一)選擇電抄動機襲1。選擇電動機容量 P=FV/η P=4000*2/η η是帶式輸送機的效率,你沒寫出來。2。選取電動機額定功率 查表3。確定電動機轉速 n=60V/πD n=60*2*1000/π*450 毫米轉化米/1000 然後查表。二)計算傳動裝置的總傳動比並分配各級傳動比。總傳動比等於電動機轉速除以n。 分配有:動機道減速箱,動力軸道中間軸,間軸道輸出軸 。 開始的就這么多了。我打字好慢的,累的不行了 呵呵
Ⅱ 機械課程設計盤磨機傳動裝置
我做的是普通減速機,磨盤機不清楚,我只能復制個樣本給你
目 錄
一 課程設計書 2
二 設計要求 2
三 設計步驟 2
1. 傳動裝置總體設計方案 3
2. 電動機的選擇 4
3. 確定傳動裝置的總傳動比和分配傳動比 5
4. 計算傳動裝置的運動和動力參數 5
6. 齒輪的設計 8
7. 滾動軸承和傳動軸的設計 19
8. 鍵聯接設計 26
9. 箱體結構的設計 27
10.潤滑密封設計 30
11.聯軸器設計 30
四 設計小結 31
五 參考資料 32
一. 課程設計書
設計課題:
設計一用於帶式運輸機上的兩級齒輪減速器.運輸機連續單向運轉,載荷有輕微沖擊,工作環境多塵,通風良好,空載起動,捲筒效率為0.96(包括其支承軸承效率的損失),減速器小批量生產,使用期限10年(300天/年),三班制工作,滾筒轉速容許速度誤差為5%,車間有三相交流,電壓380/220V。
參數:
皮帶有效拉力F(KN) 3.2
皮帶運行速度V(m/s) 1.4
滾筒直徑D(mm) 400
二. 設計要求
1.減速器裝配圖1張(0號)。
2.零件工作圖2-3張(A2)。
3.設計計算說明書1份。
三. 設計步驟
1. 傳動裝置總體設計方案
2. 電動機的選擇
3. 確定傳動裝置的總傳動比和分配傳動比
4. 計算傳動裝置的運動和動力參數
5. 齒輪的設計
6. 滾動軸承和傳動軸的設計
7. 鍵聯接設計
8. 箱體結構設計
9. 潤滑密封設計
10. 聯軸器設計
1.傳動裝置總體設計方案:
1. 組成:傳動裝置由電機、減速器、工作機組成。
2. 特點:齒輪相對於軸承不對稱分布,故沿軸向載荷分布不均勻,
要求軸有較大的剛度。
3. 確定傳動方案:考慮到電機轉速高,傳動功率大,將V帶設置在高速級。
其傳動方案如下:
圖一:(傳動裝置總體設計圖)
初步確定傳動系統總體方案如:傳動裝置總體設計圖所示。
選擇V帶傳動和二級圓柱斜齒輪減速器。
傳動裝置的總效率
為V帶的傳動效率, 為軸承的效率,
為對齒輪傳動的效率,(齒輪為7級精度,油脂潤滑)
為聯軸器的效率, 為滾筒的效率
因是薄壁防護罩,採用開式效率計算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.電動機的選擇
電動機所需工作功率為: P =P/η =3200×1.4/1000×0.760=3.40kW
滾筒軸工作轉速為n= = =66.88r/min,
經查表按推薦的傳動比合理范圍,V帶傳動的傳動比i =2~4,二級圓柱斜齒輪減速器傳動比i =8~40,
則總傳動比合理范圍為i =16~160,電動機轉速的可選范圍為n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
綜合考慮電動機和傳動裝置的尺寸、重量、價格和帶傳動、減速器的傳動比,
選定型號為Y112M—4的三相非同步電動機,額定功率為4.0
額定電流8.8A,滿載轉速 1440 r/min,同步轉速1500r/min。
方案 電動機型號 額定功 率
P
kw 電動機轉速
電動機重量
N 參考價格
元 傳動裝置的傳動比
同步轉速 滿載轉速 總傳動 比 V帶傳 動 減速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90
3.確定傳動裝置的總傳動比和分配傳動比
(1)總傳動比
由選定的電動機滿載轉速n 和工作機主動軸轉速n,可得傳動裝置總傳動比為 =n /n=1440/66.88=17.05
(2)分配傳動裝置傳動比
= ×
式中 分別為帶傳動和減速器的傳動比。
為使V帶傳動外廓尺寸不致過大,初步取 =2.3(實際的傳動比要在設計V帶傳動時,由所選大、小帶輪的標準直徑之比計算),則減速器傳動比為
= =17.05/2.3=7.41
根據展開式布置,考慮潤滑條件,為使兩級大齒輪直徑相近,查圖得高速級傳動比為 =3.24,則 = =2.29
4.計算傳動裝置的運動和動力參數
(1) 各軸轉速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各軸輸入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
則各軸的輸出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各軸輸入轉矩
= × × N•m
電動機軸的輸出轉矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
輸出轉矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
運動和動力參數結果如下表
軸名 功率P KW 轉矩T Nm 轉速r/min
輸入 輸出 輸入 輸出
電動機軸 3.40 22.55 1440
1軸 3.26 3.19 49.79 48.79 626.09
2軸 3.04 2.98 151.77 148.73 193.24
3軸 2.83 2.77 326.98 320.44 84.38
4軸 2.75 2.70 307.52 301.37 84.38
5.齒輪的設計
(一)高速級齒輪傳動的設計計算
1. 齒輪材料,熱處理及精度
考慮此減速器的功率及現場安裝的限制,故大小齒輪都選用硬齒面漸開線斜齒輪
(1)齒輪材料及熱處理
① 材料:高速級小齒輪選用45#鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =24
高速級大齒輪選用45#鋼正火,齒面硬度為大齒輪 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
2.初步設計齒輪傳動的主要尺寸
按齒面接觸強度設計
確定各參數的值:
①試選 =1.6
查課本 圖10-30 選取區域系數 Z =2.433
由課本 圖10-26
則
②由課本 公式10-13計算應力值環數
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25為齒數比,即3.25= )
③查課本 10-19圖得:K =0.93 K =0.96
④齒輪的疲勞強度極限
取失效概率為1%,安全系數S=1,應用 公式10-12得:
[ ] = =0.93×550=511.5
[ ] = =0.96×450=432
許用接觸應力
⑤查課本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.設計計算
