① PT並列測控裝置
一 裝置概述
本裝置是為了實現水,火電站(廠)和各種大型不能停電的廠礦備用電源的快速切換以及變電站差頻同頻並網,變電站母線分段方式自投,內橋接線方式自投而專門設計的開關智能控制裝置.特別在事故情況下需要將工作電源斷開同時又要在殘壓與備用電源之間的壓降,頻差,相差很小時合上備用電源,使用電設備不至於因一般故障,誤動造成停電,復啟動電流過大等事故,本裝置尤為適用,是快動的,檢同期的,一種多功能的新型備自投(BZT).
該裝置對待合開關兩端電源的頻率,電壓,相位量有良好的自動跟蹤的功能,並設置電子同步表模擬老式指針同步表對其頻差,相差大小進行動態模擬顯示,同時結合工況指示燈對合閘前後的工況進行顯示,使操作直觀,簡單化.裝置能對故障電源的開關自動發出適時的跳閘脈沖,能配合待並開關順利實現並聯(先合後跳),串聯(先跳後合),絕對串聯(確認跳的反饋信號後的合控制)的合,跳閘控制,在合,跳閘控制前後能對各開關位置和各輸入,輸出量的正確性進行巡測判斷並適時地發出全狀態閉鎖,去偶等信號,使跳,合閘控制盡量達到"寧可拒動,不可誤動"的效果.本裝置特設置兩模擬開關,當置在模擬狀態時可模擬待並開關兩端的頻率,相差和合閘的各種工況,供本裝置在安裝調試,正常安檢時使用.
圖1;待合開關兩端PT1\PT2電壓矢量合成圖(B"___B'圓弧內為高殘壓時備用電源安全投運區)
本裝置在採集到切換信號時,不僅考慮當前的相差,還考慮以後相位差變化的趨勢,用適當的數學模型代入預置的開關導前時間,計算出導前相角,當導前相角不超預置的范圍時發出快動合,跳命令,否則進行第一個同期點預測計算,預測條件滿足時再發出同期時的合,跳閘命令,以此准確的躲過相差在180度及其附近時合閘所帶來的危險(如圖1),否則轉入下一次的預測控制或轉入殘壓切換控制.
該裝置的可靠性,精確性與快速性三個主要技術性能特徵,均優於或達到了國內外同類型產品的技術水平,系為新一代智能型自動的電源快切裝置.
二 裝置設計及技術標准
1 總體設計
設計中採用免維修的模塊結構,整機包括兩I/O板(其中一個PT斷線監測專用板),主板,面板,開關電源五大模塊和箱體兩個組成部分,這種結構的主要特點是不作元器件級維修,只進行板級(模塊)維護,一旦出現硬體故障,只需將故障模塊換下即可,大大縮短了故障修復時間.其中電源採用以整體散熱金屬網屏蔽的性能優良的高頻開關電源模塊.箱體採用通風網雙層金屬機箱,既起到了電磁屏蔽的作用又具有良好的散熱性能.
2 軟,硬體設計
硬體的核心選用超大規模集成塊和功能完備的進口單片機晶元,所有的I/O信號全部採用電磁或光電隔離,裝置主體與現場無任何直接的電氣連接,因此具有較強的抗干擾能力.
對全部輸入信號進行數字慮波處理,對輸出信號進行冗餘控制,對合閘迴路進行軟體閉鎖以及對整機完備的自檢功能進一步保證了整機的可靠性.
4 生產過程質量控制
所有的元器件嚴格按生產工藝要求進行篩選,器件使用多數為軍工級,最低為工業級,成型模塊進行整體浸漆烘乾處理,整機100%進行全部試驗,包括常規電氣,功能,老化和振動試驗.
5 主要技術標准
參考技術標准:《 GB14285—93繼電器保護和安全自動裝置技術規程》
本企業技術標准:《XKQ—01廠用電源快切換裝置企業標准》
三 主要功能
設置1-4個待合開關的參數選擇點,用戶可通過機外繼電器對本機的兩PT/CT輸入端,參數選擇點,跳合閘等控制端一次性切換到相應的待合開關上,就能分時地對4個待合,跳開關組進行快速的自動切換控制或者分別對2組合,跳開關實行正,反切控制.
對於兩獨立電源供電的兩母線有聯絡開關的線路情況,本裝置能同時檢測聯絡開關兩邊母線電源的運行情況,並根據不同的情況和信號對三段式開關進行投切控制.如下圖:
圖2 快切裝置合,跳配合全圖
根據現場情況裝置也可以設置關閉一邊啟動,如關閉T1一邊不讓其啟動,只作合K跳T2的三種形式的啟動操作.
對於每一待合開關根據啟動方式的不同最多可設置六組不同的參數,每一組參數對應著並聯,串聯,絕對串聯三種合,跳閘控制方式中的一種,並且根據需要通過改寫參數的大小隨時可以改變合,跳閘控制方式.
裝置通電後為常備監控狀態,當檢測到一種啟動方式信號時,將立即從EPROM數據塊中取出一組相應的參數進行預測性的快切,同期切換,殘壓切換組合控制計算,當條件符合某一種情況時則發一次合,跳閘命令.
裝置設機位按鍵復位和遠方操作復位.
設置合閘完成時同步的低壓減載和後加速保護輸出脈沖(但其動作沿時由外部系統沿時繼電器完成).
指針式電子同步表,對其頻差,相差大小進行動態模擬顯示,同時結合工況指示燈對合閘前後的工況進行顯示,中文液晶屏則對跳合閘前後的在線頻率,時間,裝置工作狀態進行顯示,如合閘不成功中文液晶屏將給以標示(中文液晶屏見面板示意圖6).
設置兩模擬開關,當置在模擬狀態時可模擬待並開關兩端的頻差,相差,為本裝置在安裝調試,正常檢修和參數修改時提供便利.
完備的自檢閉鎖功能,主要設置有本裝置硬軟體出錯自動閉鎖,開關量控制全狀態閉鎖,跳合閘開關位置異常閉鎖,PT斷線閉鎖,PT隔離開關未合上閉鎖,後備電源失電閉鎖等,同時中文液晶屏對各種閉鎖工況按其檢測到的先後順序進行不同標示,以提示操作人員作快速的檢修.
提供RS232/485通信口.RS232通信口設置在面板的右下側,供調試上位機用,其通信界面如圖7,功能見第九節.RS485通信口設置在後板的右下側,供DCS系統控制專用.
錄波和事件記憶功能.裝置每一次動作的前一次動作事件主要指標(如:事件時間,事件結果狀態,合閘時的實際相位差,實際頻率,實際參數取值,當時的錄波波形)都能記憶存貯下來,供上位機查尋,列印(見九節說明),大部分指標由中文液晶屏和工況指示燈現場顯示見圖6.
