導航:首頁 > 裝置知識 > 恆溫恆濕褐煤復吸裝置設計

恆溫恆濕褐煤復吸裝置設計

發布時間:2023-01-04 02:46:07

A. 煤炭氣化的優點體現在哪些方面

一、煤氣化原理
氣化過程是煤炭的一個熱化學加工過程。它是以煤或煤焦為原料,以氧氣(空氣、富氧或工業純氧)、水蒸氣作為氣化劑,在高溫高壓下通過化學反應將煤或煤焦中的可燃部分轉化為可燃性氣體的工藝過程。氣化時所得的可燃氣體成為煤氣,對於做化工原料用的煤氣一般稱為合成氣(合成氣除了以煤炭為原料外,還可以採用天然氣、重質石油組分等為原料),進行氣化的設備稱為煤氣發生爐或氣化爐。 煤炭氣化包含一系列物理、化學變化。一般包括熱解和氣化和燃燒四個階段。乾燥屬於物理變化,隨著溫度的升高,煤中的水分受熱蒸發。其他屬於化學變化,燃燒也可以認為是氣化的一部分。煤在氣化爐中乾燥以後,隨著溫度的進一步升高,煤分子發生熱分解反應,生成大量揮發性物質(包括干餾煤氣、焦油和熱解水等),同時煤粘結成半焦。煤熱解後形成的半焦在更高的溫度下與通入氣化爐的氣化劑發生化學反應,生成以一氧化碳、氫氣、甲烷及二氧化碳、氮氣、硫化氫、水等為主要成分的氣態產物,即粗煤氣。氣化反應包括很多的化學反應,主要是碳、水、氧、氫、一氧化碳、二氧化碳相互間的反應,其中碳與氧的反應又稱燃燒反應,提供氣化過程的熱量。 主要反應有: 1、水蒸氣轉化反應 C+H2O=CO+H2-131KJ/mol 2、水煤氣變換反應 CO+ H2O =CO2+H2+42KJ/mol 3、部分氧化反應 C+0.5 O2=CO+111KJ/mol 4、完全氧化(燃燒)反應 C+O2=CO2+394KJ/mol 5、甲烷化反應 CO+2H2=CH4+74KJ/mol 6、Boudouard反應 C+CO2=2CO-172KJ/mol
二、煤氣化工藝
煤炭氣化技術雖有很多種不同的分類方法,但一般常用按生產裝置化學工程特徵分類方法進行分類,或稱為按照反應器形式分類。氣化工藝在很大程度上影響煤化工產品的成本和效率,採用高效、低耗、無污染的煤氣化工藝(技術)是發展煤化工的重要前提,其中反應器便是工藝的核心,可以說氣化工藝的發展是隨著反應器的發展而發展的,為了提高煤氣化的氣化率和氣化爐氣化強度,改善環境,新一代煤氣化技術的開發總的方向,氣化壓力由常壓向中高壓(8.5 MPa)發展;氣化溫度向高溫(1500~1600℃)發展;氣化原料向多樣化發展;固態排渣向液態排渣發展。 1、固定床氣化 固定床氣化也稱移動床氣化。固定床一般以塊煤或焦煤為原料。煤由氣化爐頂加入,氣化劑由爐底加入。流動氣體的上升力不致使固體顆粒的相對位置發生變化,即固體顆粒處於相對固定狀態,床層高度亦基本保持不變,因而稱為固定床氣化。另外,從宏觀角度看,由於煤從爐頂加入,含有殘炭的爐渣自爐底排出,氣化過程中,煤粒在氣化爐內逐漸並緩慢往下移動,因而又稱為移動床氣化。 固定床氣化的特性是簡單、可靠。同時由於氣化劑於煤逆流接觸,氣化過程進行得比較完全,且使熱量得到合理利用,因而具有較高的熱效率。 固定床氣化爐常見有間歇式氣化(UGI)和連續式氣化(魯奇Lurgi)2種。