①小齒輪的分度圓直徑d
=
②計算圓周速度
③計算齒寬b和模數
計算齒寬b
b= =49.53mm
計算摸數m
初選螺旋角 =14
=
④計算齒寬與高之比
齒高h=2.25 =2.25×2.00=4.50
= =11.01
⑤計算縱向重合度
=0.318 =1.903
⑥計算載荷系數K
使用系數 =1
根據 ,7級精度, 查課本由 表10-8得
動載系數K =1.07,
查課本由 表10-4得K 的計算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查課本由 表10-13得: K =1.35
查課本由 表10-3 得: K = =1.2
故載荷系數:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按實際載荷系數校正所算得的分度圓直徑
d =d =49.53× =51.73
⑧計算模數
=
4. 齒根彎曲疲勞強度設計
由彎曲強度的設計公式
≥
⑴ 確定公式內各計算數值
① 小齒輪傳遞的轉矩 =48.6kN•m
確定齒數z
因為是硬齒面,故取z =24,z =i z =3.24×24=77.76
傳動比誤差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允許
② 計算當量齒數
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初選齒寬系數
按對稱布置,由表查得 =1
④ 初選螺旋角
初定螺旋角 =14
⑤ 載荷系數K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齒形系數Y 和應力校正系數Y
查課本由 表10-5得:
齒形系數Y =2.592 Y =2.211
應力校正系數Y =1.596 Y =1.774
⑦ 重合度系數Y
端面重合度近似為 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因為 = /cos ,則重合度系數為Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系數Y
軸向重合度 = =1.825,
Y =1- =0.78
⑨ 計算大小齒輪的
安全系數由表查得S =1.25
工作壽命兩班制,8年,每年工作300天
小齒輪應力循環次數N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齒輪應力循環次數N2=N1/u=6.255×10 /3.24=1.9305×10
查課本由 表10-20c得到彎曲疲勞強度極限
小齒輪 大齒輪
查課本由 表10-18得彎曲疲勞壽命系數:
K =0.86 K =0.93
取彎曲疲勞安全系數 S=1.4
[ ] =
[ ] =
大齒輪的數值大.選用.
⑵ 設計計算
① 計算模數
對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =2mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =51.73 來計算應有的齒數.於是由:
z = =25.097 取z =25
那麼z =3.24×25=81
② 幾何尺寸計算
計算中心距 a= = =109.25
將中心距圓整為110
按圓整後的中心距修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正.
計算大.小齒輪的分度圓直徑
d = =51.53
d = =166.97
計算齒輪寬度
B=
圓整的
(二) 低速級齒輪傳動的設計計算
⑴ 材料:低速級小齒輪選用45鋼調質,齒面硬度為小齒輪 280HBS 取小齒齒數 =30
速級大齒輪選用45鋼正火,齒面硬度為大齒輪 240HBS z =2.33×30=69.9 圓整取z =70.
⑵ 齒輪精度
按GB/T10095-1998,選擇7級,齒根噴丸強化。
⑶ 按齒面接觸強度設計
1. 確定公式內的各計算數值
①試選K =1.6
②查課本由 圖10-30選取區域系數Z =2.45
③試選 ,查課本由 圖10-26查得
=0.83 =0.88 =0.83+0.88=1.71
應力循環次數
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由課本 圖10-19查得接觸疲勞壽命系數
K =0.94 K = 0.97
查課本由 圖10-21d
按齒面硬度查得小齒輪的接觸疲勞強度極限 ,
大齒輪的接觸疲勞強度極限
取失效概率為1%,安全系數S=1,則接觸疲勞許用應力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查課本由 表10-6查材料的彈性影響系數Z =189.8MP
選取齒寬系數
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 計算圓周速度
0.665
3. 計算齒寬
b= d =1×65.71=65.71
4. 計算齒寬與齒高之比
模數 m =
齒高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 計算縱向重合度
6. 計算載荷系數K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系數K =1
同高速齒輪的設計,查表選取各數值
=1.04 K =1.35 K =K =1.2
故載荷系數
K= =1×1.04×1.2×1.4231=1.776
7. 按實際載荷系數校正所算的分度圓直徑
d =d =65.71×
計算模數
3. 按齒根彎曲強度設計
m≥
一確定公式內各計算數值
(1) 計算小齒輪傳遞的轉矩 =143.3kN•m
(2) 確定齒數z
因為是硬齒面,故取z =30,z =i ×z =2.33×30=69.9
傳動比誤差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允許
(3) 初選齒寬系數
按對稱布置,由表查得 =1
(4) 初選螺旋角
初定螺旋角 =12
(5) 載荷系數K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 當量齒數
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由課本 表10-5查得齒形系數Y 和應力修正系數Y
(7) 螺旋角系數Y
軸向重合度 = =2.03
Y =1- =0.797
(8) 計算大小齒輪的
查課本由 圖10-20c得齒輪彎曲疲勞強度極限
查課本由 圖10-18得彎曲疲勞壽命系數
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
計算大小齒輪的 ,並加以比較
大齒輪的數值大,選用大齒輪的尺寸設計計算.