可提供GPS秒對時介面(用戶如果需要其它方式對時如分對時功能須另外訂貨).還可採用通信口手動粗略對時,方法詳見九節.
四 技術參數
裝置工作電源:AC/DC 220V±l0%兩用,(AC/DC 110V/±10%兩用如訂貨方有要求則合同註明特供).
功耗:小於25W.
待合開關兩端PT同時用l00V,CT為5A(特殊情況現場調整),
輸出繼電器觸點容量(長期閉合): AC 220V/l0A DC 220V/5A.
合開關導前時間TK的設置范圍: 20ms~999ms,步長1ms(此參數整定存貯以用戶現場安裝提供參數為准,也是用戶必須提供的參數.)
同期合閘允許頻差△F1的設置范圍: 0.50Hz~2.99Hz,步長0.01 Hz(此參數按用戶機型要求設定,未作要求則按2.25 Hz整定存貯).
快切合閘允許頻差△F2的設置范圍: 0.50Hz~2.99Hz,步長0.01 Hz.
快切合閘允許相差δ的設置范圍: 0.5度~59.9度,步長0.1度.
跳閘延時時間Ty:1~9999 ms,步長1ms.(用戶可根據具體的並串的合,跳閘控制方式的要求,以合開關導前時間TK的起始值0為基準,推算待跳開關要求的總跳導前時間To,然後再根據跳開關迴路固有的導前時間Tg進行推算.具體演算法如下:
並聯切換:To大於Tk, Ty=To-Tg ; 串聯切換:To小於Tk, Ty=To-Tg
失壓啟動延時Tj:1~9999 ms,步長1ms.(用戶一般應取它大於其最大負荷正常啟動時帶來短時壓降時間,以此躲過正常啟動時所帶來的誤跳合工作).
失壓啟動整定范圍△U%:20%~90%Un.
殘壓啟動整定范圍△U%:20%~60%Un.
32檔電子模擬指針同步表的分度值:11.25度.
裝置所有電路與外殼之間及電路與電路之間的絕緣電阻:在溫度為25度,相對濕度為60%±10%時,不低於l00MΩ.
裝置所有交/直流12V以上接線端子對外殼耐壓2000v/工頻1分鍾,直流12V以下電氣迴路對外殼耐壓500v/工頻1分鍾無擊穿閃爍現象.
環境溫度:-10度~50度
相對濕度:小於80%.
五 硬體模塊結構框圖
六 基本原理及組成
XKQ—01廠用電快切裝置硬體結構如圖3所示.主板CPU主頻8MHZ,配8K EPROM ,8k EEPROM,8k RAM和若干定時計數器及並行介面等晶元組成一個專用微機控制系統,下面就各主要功能原理進行簡單介紹.
廠用電快切的必要性和解決的辦法:
目前,在發電廠和所謂一級負荷的工礦企業以及某些變電站中,用電的連續可靠是電機安全運行的基本條件.以往國內廣泛採用的備用電源自投方式,一般都是用工作電源開關輔助接點直接(或經低壓,延時繼電器)啟動備用電源投入,這種方式無相頻檢測,用電切換成功率低或切換時間長,電動機復起動電流過大易超過允許值范圍受沖擊損壞.特別是一些使用大功率電機,高壓電機的場合,由於電機在斷電後電壓衰減較慢,如在殘壓較大時不檢查同期條件就合上備用電源,起/備變壓器和電動機將有可能受到嚴重的沖擊而損壞,如只待其殘壓降到一定幅度(如20%--40%Un之間)後在投入備用電源,由於斷電時間長,電動機的轉速下降很大,成組電動機的自起動引起母線嚴重繼續失壓,某些輔機勢必退出,嚴重時重要機組自起動困難勢必造成停機停爐.
為解決以上問題,本裝置在正常用電時就對待合開關兩端電源的頻率,電壓,相位量進行長期的自動跟蹤和監測,一段檢測到切換信號時,將立即根據當前頻差,相差采樣值,同時利用適當的數學模型(不僅考慮當前的相差,頻差,而且考慮以後相差,頻差的變化率)結合預置的待合開關導前時間,推算出以後合閘准點時的相差,頻差,然後同預置的允許的相差,頻差進行比較,當條件滿足時就發出合,跳閘脈沖信號.
首先,由於在工作電源正常工作時,備用電源同工作電源之間的壓差,頻差,相差一般都很小,因此一段工作電源故障跳開,其母線殘壓與備用電源的相差將從0度開始逐漸變大,本裝置的第一段預測計算是取預置參數中的快切允許頻差,相差進行計算的,目的是為了搶在母線的殘壓壓降很小時發出合,跳閘控制信號;如果條件不滿足則進入第二階段的第一個同步點的預測計算控制,其比較取值當然是預置的同期合閘的相差,頻差允許值;如果以上兩條件都不滿足,同時其殘壓降至殘壓切換整定值則立即轉入無條件的殘壓切換控制.本裝置預測相差的計算公式為:δk=ΔωsTk (dΔωs/dt))Tk2 (式中 δk—理想合閘導前角 ,Δωs—殘壓或工作電源與備用電源頻率之差,Tk—待合開關合閘導前時間)
快切計算合閘條件:δi-δi-10,∣0.576∣δi-1=δi-1-δk (∣0.576∣為同期合閘固定相角誤差)
2.切裝置輔助控制功能:
本裝置當處於工作母線低壓自動切換時,將設一足夠的延時時間量(由用戶根據現場情況設定)延時後即啟動計算控制,以此躲過正常啟動時所帶來的誤跳合工作;
本裝置在發出合,跳命令後,將設一固定的延時時間如500 ms值再一次巡測合,跳開關的反饋信號的正常性,如發現該跳的沒跳,該合的沒合則立即發出偶信號,盡量使開關位置正常.
本裝置當在低壓啟動切換時(如低壓自動啟動切換),為盡快使重要負荷快速啟動,設置後加速保護的控制輸出(延時時間則由用戶在本機外設置延時繼電器設定.
3.自檢功能,模擬試機及現場"真合閘,假並網"試驗:
所有電力儀器儀表在真正投運前首先要進行一次接近現場條件的動模試驗,或者投入後要定期檢查該裝置可靠性.本裝置從三個方面實現對本機可靠性檢驗.
首先,本裝置通電後,不管是在合閘控制前和合閘控制後,均設有軟體控制CPU適時地對輸入輸出介面(如繼電器)等硬體各組成部分及其相互之間的連接線進行巡測,只要有一部分發生故障,則裝置處於閉鎖狀態,面板的電子同步表不轉,面板的液晶屏顯示相應的故障標志,以此通知操作人員對硬體,軟體有針對性地檢查(故障符號意義詳見第十一部分).