前者用於生產合成氣時一定要採用白煤(無煙煤)或焦碳為原料,以降低合成氣中CH4含量,國內有數千台這類氣化爐,弊端頗多;後者國內有20多台爐子,多用於生產城市煤氣;該技術所含煤氣初步凈化系統極為復雜,不是公認的首選技術。 (1)、固定床間歇式氣化爐(UGI) 以塊狀無煙煤或焦炭為原料,以空氣和水蒸氣為氣化劑,在常壓下生產合成原料氣或燃料氣。該技術是30年代開發成功的,投資少,容易操作,目前已屬落後的技術,其氣化率低、原料單一、能耗高,間歇制氣過程中,大量吹風氣排空,每噸合成氨吹風氣放空多達5 000 m3,放空氣體中含CO、CO2、H2、H2S、SO2、NOx及粉灰;煤氣冷卻洗滌塔排出的污水含有焦油、酚類及氰化物,造成環境污染。我國中小化肥廠有900餘家,多數廠仍採用該技術生產合成原料氣。隨著能源政策和環境的要來越來越高,不久的將來,會逐步為新的煤氣化技術所取代。 (2)、魯奇氣化爐 30年代德國魯奇(Lurgi)公司開發成功固定床連續塊煤氣化技術,由於其原料適應性較好,單爐生產能力較大,在國內外得到廣泛應用。氣化爐壓力(2.5~4.0)MPa,氣化反應溫度(800~900)℃,固態排渣,氣化爐已定型(MK~1~MK-5),其中MK-5型爐,內徑4.8m,投煤量(75~84)噸/h,粉煤氣產量(10~14)萬m3/h。煤氣中除含CO和H2外,含CH4高達10%~12%,可作為城市煤氣、人工天然氣、合成氣使用。缺點是氣化爐結構復雜、爐內設有破粘和煤分布器、爐篦等轉動設備,製造和維修費用大;入爐煤必須是塊煤;原料來源受一定限制;出爐煤氣中含焦油、酚等,污水處理和煤氣凈化工藝復雜、流程長、設備多、爐渣含碳5%左右。針對上述問題,1984年魯奇公司和英國煤氣公司聯合開發了液體排渣氣化爐(BGL),特點是氣化溫度高,灰渣成熔融態排出,炭轉化率高,合成氣質量較好,煤氣化產生廢水量小並且處理難度小,單爐生產能力同比提高3~5倍,是一種有發展前途的氣化爐。 2、流化床氣化 流化床氣化又稱為沸騰床氣化。其以小顆粒煤為氣化原料,這些細顆粒在自下而上的氣化劑的作用下,保持著連續不斷和無秩序的沸騰和懸浮狀態運動,迅速地進行著混合和熱交換,其結果導致整個床層溫度和組成的均一。流化床氣化能得以迅速發展的主要原因在於:(1)生產強度較固定床大。(2)直接使用小顆粒碎煤為原料,適應採煤技術發展,避開了塊煤供求矛盾。(3)對煤種煤質的適應性強,可利用如褐煤等高灰劣質煤作原料。 流化床氣化爐常見有溫克勒(Winkler)、灰熔聚(U-Gas)、循環流化床(CFB)、加壓流化床(PFB是PFBC的氣化部分)等。 (1)、循環流化床氣化爐CFB 魯奇公司開發的循環流化床氣化爐(CFB)可氣化各種煤,也可以用碎木、樹皮、城市可燃垃圾作為氣化原料,水蒸氣和氧氣作氣化劑,氣化比較完全,氣化強度大,是移動床的2倍,碳轉化率高(97%),爐底排灰中含碳2%~3%,氣化原料循環過程中返回氣化爐內的循環物料是新加入原料的40倍,爐內氣流速度在(5~7)m/s之間,有很高的傳熱傳質速度。氣化壓力0.15MPa。氣化溫度視原料情況進行控制,一般控制循環旋風除塵器的溫度在(800~1050)℃之間。魯奇公司的CFB氣化技術,在全世界已有60多個工廠採用,正在設計和建設的還有30多個工廠,在世界市場處於領先地位。 