① 計算模數
對比計算結果,由齒面接觸疲勞強度計算的法面模數m 大於由齒根彎曲疲勞強度計算的法面模數,按GB/T1357-1987圓整為標准模數,取m =3mm但為了同時滿足接觸疲勞強度,需要按接觸疲勞強度算得的分度圓直徑d =72.91 來計算應有的齒數.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
計算中心距 a= = =102.234
將中心距圓整為103
修正螺旋角
=arccos
因 值改變不多,故參數 , , 等不必修正
分度圓直徑
d = =61.34
d = =143.12
計算齒輪寬度
圓整後取
低速級大齒輪如上圖:
齒輪各設計參數附表
1. 各軸轉速n
(r/min)
(r/min)
(r/min)
(r/min)
626.09 193.24 84.38 84.38
2. 各軸輸入功率 P
(kw)
(kw)
(kw)
(kw)
3.26 3.04 2.83 2.75
3. 各軸輸入轉矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)
49.79 151.77 326.98 307.52
6.傳動軸承和傳動軸的設計
1. 傳動軸承的設計
⑴. 求輸出軸上的功率P ,轉速 ,轉矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齒輪上的力
已知低速級大齒輪的分度圓直徑為
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圓周力F ,徑向力F 及軸向力F 的方向如圖示:
⑶. 初步確定軸的最小直徑
先按課本15-2初步估算軸的最小直徑,選取軸的材料為45鋼,調質處理,根據課本 取
輸出軸的最小直徑顯然是安裝聯軸器處的直徑 ,為了使所選的軸與聯軸器吻合,故需同時選取聯軸器的型號
查課本 ,選取
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm,半聯軸器的孔徑
⑷. 根據軸向定位的要求確定軸的各段直徑和長度
① 為了滿足半聯軸器的要求的軸向定位要求,Ⅰ-Ⅱ軸段右端需要制出一軸肩,故取Ⅱ-Ⅲ的直徑 ;左端用軸端擋圈定位,按軸端直徑取擋圈直徑 半聯軸器與 為了保證軸端擋圈只壓在半聯軸器上而不壓在軸端上, 故Ⅰ-Ⅱ的長度應比 略短一些,現取
② 初步選擇滾動軸承.因軸承同時受有徑向力和軸向力的作用,故選用單列角接觸球軸承.參照工作要求並根據 ,由軸承產品目錄中初步選取0基本游隙組 標准精度級的單列角接觸球軸承7010C型.
D B
軸承代號
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 從動軸的設計
對於選取的單向角接觸球軸承其尺寸為的 ,故 ;而 .
右端滾動軸承採用軸肩進行軸向定位.由手冊上查得7010C型軸承定位軸肩高度 mm,
③ 取安裝齒輪處的軸段 ;齒輪的右端與左軸承之間採用套筒定位.已知齒輪 的寬度為75mm,為了使套筒端面可靠地壓緊齒輪,此軸段應略短於輪轂寬度,故取 . 齒輪的左端採用軸肩定位,軸肩高3.5,取 .軸環寬度 ,取b=8mm.
④ 軸承端蓋的總寬度為20mm(由減速器及軸承端蓋的結構設計而定) .根據軸承端蓋的裝拆及便於對軸承添加潤滑脂的要求,取端蓋的外端面與半聯軸器右端面間的距離 ,故取 .
⑤ 取齒輪距箱體內壁之距離a=16 ,兩圓柱齒輪間的距離c=20 .考慮到箱體的鑄造誤差,在確定滾動軸承位置時,應距箱體內壁一段距離 s,取s=8 ,已知滾動軸承寬度T=16 ,
高速齒輪輪轂長L=50 ,則
至此,已初步確定了軸的各端直徑和長度.
5. 求軸上的載荷
首先根據結構圖作出軸的計算簡圖, 確定頂軸承的支點位置時,
查《機械設計手冊》20-149表20.6-7.
對於7010C型的角接觸球軸承,a=16.7mm,因此,做為簡支梁的軸的支承跨距.
傳動軸總體設計結構圖:
(從動軸)
(中間軸)
(主動軸)
從動軸的載荷分析圖:
6. 按彎曲扭轉合成應力校核軸的強度
根據
= =
前已選軸材料為45鋼,調質處理。
查表15-1得[ ]=60MP
〈 [ ] 此軸合理安全
7. 精確校核軸的疲勞強度.