其次,本機在投運前設置了模擬開關試機,此開關安裝在後板上,兩開關其中之一為模擬PT1頻率信號,另一個PT2頻率信號,但不模擬兩PT電壓量.不管兩PT(或者為同頻同相的交流100V±5%的兩組模擬PT)接入否,兩開關投到模擬狀態,然後打開電源開關通電,這時面板的電子同步表(後有詳述)即轉動,面板液晶屏將同時顯示本機模擬的兩PT頻率和未經效正的基時時間等(後有詳述),面板的八個工況指示燈中合閘閉鎖信號燈同時點亮.當兩組PT端接入交流100V±5%兩組模擬非同頻同相或同頻同相PT,同時在後板將公共端C短接一個已輸入一組有效數據的對應開關標志H點時(後有詳解),這時將模擬開關投到模擬狀態,然後裝置通電,這時本機處於巡測狀態,本機將同時顯示PT1,PT2的在線頻率值,當從本機後板人為給入一自動啟動信號時,本機就能模擬合閘一次,電子表開始轉動,當轉動到正上方一組紅色指針時(0°位置)則停止轉動,大圓中心的一個紅色信號燈閃爍一次表明發出了合閘脈沖,同時八個工況信號燈中的合閘完成和相應的合閘成功兩信號燈同時點亮(注:做這個實驗務必將合,跳閘輸出斷開,主要地為了防止裝置在在線模擬試驗時誤動而發生事故).
其三,本機在投運前,特別是在第一次安裝投運前需按本單位提供的《現場投運調試大綱》程序進行一次所謂"真合閘,假投切"的現場動模合閘試驗.主要內容為一切接線都以真正條件為准.即模擬開關投到工作狀態,後板公共端C端接一個已輸入一組有效參數相對應的H端(該H端視為待合開關的標記,該組參數也是待合開關性能決定的真實參數,如開關導前時間Tk),工作電源和備用電源處於待切狀態,本機後板各輸入輸出接線無誤,這時分別拉開待合,跳開閘兩端的隔離開關,然後裝置通電進行模擬快切試驗.如果過去有機械同步表則這時可將本裝置與過去機械表同時並聯運行(只斷開過去機械同步表的合閘輸出脈沖即可),這時本裝置應與過去的機械同步表同期轉動,並同時達到合閘點.合閘脈沖發出後,待合開關合上,本機面板只顯示合閘完成,電子同步表正指0°紅指針位不動.大圓中心的紅燈閃爍一次,數碼管顯示合閘後的系統頻率,這時即完成了整個的模擬試驗.然後斷開剛合上的斷路器,合上斷路器兩邊的隔離開關進行真正的合閘控制.
七 監控主程序流程圖和切換程序流程圖
八 前面板與參數設置
前面板如圖6:
1. 面板的左上側為中文液晶顯示部分,其功能在於:在開機監控狀態 時,如果待合閘開關兩邊PT已接入則同時顯示待合閘開關兩邊線路的頻率,如 果兩邊PT之一未接入則顯示一邊頻率和一邊的PT斷線標志,如果兩邊PT均未接入則顯示兩邊PT斷線標志,但不能鑒別兩PT接入相位的正確性;
在前面提到的Tk,△F1,△F2,δ,Ty,Tj參數組設置或修改時,顯示操作中的參數(詳見參數設置部分);
合閘完成後只顯示合閘後的系統頻率;
裝置接線或本裝置硬體有錯誤時則顯示其某些重點錯誤的標記(見第十一部分)通知技術人員進行有針對性地檢修.
顯示裝置的基時時間,裝置工作後可通過功能鍵或上位機將時間調整同標准時間一致.
液晶顯示屏的右側為裝置內用的直流電源 5V和 12V指示燈和裝置工況指示燈,電源指示燈亮表明裝置通電正常,否則異常.
右側大圓形為32檔LED模擬電子式指針同步表,均勻分布在360° 圓周上,0° 位置為紅色,其餘為綠色,正中間設一合閘指令脈沖發出同步信號燈,專供合閘時指示用.裝置投運或模擬試驗時,同步表指示待合開關兩端電壓的相位差,同步表順時針旋轉表示PT2頻率高於PT1頻率,逆時針旋轉表示PT2頻率低於PT1頻率,旋轉速度表示頻差的大小,頻差越大轉得越快.
8個狀態指示燈,用於指示合閘投運過程中及模擬試驗時的實際工況.特別在調試合閘過程中,工況燈就是技術人員調試合閘的眼睛.
面板上的功能鍵及復位鍵:
復位鍵的功能是中斷當前的一切狀態,使裝置重新開始運行程序,通常叫"清零"開關.後板的公共端C和遠方復位端R短接後斷開同該鍵功能一樣,因此用於遠方復位操作.該鍵能同鍵2,鍵3組合使用則分別使本機進入參數設置修改模式和調試板模塊操作模式.
鍵1,鍵2,鍵3為功能鍵具體功能及操作如下:
本裝置最多設置4大組有效參數,4個大組參數分別對應一個待合開關H1-4,每個大組參數共有36個有效數據.一個待合開關的6種不同的啟動控制方式分別對應6個小組參數段,每一個小組參數段含6個意義相同但數值不同的數據,它們是:"待合閘開關合閘導前時間TK","同期合閘允許頻差△F1","快切合閘允許頻差△F2","快切合閘允許相差δ","跳閘延時時間Ty","失壓啟動延時Tj". 6種不同的啟動控制方式所對應6個小組參數段為:
PT1一邊跳自動合閘啟動對應1—6數據;
PT2一邊跳自動合閘啟動對應7—12數據;
PT1一邊跳手動合閘啟動對應13—18數據;
PT2一邊跳手動合閘啟動對應19—24數據;
PT1一邊跳,合閘失壓啟動對應25—30數據;
PT2一邊跳,合閘失壓啟動對應31—36數據.
准備階段:將後板並列的兩開關置於"模擬狀態"位置,先按復位鍵再按鍵2,當顯示器出現提示參數整定,先松復位鍵,再松"鍵2"即可進行參數設置.
按"鍵1"顯示器出現並列點1並指針指向參數1,後再按"鍵2"或"鍵3",輸入已整定好的一個數值,輸入數值時按鍵2為增值,按鍵3為減值,輸入完後,再按"鍵1"時, 指針指向參數2,同時對上次輸入是1H1數據進行了存貯,如此循環.(注:數據輸入後若未按鍵1,則上次輸入的數據無效,即未存貯)
參數液晶顯示順序:參數整定值舉例
並列點:1(2,3,4)
1( 開關導前時間):100ms
2( 同期允許頻差):3Hz
3(快切允許頻差):1.5 Hz
4(快允許相差):60°
5( 跳閘沿時時間):1ms
6(失壓沿時時間):1ms
………………………………….
………………………………….
36(失壓沿時時間):5000ms
注:該裝置在試驗狀態或參數設置完成後,必須將狀態開關從"模擬狀態"位置拔到"工作狀態"位置,方能投入正式的合,跳閘控制運行程序.
