180MHz、波長1.65~1.90m)在探測低飛目標或對付人工干擾時存在嚴重問題;OTH雷達提供的跟蹤和定位數據不夠精確;毫米波雷達(頻率約為94GHz)探測概率不高。所以多應用於制導和地面人員搜索警戒雷達。

Ⅶ 急求機械原理課程設計 雷達天線仰俯搜索機構~

執行機構應該簡單,標準的角行程機構就可以,看掛接負載特性選型。廠家如伯納德,當然軍標有特殊要求廠家另說,但技術相通的。

自己從頭設計一個,伺服電機+減速機+輸出軸,考慮速度要求、重復定位精度、使用環境、電源等對零部件選型設計。
要做閉環也不難,與雷達電子專業結合,對方給什麼信號要求,做什麼樣動作就可以了,例如定向搜索、鎖定目標等等

閱讀全文

與機械設計雷達擺動裝置相關的資料

熱點內容
一條檢測線的設備需要多少錢 瀏覽:62
暖氣片回水閥門是什麼閥 瀏覽:647
儀表盤控制櫃怎麼接線 瀏覽:608
制動傳動裝置的布置形式 瀏覽:519
生化儀器試劑過期怎麼改 瀏覽:315
廣東精藝發五金製品廠 瀏覽:646
神經網路數據訓練工具箱 瀏覽:756
領界儀表顯示模式怎麼設置 瀏覽:530
東莞市有哪些日資五金製品廠 瀏覽:895
管道泵一般用什麼閥門 瀏覽:790
閥門DN150A是什麼意思 瀏覽:974
超聲波液位計sl什麼意思 瀏覽:830
機械三位開關怎麼接線圖 瀏覽:935
彩鍍設備一般多少錢 瀏覽:522
調製冷水面主坯主要用什麼手法 瀏覽:656
家用暖氣閥門開關進戶閥 瀏覽:754
機械設計工作室怎麼開 瀏覽:281
自動化高度檢測裝置 瀏覽:11
怎麼建造機械車迷你 瀏覽:649
實驗室制乙酸乙酯裝置改裝 瀏覽:757