⑴. 判斷危險截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B無需校核.從應力集中對軸的疲勞強度的影響來看,截面Ⅵ和Ⅶ處過盈配合引起的應力集中最嚴重,從受載來看,截面C上的應力最大.截面Ⅵ的應力集中的影響和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同時軸徑也較大,故不必做強度校核.截面C上雖然應力最大,但是應力集中不大,而且這里的直徑最大,故C截面也不必做強度校核,截面Ⅳ和Ⅴ顯然更加不必要做強度校核.由第3章的附錄可知,鍵槽的應力集中較系數比過盈配合的小,因而,該軸只需膠合截面Ⅶ左右兩側需驗證即可.
⑵. 截面Ⅶ左側。
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅶ的右側的彎矩M為
截面Ⅳ上的扭矩 為 =311.35
截面上的彎曲應力
截面上的扭轉應力
= =
軸的材料為45鋼。調質處理。
由課本 表15-1查得:
因
經插入後得
2.0 =1.31
軸性系數為
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以
綜合系數為: K =2.8
K =1.62
碳鋼的特性系數 取0.1
取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右側
抗彎系數 W=0.1 = 0.1 =12500
抗扭系數 =0.2 =0.2 =25000
截面Ⅳ左側的彎矩M為 M=133560
截面Ⅳ上的扭矩 為 =295
截面上的彎曲應力
截面上的扭轉應力
= = K =
K =
所以
綜合系數為:
K =2.8 K =1.62
碳鋼的特性系數
取0.1 取0.05
安全系數
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.鍵的設計和計算
①選擇鍵聯接的類型和尺寸
一般8級以上精度的尺寸的齒輪有定心精度要求,應用平鍵.
根據 d =55 d =65
查表6-1取: 鍵寬 b =16 h =10 =36
b =20 h =12 =50
②校和鍵聯接的強度
查表6-2得 [ ]=110MP
工作長度 36-16=20
50-20=30
③鍵與輪轂鍵槽的接觸高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
兩者都合適
取鍵標記為:
鍵2:16×36 A GB/T1096-1979
鍵3:20×50 A GB/T1096-1979
9.箱體結構的設計
減速器的箱體採用鑄造(HT200)製成,採用剖分式結構為了保證齒輪佳合質量,
大端蓋分機體採用 配合.
1. 機體有足夠的剛度
在機體為加肋,外輪廓為長方形,增強了軸承座剛度
2. 考慮到機體內零件的潤滑,密封散熱。
因其傳動件速度小於12m/s,故採用侵油潤油,同時為了避免油攪得沉渣濺起,齒頂到油池底面的距離H為40mm
為保證機蓋與機座連接處密封,聯接凸緣應有足夠的寬度,聯接表面應精創,其表面粗糙度為
3. 機體結構有良好的工藝性.
鑄件壁厚為10,圓角半徑為R=3。機體外型簡單,拔模方便.
4. 對附件設計
A 視孔蓋和窺視孔
在機蓋頂部開有窺視孔,能看到 傳動零件齒合區的位置,並有足夠的空間,以便於能伸入進行操作,窺視孔有蓋板,機體上開窺視孔與凸緣一塊,有便於機械加工出支承蓋板的表面並用墊片加強密封,蓋板用鑄鐵製成,用M6緊固
B 油螺塞:
放油孔位於油池最底處,並安排在減速器不與其他部件靠近的一側,以便放油,放油孔用螺塞堵住,因此油孔處的機體外壁應凸起一塊,由機械加工成螺塞頭部的支承面,並加封油圈加以密封。
C 油標:
油標位在便於觀察減速器油麵及油麵穩定之處。
油尺安置的部位不能太低,以防油進入油尺座孔而溢出.
D 通氣孔:
由於減速器運轉時,機體內溫度升高,氣壓增大,為便於排氣,在機蓋頂部的窺視孔改上安裝通氣器,以便達到體內為壓力平衡.
E 蓋螺釘:
啟蓋螺釘上的螺紋長度要大於機蓋聯結凸緣的厚度。
釘桿端部要做成圓柱形,以免破壞螺紋.
F 位銷:
為保證剖分式機體的軸承座孔的加工及裝配精度,在機體聯結凸緣的長度方向各安裝一圓錐定位銷,以提高定位精度.
G 吊鉤:
在機蓋上直接鑄出吊鉤和吊環,用以起吊或搬運較重的物體.
減速器機體結構尺寸如下:
名稱 符號 計算公式 結果
箱座壁厚
10
箱蓋壁厚
9
箱蓋凸緣厚度
12
箱座凸緣厚度
15
箱座底凸緣厚度
25
地腳螺釘直徑
M24
地腳螺釘數目
查手冊 6
軸承旁聯接螺栓直徑
M12
機蓋與機座聯接螺栓直徑
=(0.5~0.6)
M10
軸承端蓋螺釘直徑
=(0.4~0.5)
10
視孔蓋螺釘直徑
=(0.3~0.4)
8
定位銷直徑
=(0.7~0.8)
8
, , 至外機壁距離
查機械課程設計指導書表4 34
22
18
, 至凸緣邊緣距離
查機械課程設計指導書表4 28
16
外機壁至軸承座端面距離
= + +(8~12)
50
大齒輪頂圓與內機壁距離
>1.2
15
齒輪端面與內機壁距離
>
10
機蓋,機座肋厚
9 8.5
軸承端蓋外徑
+(5~5.5)
120(1軸)125(2軸)
150(3軸)
軸承旁聯結螺栓距離
120(1軸)125(2軸)
150(3軸)
10. 潤滑密封設計
對於二級圓柱齒輪減速器,因為傳動裝置屬於輕型的,且傳速較低,所以其速度遠遠小於 ,所以採用脂潤滑,箱體內選用SH0357-92中的50號潤滑,裝至規定高度.