九 通信界面及功能
通信界面如圖7,232/485通信口接一上位機,上位機裝入本公司提供的專用通信和列印程序,打開程序即可生成如圖6的界面,用游標選定通信的波特率(推薦用1200比較可靠)和上位機硬介面COM1或COM2.
通信口功能有三:基時時間整定:按啟動鍵後在發送命令下鍵入"A0世紀,年,月,日,小時,分,秒"的16進制代碼如"A01403061501050A"然後按Enter鍵,這時控制器的起始時間被整定為2003年,6月,22日,1小時,5分,10秒,並在裝置面板的液晶塊下方顯示出來,裝置的時間表同標准時間同步,當發生一次事件時,事件時間將自動保存供上位機即時查尋,列印.
數據查尋:程序和數據16進制代碼可以通過以下方法查尋,按啟動鍵後在發送命令下鍵入"90地址,位元組數,FF"的16進制代碼如"9056000AFF"然後按Enter鍵,這時數據接收區可以收到裝置存貯器地址5600起以後的10個16進制代碼,用於上位機特別是DCS系統自製控制界面對本裝置工作情況的分析.
事件結果數據和錄波的查看:按查看數據按鍵,這時事件時間,事件結果狀態,合閘時的實際相位差,實際頻率,實際參數取值,當時的錄波波形)都能從記憶存貯單元中取出並在界面上顯示出來,上位機如接有列印機即可按列印數據鍵列印.
其列印的格式如下:
快切控制器事件報告單(舉例)
事件時間:0:0:9
PT1頻率:50Hz
PT2頻率:49.9Hz
事件代碼: 5 合閘位置異常
合閘相位差:44°
開關導前時間:100ms
同期允許頻差:3Hz
快切允許頻差:1.5 Hz
快允許相差:60°
跳閘沿時時間:1ms
失壓沿時時間:1ms
錄波圖示範如下:
十 安裝尺寸及接線
XKQ—01型快切裝置採用儀表屏嵌裝式結構,只需將本控制器嵌入儀表屏即可.安裝尺寸見圖8.
快切裝置與現場的連接,主要通過後面接線板.(接線圖見端子圖及應用接線圖)
訂貨使用須知
訂貨時請提供如下數據資料:
待合開關總的合導前時間TK.
並列點開關實際編號(一位數字代表).
待跳開關總的跳導前時間,並根據本說明書的第四節計算公式以及各啟動狀態下的串,並聯方式的要求計算出跳閘延時時間Ty.
同期合閘允許頻差△F1.
快切合閘允許頻差△F2.
快切合閘允許相差δ.
失壓啟動延時Tj.
本裝置以外其他功能,凡需要的用戶,敬請訂貨另行說明.
本裝置所有的開關輸出量均為無源短脈沖,所有的開關輸入量均為有源-12V短脈沖(本機自串電源,外接應為繼電器無源接點,復位脈沖大於2秒最為可靠).
模擬試機調試須斷開輸出開關接線單,以防誤動作.
輸入,輸出遠地操作,特別是通信,遠方復位建議用屏蔽電纜作饋線,必要時用光纖通信.
十一 硬體故障的測試,診斷和工況表
繼電器輸出的測試:
通過功能鍵進入顯示屏菜單的測試功能擋.
應順序有報警輸出,PT1跳輸出輸出,PT2跳輸出,合開關跳輸出,低壓減載輸出,閉鎖輸出,合閘1合上,合閘2合上.
部分信號及硬體故障診斷:將本機模擬開關置"工作狀態",合閘輸出端不接,開機後如數碼管顯示以下標志則對應的信息或故障可判斷為:
本機外全狀態閉鎖信號已輸入
跳,閘開關位置異常
合閘開關位置異常
部分接線錯誤疹斷:
PT1斷線
PT2斷線
PT隔離開關未合上
未接參數輸入點H
同時接多參數輸入點
同時有多種啟動方式
以上10種信息或故障其顯示的優先順序按從上到下的順序依次減小.
自檢過程中,本裝置部分硬體出錯:
存儲器RAM出錯
EEPROM出錯
I/O出錯(R=L=0):(取其中字母0)
I/O出錯(R=L=l):(取其中字母1)
I/O出錯(VH=V1=1):(取其中字母U)
如本裝置顯示以上信息則同時啟動報警指示燈,閉鎖指示燈和報警繼電器.
本裝置一切接線和硬體無誤時,通電處於巡測狀態顯示:
待合閘開關對應信號顯示為:(為1, 2,3,4其中之一)
合閘點=X
按F1鍵則可查閱PT1一邊的在線頻率並顯示為
FPT1.xx..xxx
按F2鍵則可查閱PT2一邊的在線頻率並顯示為
FPT1.xx..xxx
開機接線無誤巡測時如獲一正常啟動信號後如發現合閘開關H已合上的去偶的情況顯示:
該跳的開關已跳顯示
合閘後頻率:xx.xxx
這時閉鎖燈亮,合閘完成燈和合閘信號燈均不亮,表明不是本機發出的跳,合閘完成.
該跳的開關未跳,但不該跳的開關卻跳了則顯示:
PT1一邊跳工況燈顯示合閘完成,故障報警
PT2一邊跳工況燈顯示合閘完成,故障報警
開機接線無誤巡測時如獲一正常啟動信號後如發現合閘開關H未合上正常的合,跳及去偶的情況顯示:
通過計算發出合,跳命令後H合上同時該跳的開關已跳則顯示
合閘後頻率:xx.xxx
這時閉鎖燈熄,合閘完成燈和合閘信號燈均亮,快動,同期,殘壓合閘完成指示燈其中之一亮,表明是本機發出的跳,合閘完成並表明是何種形式的合閘完成.如果合閘後電壓降至一定的范圍則自動發出低壓減載信號(如需沿時減載則外接沿時繼電器)同時低壓減載信號燈亮.
通過計算發出合,跳命令後H未合上或者合上後因該跳的開關未跳通過去偶H又跳開了則顯示合閘開關位置異常
合開關H異常
通過計算發出合,跳命令後H已合上,但該跳的開關未跳開同時經過合閘後去偶H仍跳不開則為大故障其顯示為
大故障
通過計算發出合,跳命令後H已合上,但該跳的開關未跳開而另一邊開關卻跳了其顯示狀態同合,跳命令發出前的故障顯示.