油的深度為H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化學合成油,潤滑效果好。
密封性來講為了保證機蓋與機座聯接處密封,聯接
凸緣應有足夠的寬度,聯接表面應精創,其表面粗度應為
密封的表面要經過刮研。而且,凸緣聯接螺柱之間的距離不宜太
大,國150mm。並勻均布置,保證部分面處的密封性。
11.聯軸器設計
1.類型選擇.
為了隔離振動和沖擊,選用彈性套柱銷聯軸器.
2.載荷計算.
公稱轉矩:T=9550 9550 333.5
查課本 ,選取
所以轉矩
因為計算轉矩小於聯軸器公稱轉矩,所以
查《機械設計手冊》
選取LT7型彈性套柱銷聯軸器其公稱轉矩為500Nm
就這樣樓
Ⅲ 求一份機械原理相關的課程設計
已發去機械原理相關的課程設計4份,供參考。
Ⅳ 機械設計課程設計的章節目錄
?序言
前言
第一章 概述
第一節 課程設計的目的
第二節 課程設計的內容和步驟
第三節 機械設計課程設計任務書
第四節 課程設計應注意的問題
第二章 傳動裝置的總體設計
第一節 減速器的主要型式、特點及應用
第二節 初步確定減速器結構和零部件類型
第三節 擬定傳動方案
第四節 電動機的選擇
第五節 確定傳動裝置的總傳動比和分配各級傳動比
第六節 傳動裝置的運動參數和動力參數的計算
第三章 傳動零件的設計
第一節 箱外傳動件的設計要點
第二節 箱內傳動件的設計要點
第三節 軸徑初選
第四章 軸系部件設計
第一節 軸承類型的選擇
第二節 軸的結構設計及軸、軸承、鍵的強度校核
第三節 滾動軸承的組合設計
第四節 齒輪結構設計
第五章 減速器的結構
第一節 標准減速器簡介
第二節 通用減速器的結構
第三節 減速器箱體的結構設計
第四節 減速器附件設計
第六章 減速器的潤滑及密封
第一節 減速器的潤滑
第二節 減速器的密封
第七章 減速器的裝配圖設計
第一節 裝配圖的設計和繪制
第二節 裝配圖總成設計的完成
第八章 零件工作圖繪制
第一節 概述
第二節 軸類零件
第三節 齒輪類零件
第四節 箱體
第九章 編制設計計算說明書及准備答辯
第一節 設計計算說明書的內容、要求
第二節 准備答辯
第十章 參考圖例
一、典型減速器圖例
二、零件工作圖參考圖例
第十一章 一般設計資料
一、常用數據
二、課程設計常用的一般性資料
第十二章 常用材料
第十三章 常用緊固件和聯接件
一、螺栓、螺釘、螺柱
二、螺母、墊圈、擋圈
三、螺紋零件的結構要素
四、鍵聯接和銷聯接
第十四章 滾動軸承
一、常用滾動軸承
二、滾動軸承的配合
第十五章 潤滑和密封的標准和規范
一、潤滑劑
二、油杯
三、標准密封件
第十六章 聯軸器
第十七章 公差與配合
一、公差配合
二、形狀和位置公差
三、表面粗糙度
四、漸開線圓柱齒輪精度(GB10095-88)
五、蝸桿傳動精度
第十八章 電動機
主要參考文獻
Ⅳ 機械設計課程設計帶式運輸機傳動裝置
機械設計課程設計任務書
題目:設計一用於帶式運輸機傳動裝置中的同軸式二級圓柱齒輪減速器
一. 總體布置簡圖
1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器
二. 工作情況:
載荷平穩、單向旋轉
三. 原始數據
鼓輪的扭矩T(N·m):850
鼓輪的直徑D(mm):350
運輸帶速度V(m/s):0.7
帶速允許偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 設計內容
1. 電動機的選擇與運動參數計算;
2. 斜齒輪傳動設計計算
3. 軸的設計
4. 滾動軸承的選擇
5. 鍵和連軸器的選擇與校核;
6. 裝配圖、零件圖的繪制
7. 設計計算說明書的編寫
五. 設計任務
1. 減速器總裝配圖一張
2. 齒輪、軸零件圖各一張
3. 設計說明書一份
六. 設計進度
1、 第一階段:總體計算和傳動件參數計算
2、 第二階段:軸與軸系零件的設計
3、 第三階段:軸、軸承、聯軸器、鍵的校核及草圖繪制
4、 第四階段:裝配圖、零件圖的繪制及計算說明書的編寫
傳動方案的擬定及說明
由題目所知傳動機構類型為:同軸式二級圓柱齒輪減速器。故只要對本傳動機構進行分析論證。
本傳動機構的特點是:減速器橫向尺寸較小,兩大齒輪浸油深度可以大致相同。結構較復雜,軸向尺寸大,中間軸較長、剛度差,中間軸承潤滑較困難。
電動機的選擇
1.電動機類型和結構的選擇
因為本傳動的工作狀況是:載荷平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。
2.電動機容量的選擇
1) 工作機所需功率Pw
Pw=3.4kW
2) 電動機的輸出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.電動機轉速的選擇
nd=(i1』·i2』…in』)nw
初選為同步轉速為1000r/min的電動機
4.電動機型號的確定
由表20-1查出電動機型號為Y132M1-6,其額定功率為4kW,滿載轉速960r/min。基本符合題目所需的要求。
計算傳動裝置的運動和動力參數
傳動裝置的總傳動比及其分配
1.計算總傳動比
由電動機的滿載轉速nm和工作機主動軸轉速nw可確定傳動裝置應有的總傳動比為:
i=nm/nw
nw=38.4
i=25.14
Ⅵ 機械設計課程設計任務書
目 錄
設計計劃任務書 ﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎1
傳動方案說明﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎2
電動機的選擇﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎3
傳動裝置的運動和動力參數﹎﹎﹎﹎﹎﹎﹎﹎5
傳動件的設計計算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎6
軸的設計計算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎8
聯軸器的選擇﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎10
滾動軸承的選擇及計算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎13
鍵聯接的選擇及校核計算﹎﹎﹎﹎﹎﹎﹎﹎﹎14
減速器附件的選擇﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎15
潤滑與密封﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
設計小結﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
參考資料﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎17
1.擬定傳動方案
為了估計傳動裝置的總傳動比范圍,以便選擇合適的傳動機構和傳動方案,可先由已知條件計算其驅動捲筒的轉速nw,即
v=1.1m/s;D=350mm;
nw=60*1000*v/(∏*D)=60*1000*1.1/(3.14*350)
一般常選用同步轉速為1000r/min或1500r/min的電動機作為原動機,因此傳動裝置總傳動比約為17或25。
2.選擇電動機
1)電動機類型和結構形式
按工作要求和工作條件,選用一般用途的Y(IP44)系列三相非同步電動機。它為卧式封閉結構。
2)電動機容量
(1)捲筒軸的輸出功率Pw
F=2800r/min;
Pw=F*v/1000=2800*1.1/1000
(2)電動機輸出功率Pd
Pd=Pw/t
傳動裝置的總效率 t=t1*t2^2*t3*t4*t5
式中,t1,t2,…為從電動機到捲筒之間的各傳動機構和軸承的效率。由表2-4查得:
彈性聯軸器 1個
t4=0.99;
滾動軸承 2對
t2=0.99;
圓柱齒輪閉式 1對
t3=0.97;
V帶開式傳動 1幅
t1=0.95;
捲筒軸滑動軸承潤滑良好 1對
t5=0.98;
則
t=t1*t2^2*t3*t4*t5=0.95*0.99^2*0.97*0.99*0.98=0.8762
故
Pd=Pw/t=3.08/0.8762
(3)電動機額定功率Ped
由第二十章表20-1選取電動機額定功率ped=4KW。
3)電動機的轉速
為了便於選擇電動事,先推算電動機轉速的可選范圍。由表2-1查得V帶傳動常用傳動比范圍2~4,單級圓柱齒輪傳動比范圍3~6,
可選電動機的最小轉速
Nmin=nw*6=60.0241*6=360.1449r/min
可選電動機的最大轉速
Nmin=nw*24=60.0241*24=1440.6 r/min
同步轉速為960r/min
選定電動機型號為Y132M1-6。
4)電動機的技術數據和外形、安裝尺寸
由表20-1、表20-2查出Y132M1-6型電動機的方根技術數據和
外形、安裝尺寸,並列表刻錄備用。
電機型號 額定功率 同步轉速 滿載轉速 電機質量 軸徑mm
Y132M1-6 4Kw 1000 960 73 28
大齒輪數比小齒輪數=101/19=5.3158
3.計算傳動裝置總傳動比和分配各級傳動比
1)傳動裝置總傳動比
nm=960r/min;
i=nm/nw=960/60.0241=15.9936
2)分配各級傳動比
取V帶傳動比為
i1=3;
則單級圓柱齒輪減速器比為
i2=i/i1=15.9936/3=5.3312
所得i2值符合一般圓柱齒輪和單級圓柱齒輪減速器傳動比的常用范圍。
4.計算傳動裝置的運動和動力參數
1)各軸轉速
電動機軸為0軸,減速器高速軸為Ⅰ軸,低速軸為Ⅱ軸,各軸轉速為
n0=nm;
n1=n0/i1=60.0241/3=320r/min
n2=n1/i2=320/5.3312=60.0241r/min
2)各軸輸入功率
按機器的輸出功率Pd計算各軸輸入功率,即
P0=Ped=4kw
軸I 的功率
P1=P0*t1=4*0.95=3.8kw