十二 附圖
圖9:XKQ—01外形及開孔尺寸
圖10:XKQ—01型廠用電源快切裝置備用端子圖
圖11:XKQ—01廠用電源快切裝置在30萬/60萬機組中的應用接線圖
XKQ—01廠用電快切裝置說明書
I/O板1
I/O板2
面 板
後 板
主 板
開關電源
圖3: XKQ—01廠用電快切裝置機箱內的硬體模塊結構框圖
Yes
No
Yes
Yes
No
No
No
No
No
No
No
No
Yes
Yes
Yes
Yes
Yes
圖4:主監控程序流程圖
閉鎖,報警等待復位
去偶
去偶
參數設置
按鍵復位
圖8:錄波示範圖
圖7:通信界面
有效圖 無效圖
全局閉鎖
顯示合閘完成及頻率
發合跳命令
合跳成功
信號唯一
參數設置
T1,T2開關均合上
PT隔離開關
末合上
PT斷線
信號巡檢
有切換啟動
信號
自檢出錯
上電,復位
No
No
圖5:切換程序流程圖
第五參數延時
發合閘命令
No
顯示合跳閘成功及頻率
No
T1,T2自動,手動,失壓六種啟動信號之一
Yes
Yes
Yes
Yes
閉鎖,報警等待復位
發低電壓
減載命令
去偶
No
第六參數延時
滿足同期
切換
合跳成功
電壓低
滿足快動
切換
發跳閘命令
滿足殘壓
切換
合跳反饋
正常否
② 關於熱失重TG實驗結果,ts、tr、Value都是什麼意思 如何看
Ts = Sample temperature 試樣/樣品溫度
Tr = Reference temperature 參比溫度
⊿T = Ts - Tr
③ 求楊氏模量已完成的實驗報告(有數據有結果)
楊氏模量的測量
【實驗目的】
1.1.掌握螺旋測微器的使用方法。
2.學會用光杠桿測量微小伸長量。
3.學會用拉伸法金屬絲的楊氏模量的方法。
【實驗儀器】
楊氏模量測定儀(包括:拉伸儀、光杠桿、望遠鏡、標尺),水準器,鋼捲尺,螺旋測微器,鋼直尺。
1、金屬絲與支架(裝置見圖1):金屬絲長約0.5米,上端被加緊在支架的上樑上,被夾於一個圓形夾頭。這圓形夾頭可以在支架的下樑的圓孔內自由移動。支架下方有三個可調支腳。這圓形的氣泡水準。使用時應調節支腳。由氣泡水準判斷支架是否處於垂直狀態。這樣才能使圓柱形夾頭在下樑平台的圓孔轉移動時不受摩擦。
2、光杠桿(結構見圖2):使用時兩前支腳放在支架的下樑平台三角形凹槽內,後支腳放在圓柱形夾頭上端平面上。當鋼絲受到拉伸時,隨著圓柱夾頭下降,光杠桿的後支腳也下降,時平面鏡以兩前支腳為軸旋轉。
圖1 圖2 圖3
3、望遠鏡與標尺(裝置見圖3):望遠鏡由物鏡、目鏡、十字分劃板組成。使用實現調節目鏡,使看清十字分劃板,在調節物鏡使看清標尺。這是表明標尺通過物鏡成像在分劃板平面上。由於標尺像與分劃板處於同一平面,所以可以消除讀書時的視差(即消除眼睛上下移動時標尺像與十字線之間的相對位移)。標尺是一般的米尺,但中間刻度為0。
【實驗原理】
1、胡克定律和楊氏彈性模量
固體在外力作用下將發生形變,如果外力撤去後相應的形變消失,這種形變稱為彈性形變。如果外力後仍有殘余形變,這種形變稱為塑性形變。
應力:單位面積上所受到的力(F/S)。
應變:是指在外力作用下的相對形變(相對伸長DL/L)它反映了物體形變的大小。
用公式表達為: (1)
2、光杠桿鏡尺法測量微小長度的變化
在(1)式中,在外力的F的拉伸下,鋼絲的伸長量DL是很小的量。用一般的長度測量儀器無法測量。在本實驗中採用光杠桿鏡尺法。
初始時,平面鏡處於垂直狀態。標尺通過平面鏡反射後,在望遠鏡中呈像。則望遠鏡可以通過平面鏡觀察到標尺的像。望遠鏡中十字線處在標尺上刻度為 。當鋼絲下降DL時,平面鏡將轉動q角。則望遠鏡中標尺的像也發生移動,十字線降落在標尺的刻度為 處。由於平面鏡轉動q角,進入望遠鏡的光線旋轉2q角。從圖中看出望遠鏡中標尺刻度的變化 。
因為q角很小,由上圖幾何關系得:
則: (2)
由(1)(2)得:
【實驗內容及步驟】
1、調楊氏模量測定儀底角螺釘,使工作台水平,要使夾頭處於無障礙狀態。
2、放上光杠桿,T形架的兩前足置於平台上的溝槽內,後足置於方框夾頭的平面上。微調工作台使T形架的三足尖處於同一水平面上,並使反射鏡面鉛直。
3、望遠鏡標尺架距離光杠桿反射平面鏡1.2~1.5m。調節望遠鏡光軸與反射鏡中心等高。調節對象為望遠鏡筒。
4、初步找標尺的像:從望遠鏡筒外側觀察反射平面鏡,看鏡中是否有標尺的像。如果沒有,則左右移動支架,同時觀察平面鏡,直到從中找到標尺的像。
5、調節望遠鏡找標尺的像:先調節望遠鏡目鏡,得到清晰的十字叉絲;再調節調焦手輪,使標尺成像在十字叉絲平面上。
6、調節平面鏡垂直於望遠鏡主光軸。
7、記錄望遠鏡中標尺的初始讀數 (不一定要零),再在鋼絲下端掛0.320kg砝碼,記錄望遠鏡中標尺讀數 ,以後依次加0.320kg,並分別記錄望遠鏡中標尺讀數,直到7塊砝碼加完為止,這是增量過程中的讀數。然後再每次減少0.320kg砝碼,並記下減重時望遠鏡中標尺的讀數。數據記錄表格見後面數據記錄部分。
8、取下所有砝碼,用捲尺測量平面鏡與標尺之間的距離R,鋼絲長度L,測量光杠桿常數b(把光杠桿在紙上按一下,留下三點的痕跡,連成一個等腰三角形。作其底邊上的高,即可測出b)。
9、用螺旋測微器測量鋼絲直徑6次。可以在鋼絲的不同部位和不同的經向測量。因為鋼絲直徑不均勻,截面積也不是理想的圓。