軸II功率
P2=P1*t2*t3=3.8*0.99*0.97=3.6491kw
3)各軸轉矩
T0=9550*P0/n0=9550*4/960=39.7917 Nm
T1=9550*P1/n1=9550*3.8/320=113.4063 Nm
T2=9550*P2/n2=9550*3.6491/60.0241=580.5878 Nm
二、設計帶輪
1、計算功率
P=Ped=4Kw
一班制,工作8小時,載荷平穩,原動機為籠型交流電動機
查課本表8-10,得KA=1.1;
計算功率
Pc=KA*P=1.1*4=4.4kw
2選擇普通V帶型號
n0 =960r/min
根據Pc=4.4Kw,n0=960r/min,由圖13-15(205頁)查得坐標點位於A型
d1=80~100
3、確定帶輪基準直徑
表8-11及推薦標准值
小輪直徑
d1=100mm;
大輪直徑
d2=d1*3.5=100*3.5=350mm
取標准件
d2=355mm;
4、驗算帶速
驗算帶速
v=∏*d1*n0/60000=3.14*100*960/60000=5.0265m/s
在5~25m/s范圍內
從動輪轉速
n22=n0*d1/d2=960*100/355=270.4225m/s
n21=n0/3.5=960/3.5=274.2857m/s
從動輪轉速誤差=(n22-n21)/n21=270.4225-274.2857/274.2857
=-0.0141
5、V帶基準長度和中心距
初定中心距
中心距的范圍
amin=0.75*(d1+d2)=0.75*(100+355)=341.2500mm
amax=0.8*(d1+d2)=0.8*(100+355)=364mm
a0=350mm;
初算帶長
Lc=2*a0+pi*(d1+d2)/2+(d2-d1)^2/4/a0
Lc = 1461.2mm
選定基準長度
表8-7,表8-8查得
Ld=1600mm;
定中心距
a0+(Ld-Lc)/2=(1600-1461.3)/2=419.4206mm
a=420mm;
amin=a-0.015*Ld=420-0.015*1600=396mm
amax=a+0.03*Ld=420+0.03*1600=468mm
6、驗算小帶輪包角
驗算包角
=180-(d2-d1)*57.3/a=180-(355-100)*57.3/a
145.2107 >120度 故合格
7、求V帶根數Z
由式(13-15)得
查得 n1=960r/min , d1=120mm
查表13-3 P0=0.95
由式13-9得傳動比
i=d2/(d1(1+0.0141)=350/(100*(1+0.0141)=3.5
查表(13-4)得
由包角145.21度
查表13-5得Ka=0.92
KL=0.99
z=4.4/((0.95+0.05)*0.92*0.99)=3
8、作用在帶上的壓力F
查表13-1得q=0.10
故由13-17得單根V帶初拉力
三、軸
初做軸直徑:
軸I和軸II選用45#鋼 c=110
d1=110*(3.8/320)^(1/3)=25.096mm
取d1=28mm
d2=110*(3.65/60)^(1/3)=43.262mm
由於d2與聯軸器聯接,且聯軸器為標准件,由軸II扭矩,查162頁表
取YL10YLd10聯軸器
Tn=630>580.5878Nm 軸II直徑與聯軸器內孔一致
取d2=45mm
四、齒輪
1、齒輪強度
由n2=320r/min,P=3.8Kw,i=3
採用軟齒面,小齒輪40MnB調質,齒面硬度為260HBS,大齒輪用ZG35SiMn調質齒面硬度為225HBS。
因 ,
SH1=1.1, SH2=1.1
,
,
因: , ,SF=1.3
所以
2、按齒面接觸強度設計
設齒輪按9級精度製造。取載荷系數K=1.5,齒寬系數
小齒輪上的轉矩
按 計算中心距
u=i=5.333
mm
齒數z1=19,則z2=z1*5.333=101
模數m=2a/(z1+z2)=2.0667 取模數m=2.5
確定中心矩a=m(z1+z1)/2=150mm
齒寬b=
b1=70mm,b2=60mm
3、驗算彎曲強度
齒形系數YF1=2.57,YF2=2.18
按式(11-8)輪齒彎曲強度
4、齒輪圓周速度
按162頁表11-2應選9做精度。與初選一致。
五、軸校核:
圓周力Ft=2T/d1
徑向力Fr=Ft*tan =20度 標准壓力角
d=mz=2.5*101=252.5mm
Ft=2T/d1=2*104.79/252.5=5852.5N
Fr=5852.5*tan20=2031.9N
1、求垂直面的支承壓力Fr1,Fr2
由Fr2*L-Fr*L/2=0
得Fr2=Fr/2=1015.9N
2、求水平平面的支承力
FH1=FH2=Ft/2=2791.2N
3、畫垂直面彎矩圖
L=40/2+40/2+90+10=140mm
Mav=Fr2*L/2=1015.9*140/2=71.113Nm
4、畫水平面彎矩圖
MaH=FH*L/2=2791.2*140/2=195.384Nm
5、求合成彎矩圖
6、求軸傳遞轉矩