【實驗注意事項】
1、加減砝碼時一定要輕拿輕放,切勿壓斷鋼絲。
2、使用千分尺時只能用棘輪旋轉。
3、用鋼捲尺測量標尺到平面鏡的垂直距離時,尺面要放平。
4、楊氏模量儀的主支架已固定,不要調節主支架。
5、測量鋼絲長度時,要加上一個修正值 , 是夾頭內不能直接測量的一段鋼絲長度。
【實驗數據處理】
標尺最小分度:1mm 千分尺最小分度:0.01mm 鋼捲尺最小分度:1mm 鋼直尺最小分度:1mm
表一 外力mg與標尺讀數
序號i
0
1
2
3
4
5
6
7
m(kg)
0.000
0.320
0.640
0.960
1.280
1.600
1.920
2.240
加砝碼
1.00
2.01
3.08
4.11
5.29
6.57
7.45
8.59
減砝碼
0.83
1.94
3.05
4.22
5.31
6.35
7.70
8.59
0.915
1.975
3.065
4.165
5.300
6.460
7.575
8.59
表二 的逐差法處理
序號I
0
1
2
3
(cm)
4.385
4.485
4.510
4.425
4.451
(cm)
-0.066
0.033
0.059
-0.026
的A類不確定度:
的B類不確定度:
合成不確定度:
所以:
表三 鋼絲的直徑d 千分尺零點誤差: -0.001mm
次數
1
2
3
4
5
6
0.195
0.194
0.195
0.193
0.194
0.195
0.1953
0.0007
-0.0003
0.0007
-0.0013
-0.0003
0.0007
的A類不確定度:
的B類不確定度:
合成不確定度:
所以:
另外L=(45.42+4.23)cm、R=131.20cm、b=7.40cm為單次測量,不考慮A類不確定度,它們的不確定度為:
計算楊氏模量
不確定度:
實驗結果:
【實驗教學指導】
1、望遠鏡中觀察不到豎尺的像
應先從望遠筒外側,沿軸線方向望去,能看到平面鏡中豎尺的像。若看不到時,可調節望遠鏡的位置或方向,或平面反射鏡的角度,直到找到豎尺的像為止,然後,再從望遠鏡中找到豎尺的像。
2、叉絲成像不清楚。
這是望遠鏡目鏡調焦不合適的緣故,可慢慢調節望遠鏡目鏡,使叉絲像變清晰。
3、實驗中,加減法時,測提對應的數值重復性不好或規律性不好。
(1) 金屬絲夾頭未夾緊,金屬絲滑動。
(2)楊氏模量儀支柱不垂直,使金屬絲端的方框形夾頭與平台孔壁接觸摩擦太大。
(3)加馮法碼時,動作不夠平穩,導致光杠桿足尖發生移動。
(4)可能是金屬絲直徑太細,加砝碼時已超出彈性范圍。
【實驗隨即提問】
⑴ 根據Y的不確定度公式,分析哪個量的測量對測量結果影響最大。
答:根據 由實際測量出的量計算可知 對Y的測量結果影響最大,因此測此二量尤應精細。
⑵ 可否用作圖法求鋼絲的楊氏模量,如何作圖。
答:本實驗不用逐差法,而用作圖法處理數據,也可以算出楊氏模量。由公式Y=可得: F= Y△n=KY△n。式中K=可視為常數。以荷重F為縱坐標,與之相應的ni為橫坐標作圖。由上式可見該圖為一直線。從圖上求出直線的斜率,即可計算出楊氏模量。
⑶ 怎樣提高光杠桿的靈敏度?靈敏度是否越高越好?
答:由Δn= ΔL可知, 為光杠桿的放大倍率。適當改變R和b,可以增加放大倍數,提高光杠桿的靈敏度,但這種靈敏度並非越高越好;因為ΔL=Δn成立的條件是平面鏡的轉角θ很小(θ≤2.5°),否則tg2θ≠2θ。要使θ≤2.5°,必須使b≥ 4cm,這樣tg2θ≈2θ引起的誤差在允許范圍內;而b盡量大可以減小這種誤差。如果通過減小b來增加放大倍數將引起較大誤差
⑷ 稱為光杠桿的放大倍數,算算你的實驗結果的放大倍數。
答:以實驗結果計算光杠桿的放大倍數為
執筆人:張昆實
④ 設計物化實驗
找資料啦,網上不給你解答的
⑤ TG在化工工藝流程圖中代表
就地溫度表Temperature Gauge,
⑥ 大學物理實驗中,全息光柵的製作及其參數測量用哪種方法
全息光柵的製作(實驗報告)完美版 (2009-10-12 23:25:34)轉載
標簽: 光柵 乾片 發散鏡 雙縫 白屏 教育
設計性試驗看似可怕,但實際操作還是比較簡單的~
我的實驗報告,僅供參考~
實驗報告封面
全息光柵的製作
一、 實驗任務
設計並製作全息光柵,並測出其光柵常數,要求所製作的光柵不少於每毫米100條。
二、 實驗要求
1、設計三種以上製作全息光柵的方法,並進行比較。
2、設計製作全息光柵的完整步驟(包括拍攝和沖洗中的參數及注意事項),拍攝出全息光柵。
3、給出所製作的全息光柵的光柵常數值,進行不確定度計算、誤差分析並做實驗小結。
三、 實驗的基本物理原理
1、光柵產生的原理
光柵也稱衍射光柵,是利用多縫衍射原理使光發生色散(分解為光譜)的光學元件。它是一塊刻有大量平行等寬、等距狹縫(刻線)的平面玻璃或金屬片。光柵的狹縫數量很大,一般每毫米幾十至幾千條。單色平行光通過光柵每個縫的衍射和各縫間的干涉,形成暗條紋很寬、明條紋很細的圖樣,這些銳細而明亮的條紋稱作譜線。譜線的位置隨波長而異,當復色光通過光柵後,不同波長的譜線在不同的位置出現而形成光譜。光通過光柵形成光譜是單縫衍射和多縫干涉的共同結果(如圖1)。
圖1
2、測量光柵常數的方法:
用測量顯微鏡測量;
用分光計,根據光柵方程d·sin =k 來測量;
用衍射法測量。激光通過光柵衍射,在較遠的屏上,測出零級和一級衍射光斑的間距△x及屏到光柵的距離L,則光柵常數d= L/△x。
四、 實驗的具體方案及比較
1、洛埃鏡改進法:
基本物理原理:洛埃鏡的特點是一部分直射光和另一部分反射鏡的反射光進行干涉,如原始光束是平行光,則可增加一全反鏡,同樣可做到一部分直射光和一部分鏡面反射光進行干涉,從而製作全息光柵。
優點:這種方法省去了製造雙縫的步驟。
缺點:光源必須十分靠近平面鏡。
實驗原理圖:
圖2
2、楊氏雙縫干涉法:
基本物理原理:S1,S2為完全相同的線光源,P是屏幕上任意一點,它與S1,S2連線的中垂線交點S'相距x,與S1,S2相距為rl、r2,雙縫間距離為d,雙縫到屏幕的距離為L。
因雙縫間距d遠小於縫到屏的距離L,P點處的光程差:
圖3
δ=r2-r1=dsinθ=dtgθ=dx/L sinθ=tgθ
這是因為θ角度很小的時候,可以近似認為相等。
干涉明條紋的位置可由干涉極大條件δ=kλ得:
x=(L/d)kλ,
干涉暗條紋位置可由干涉極小條件δ=(k+1/2)λ得:
x=(D/d)(k+1/2)λ
明條紋之間、暗條紋之間距都是
Δx =λ(D/d)
因此干涉條紋是等距離分布的。
而且注意上面的公式都有波長參數在裡面,波長越長,相差越大。
條紋形狀:為一組與狹縫平行、等間隔的直線(干涉條紋特點)d= L/△x
優點:使用激光光源相干條件很容易滿足。
缺點:所需的實驗儀器較復雜,不易得到。
實驗原理圖:
圖4
3、馬赫—曾德干涉儀法:
基本物理原理:只要調節光路中的一面分光鏡的方位角,就可以改變透射光和反射光的夾角,從而改變干涉條紋的間距。
優點:這種方法對光路的精確度要求不高,實驗效果不錯,易於學生操作。
缺點:這種方法對光路的精確度要求不高,實驗可能不夠精確。
實驗原理圖:
圖5
五、 儀器的選擇與配套
綜合考慮各方面條件,本次試驗採用馬赫—曾德干涉儀法,所需的實驗儀器有He-Ne激光發射器1架、發散鏡1面、凸透鏡1面、半反半透鏡2面、全反鏡2面和白屏、光闌各一、拍攝光柵用的乾片若干、架子。
六、 實驗步驟
(一)製作全息光柵
1.打開He-Ne激光發射器,利用白屏使激光束平行於水平面。
2.調節發散鏡和激光發射器的距離使激光發散。
3.調節凸透鏡和發散鏡的距離使之等於凸透鏡的焦距,得到平行光。
4. 調節2面半反半透鏡和2面全反鏡的位置和高度,使它們擺成一個平行四邊形(如圖5)。
5.調節半反半透鏡和全反鏡上的微調旋鈕,使得到的2個光斑等高,且間距為4-6cm。
6. 測出實驗中光路的光程差△l。
(在實驗中我們測得的光路的光程差△l=1.5cm)
(二)拍攝全息光柵
1.擋住激光束,把乾片放在架子上,讓激光束照射在乾片上1-2秒,擋住激光束,把乾片取下帶到暗房中。
2.把乾片泡在顯影液中適當的時間(時間長度由顯影液的濃度決定),取出,用清水沖洗,在泡在定影液中約5分鍾。取出,沖洗後晾乾。
3.用激光束檢驗沖洗好的乾片,若能看見零級、一級的光斑,說明此乾片可以用於測定光柵常數。
(三)測定所制光柵的光柵常數
實際圖:
此圖參照老師所給實驗內容報告上的圖來畫
圖6
原始數據表:
x
1
2
3
4
5
6
r(cm)
23.81
24.12
23.93
24.24
23.65
23.66
h(cm)
144.36
144.65
143.84
144.03
144.52
144.11
計算過程:
七、實驗注意事項
1、不要正對著激光束觀察,以免損壞眼睛。
2、半導體激光器工作電壓為直流電壓3V,應用專用220V/3V直流電源工作(該電源可避免接通電源瞬間電感效應產生高電壓的功能),以延長半導體激光器的工作壽命。
八、 實驗總結
設計型實驗,原先並沒有接觸過。以前的實驗,都是了解了書上介紹的實驗原理後,嚴格按照書上的詳細步驟來做的,不需要自己去思考和研究太多的東西。這一次准備設計型實驗,讓我鍛煉了好多方面的能力。首先,書上給出的只有簡單而概括的指導,所有的東西都要自己去查資料,去想辦法解決。連試驗究竟是怎麼回事都不知道的情況下,要先去網上大概了解實驗內容和原理,然後查閱相關文獻,具體研究實驗方案。尤其,這次的試驗,需要我們自己提供三種以上的不同實驗方案,進行細致比較之後選定一種。這就要求我們熟悉和掌握每種方案的原理、具體操作步驟和對應的優點缺點,逐一分析比較之後,在將自己的選定方案展開。這一系列過程要花費大部分時間在圖書館,因為要在浩瀚的文獻中找到自己需要的,對於我這個還沒上完科技文獻檢索課的學生來說,真的有點困難。我的報告中,有一部分資料來源於互聯網,然而網上的東西又不完全符合我的要求,修修改改,總算弄得差不多了。其實,自己明白了原理,按照自己預先設計好的方案進行實驗,在具體操作過程中,問題並不大,可以說,做讓人費神的是預習時候的實驗報告的書寫。現在,實驗已經基本做完,感覺收獲卻是很大。以後,對於設計型實驗,也可以更熟練的進行了。
想說,在進行實驗的全部過程中,科學和嚴謹的態度是最重要的,不可以在不明白的情況下進行試驗,不可以在數據有問題的情況下繼續試驗,後期的實驗數據處理,也要認真對待。
⑦ 這幅TG/DSC圖怎麼分析詳解!~ 我會追加分數的。 過來刷分的請走遠!~謝謝!!!