T=Ft*d2/2=2791.2*2.5*101/2=352.389Nm
7、求危險截面的當量彎矩
從圖可見a-a截面是最危險截面,其當量彎矩為
軸的扭切應力是脈動循環應力
取摺合系數a=0.6代入上式可得
8、計算危險截面處軸的直徑
軸的材料,用45#鋼,調質處理,由表14-1查得
由表13-3查得許用彎曲應力 ,
所以
考慮到鍵槽對軸的削弱,將軸的最小危險直徑d加4%。
故d=1.04*25.4=26.42mm
由實際最小直徑d=40mm,大於危險直徑
所以此軸選d=40mm,安全
六、軸承的選擇
由於無軸向載荷,所以應選深溝球軸承6000系列
徑向載荷Fr=2031.9N,兩個軸承支撐,Fr1=2031.9/2=1015.9N
工作時間Lh=3*365*8=8760(小時)
因為大修期三年,可更換一次軸承
所以取三年
由公式
式中 fp=1.1,P=Fr1=1015.9N,ft=1 (工作環境溫度不高)
(深溝球軸承系列)
由附表選6207型軸承
七、鍵的選擇
選普通平鍵A型
由表10-9按最小直徑計算,最薄的齒輪計算
b=14mm,h=9mm,L=80mm,d=40mm
由公式
所以
選變通平鍵,鑄鐵鍵
所以齒輪與軸的聯接中可採用此平鍵。
八、減速器附件的選擇
1、通氣器:
由於在外界使用,有粉塵,選用通氣室採用M18 1.5
2、油麵指示器:
選用油標尺,規格M16
3、起吊裝置:採用箱蓋吊耳,箱座吊耳
4、放油螺塞:選用外六角細牙螺塞及墊片M16 1.5
5、窺視孔及視孔蓋
選用板結構的視孔蓋
九、潤滑與密封:
1、齒輪的潤滑:採用浸油潤滑,由於低速級大齒輪的速度為:
查《課程設計》P19表3-3大齒輪浸油深度為六分之一大齒輪半徑,所以取浸油深度為30mm。
2、滾動軸承的潤滑
採用飛濺潤滑在箱座凸緣面上開設導油溝,並設擋油盤,以防止軸承旁齒輪嚙合時,所擠出的熱油濺入軸承內部,增加軸承的阻力。
3、潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備選用
L-AN15潤滑油
4、密封方式選取:
選用凸緣式端蓋,易於調整軸承間隙,採用端蓋安裝氈圈油封實現密封。
軸承蓋結構尺寸按用其定位的軸承外徑決定。
設計小結:
二、課程設計總結
設計中運用了Matlab科學工程計算軟體,用notebook命令調用MS—Word來完成設計說明書及設計總結,在設計過程中用了機械設計手冊2.0 軟體版輔助進行設計,翻閱了學過的各種關於力學,制圖,公差方面的書籍,綜合運用了這些知識,感覺提高許多,當然尤其是在計算機軟體CAD 方面的運用,深切感到計算機輔助設計給設計人員帶來的方便,各種設計,計算,制圖全套完成。
由於沒有經驗,第一次做整個設計工作,在設計過程中出現了一些錯誤比如線形,制圖規格,零件設計中的微小計算錯誤等都沒有更正,設計說明書的排版也比較混亂等等。對圖層,線形不熟悉甚至就不確定自己畫出的線,在出圖到圖紙上時實際上是什麼樣子都不知道 ,對於各種線寬度,沒有實際的概念。再比如標注較混亂,還是因為第一次做整個設計工作,沒有經驗,不熟悉。
這次設計的目的是掌握機械設計規律,綜合運用學過的知識,通過設計計算,繪圖以及運用技術標准,規范設計手冊等有關設計資料進行全面的機械設計技能訓練。目的已經達到,有許多要求、標准心中雖然明確理解掌握但是要全力,全面的應用在實際中,還有待於提高水平。
特別感謝—程莉老師。
參考資料目錄
[1]《機械設計基礎》,機械工業出版社,任成高主編,2006年2月第一版;
[2]《簡明機械零件設計實用手冊》,機械工業出版社,胡家秀主編,2006年1月第一版;
[3]《機械設計-課程設計圖冊》,高等教育出版社,龔桂義主編,1989年5月第三版;
[3]《設計手冊軟體》,網路上下載;
[4] 湖南工院學生論壇----機械制圖專欄---bbs.yeux.cn
Nw=60.0241r/min
Pw=3.08Kw
效率t=0.8762
Pd = 3.5150
Ped=4Kw
i=15.9936
i1=3
i2=5.3312
n0=960r/min
n1=320r/min
n2=60.0241r/min
P0=4Kw
P1=3.8Kw
P2=3.6491Kw
T0=39.7917Nm
T1=113.4063Nm
T2=589.5878Nm
KA=1.1
Pc=4.4Kw
d1=100mm
d2=355mm
初定中心距
a0=350mm
Lc=1461.3mm
Ld=1600mm
中心距
a=420mm
z=3根
預緊力
FQ=274.3N
d1=28mm
d2=45mm
YL10YLd10
T1=113.4063Nm
m=2.5
a=150mm
=20度
Ft=5582.5N
Fr=2031.9N
FH1=FH2=2791.2N
Mav=71.113Nm
MaH=195.38Nm
Ma=216.16Nm
Me=457.15Nm
Fr1=1015.9N
Lh=8760小時
6207型
b h L=14 9 80
輸送帶拉力 F=2800 N
輸送帶速度 V=1.1 m/s
滾筒直徑 D=350 mm