從TG圖上看在250度時開始分解,即開始失重,在400度後基本分解完從DSC上看,在保持同時升溫的條件下,物質放熱走勢比較陡來看,該物質熱穩定性不怎麼好,400度後肯定是不能用了
⑧ tg測定原理是什麼影響tg測定的因素有哪些
玻璃化轉變溫度(Tg)測定方法:
1.膨脹計法 在膨脹計內裝入適量的受測聚合物,通過抽真空的方法在負壓下將對受測聚合物沒有溶解作用的惰性液體充入膨脹計內,然後在油浴中以一定的升溫速率對膨脹計加熱,記錄惰性液體柱高度隨溫度的變化。由於高分子聚合物在玻璃化溫度前後體積的突變,因此惰性液體柱高度-溫度曲線上對應有折點。折點對應的溫度即為受測聚合物的玻璃化溫度。
2.折光率法 利用高分子聚合物在玻璃化轉變溫度前後折光率的變化,找出導致這種變化的玻璃化轉變溫度。
3.熱機械法(溫度-變形法) 在加熱爐或環境箱內對高分子聚合物的試樣施加恆定載荷;記錄不同溫度下的溫度-變形曲線。類似於膨脹計法,找出曲線上的折點所對應的溫度,即為:玻璃化轉變溫度。
4.DTA法(DSC)以玻璃化溫度為界,高分子聚合物的物理性質隨高分子鏈段運動自由度的變化而呈現顯著的變化,其中,熱容的變化使熱分析方法成為測定高分子材料玻璃化溫度的一種有效手段。目前用於玻璃化溫度測定的熱分析方法主要為差熱分析(DTA和差示掃描量熱分析法(DSC和熱機械法)。以DSC為例,當溫度逐漸升高,通過高分子聚合物的玻璃化轉變溫度時,DSC曲線上的基線向吸熱方向移動(見圖)。圖中A點是開始偏離基線的點。將轉變前後的基線延長,兩線之間的垂直距離為階差ΔJ,在ΔJ/2 處可以找到C點,從C點作切線與前基線相交於B點,B點所對應的溫度值即為玻璃化轉變溫度Tg。熱機械法即為玻璃化溫度過程直接記錄不做換算,比較方便。
5.動態力學性能分析(DMA)法 高分子材料的動態性能分析(DMA)通過在受測高分子聚合物上施加正弦交變載荷獲取聚合物材料的動態力學響應。對於彈性材料(材料無粘彈性質),動態載荷與其引起的變形之間無相位差(ε=σ0sin(ωt)/E)。當材料具有粘彈性質時,材料的變形滯後於施加的載荷,載荷與變形之間出現相位差δ:ε=σ0sin(ωt+δ)/E。將含相位角的應力應變關系按三角函數關系展開,定義出對應與彈性性質的儲能模量G』=Ecos(δ) 和對應於粘彈性的損耗模量G」=Esin(δ) E因此稱為絕對模量E=sqrt(G』2+G」2) 由於相位角差δ的存在,外部載荷在對粘彈性材料載入時出現能量的損耗。粘彈性材料的這一性質成為其對於外力的阻尼。阻尼系數 γ=tan(δ)=G』』/G』 由此可見,高分子聚合物的粘彈性大小體現在應變滯後相位角上。當溫度由低向高發展並通過玻璃化轉變溫度時,材料內部高分子的結構形態發生變化,與分子結構形態相關的粘彈性隨之的變化。這一變化同時反映在儲能模量,損耗模量和阻尼系數上。下圖是聚乙醯胺的DMA曲線。振動頻率為1Hz。在-60和-30°C之間,貯能模量的下降,阻尼系數的峰值對應著材料內部結構的變化。相應的溫度即為玻璃化轉變溫度Tg。
6.核磁共振法(NMR) 溫度升高後,分子運動加快,質子環境被平均化(處於高能量的帶磁矩質子與處於低能量的的帶磁矩質子在數量上開始接近;N-/N+=exp(-E/kT)),共振譜線變窄。到玻璃化轉變溫度,Tg時譜線的寬度有很大的改變。利用這一現象,可以用核磁共振儀,通過分析其譜線的方法獲取高分子材料的玻璃化轉變溫度。
影響玻璃化溫度的因素:
由於玻璃化轉變是與分子運動有關的現象,而分子運動又和分子結構有著密切關系,
所以分子鏈的柔順性、分子間作用力以及共聚、共混、增塑等都是影響高聚物Tg的重要內因。此外,外界條件如作用力、作用力速率,升(陣)溫速度等也是值得注意的影響因索。
1.化學結構
(1) 鏈的柔順性
分子鏈的柔順性是決定高聚物Tg的最重要的因素。主鏈柔順性越好,玻璃化溫度越低。
主鏈由飽和單鍵構成的高聚物,因為分子鏈可以固定單鍵進行內旋轉,所以Tg都不高,
特別是沒有極性側基取代時,其Tg更低。不同的單鍵中,內旋轉位壘較小的,Tg較低。例如, 高聚物聚二甲基硅氧烷聚甲醛聚乙烯SiCH3OCH3***H2CO*nn*H2CH2C*nTg/oC-123-83-68
主鏈中含有孤立雙鍵的高聚物,雖然雙鍵本身不能內旋轉,但雙鍵旁的α單鍵更易旋轉,
所以Tg都比較低。例如,丁二烯類橡膠都有較低的玻璃化溫度。
H2C*CHCHH2C*H2C*CCHH2C*CH3H2C*CHCHH2CH2CHC*聚丁二烯天然橡膠丁苯橡膠高聚物Tg/oC-95-73-51
(2)取代基
旁側基團的極性,對分子鏈的內旋轉和分子間的相互作用都會產生很大的影響。側基的
極性越強,Tg越高。一些烯烴類聚合物的Tg與取代基極性的關系如表
2 烯烴高聚物取代基的極性和Tg的關系 此外,增加分子鏈上極性基團的數量,也能提高高聚物的Tg.但當極性基團的數量超過一定值後,由於它們之間的靜電斥力超過吸引力,反而導致分子鏈間距離增大,Tg下降。取代基的位阻增加,分子鏈內旋轉受阻礙程度增加,Tg升高。應當強調指出,側基的存在並不總是使Tg增大的。取代基在主鏈上的對稱性對Tg也有很大影響,聚偏二氯乙烯中極性取代基對稱雙取代,偶極抵銷一部分,整個子極性矩減小,內旋轉位壘降低,柔性增加,其Tg比聚氯乙烯為低;而聚異丁烯的每個鏈節上,有兩個對稱的側甲基,使主鏈間距離增大,鏈間作用力減弱,內旋轉位壘降低,柔性增加,其Tg比聚丙烯為低。又如,當高聚物中存在柔性側基時,隨著側基的增大,在一定范圍內,由於柔性側基使分子間距離加大,相互作用減弱,即產生「內增塑」作用,所以,Tg反而下降。 (3)幾何異構單取代烯類高聚物如聚丙烯酸酯、聚苯乙烯等的玻璃化溫度幾乎與它們的立構無關,而雙取代烯類高聚物的玻璃化溫度都與立構類型有關。一般,全同立構的Tg較低,間同立構的Tg較高。在順反異構中,往往反式分子鏈較硬,Tg大。
(4)離子鍵的引入分子鏈間有離子鍵可以顯著提高Tg。例如,聚丙烯酸中加入金屬離子,T
g會大大提高,其效果又隨離子的價數而定。用Na+使Tg從l06℃提高到280℃;Cu2+取代Na+, Tg提高到500℃。
2,其他結構因素的影響
(1) 共聚
無規共聚物的Tg介於兩種共聚組分單體的Tg之間,並且隨著共聚組分的變化,其Tg在兩
種均聚物的Tg之間線性或非線性變化。 非無規共聚物中,最簡單的是交替共聚,他們以看成是兩種單體組成一個重復單元的均聚物,因此只有一個Tg。而嵌段或接枝共聚物情況就復雜多了。
(2)交聯
隨著交聯點的增加,高聚物自由體積減少,分子鏈的運動受到約束的程度也增加,相鄰交聯點之間平均鏈長變小,所以Tg升高。
(3)分子量
分子量的增加使Tg增加,特別是在分子量很小時,這種影響明顯,當分子量超過一定的程度後,Tg隨分子量變化就不明顯了。
(4)增塑劑和稀釋劑
增塑劑對Tg的影響也是相當顯著的,玻璃化溫度較高的聚合物在加入增塑劑後,可以使Tg明顯下降。例如:純的聚氯乙烯Tg=78℃,在室溫下是硬塑料,加入45%的增塑劑後,Tg=-30℃,可以作為橡膠代用品。澱粉的玻璃化溫度在加水前後就有明顯的變化。