CFB氣化爐基本是常壓操作,若以煤為原料生產合成氣,每公斤煤消耗氣化劑水蒸氣1.2kg,氧氣0.4kg,可生產煤氣 (l.9~2.0)m3。煤氣成份CO+H2>75%,CH4含量2.5%左右, CO215%,低於德士古爐和魯奇MK型爐煤氣中CO2含量,有利於合成氨的生產。 (2)、灰熔聚流化床粉煤氣化技術 灰熔聚煤氣化技術以小於6mm粒徑的乾粉煤為原料,用空氣或富氧、水蒸氣作氣化劑,粉煤和氣化劑從氣化爐底部連續加入,在爐內(1050~1100)℃的高溫下進行快速氣化反應,被粗煤氣夾帶的未完全反應的殘碳和飛灰,經兩極旋風分離器回收,再返回爐內進行氣化,從而提高了碳轉化率,使灰中含磷量降低到10%以下,排灰系統簡單。粗煤氣中幾乎不含焦油、酚等有害物質,煤氣容易凈化,這種先進的煤氣化技術中國已自行開發成功。該技術可用於生產燃料氣、合成氣和聯合循環發電,特別用於中小氮肥廠替代間歇式固定床氣化爐,以煙煤替代無煙煤生產合成氨原料氣,可以使合成氨成本降低15%~20%,具有廣闊的發展前景。 U-Gas在上海焦化廠(120噸煤/天)1994年11月開車,長期運轉不正常,於2002年初停運;中科院山西煤化所開發的ICC灰熔聚氣化爐,於2001年在陝西城化股份公司進行了100噸/天制合成氣工業示範裝置試驗。CFB、PFB可以生產燃料氣,但國際上尚無生產合成氣先例;Winkler已有用於合成氣生產案例,但對粒度、煤種要求較為嚴格,甲烷含量較高(0.7%~2.5%),而且設備生產強度較低,已不代表發展方向。 3、氣流床氣化 氣流床氣化是一種並流式氣化。從原料形態分有水煤漿、干煤粉2類;從專利上分,Texaco、Shell最具代表性。前者是先將煤粉製成煤漿,用泵送入氣化爐,氣化溫度1350~1500℃;後者是氣化劑將煤粉夾帶入氣化爐,在1500~1900℃高溫下氣化,殘渣以熔渣形式排出。在氣化爐內,煤炭細粉粒經特殊噴嘴進入反應室,會在瞬間著火,直接發生火焰反應,同時處於不充分的氧化條件下,因此,其熱解、燃燒以吸熱的氣化反應,幾乎是同時發生的。隨氣流的運動,未反應的氣化劑、熱解揮發物及燃燒產物裹夾著煤焦粒子高速運動,運動過程中進行著煤焦顆粒的氣化反應。這種運動狀態,相當於流化技術領域里對固體顆粒的「氣流輸送」,習慣上稱為氣流床氣化。 氣流床對煤種(煙煤、褐煤)、粒度、含硫、含灰都具有較大的兼容性,國際上已有多家單系列、大容量、加壓廠在運作,其清潔、高效代表著當今技術發展潮流。 乾粉進料的主要有K-T(Koppres-Totzek)爐、Shell- Koppres爐、Prenflo爐、Shell爐、GSP爐、ABB-CE爐,濕法煤漿進料的主要有德士古(Texaco)氣化爐、Destec爐。 (1)、德士古(Texaco)氣化爐 美國Texaco(2002年初成為Chevron公司一部分,2004年5月被GE公司收購)開發的水煤漿氣化工藝是將煤加水磨成濃度為60~65%的水煤漿,用純氧作氣化劑,在高溫高壓下進行氣化反應,氣化壓力在3.0~8.5MPa之間,氣化溫度1400℃,液態排渣,煤氣成份CO+H2為80%左右,不含焦油、酚等有機物質,對環境無污染,碳轉化率96~99%,氣化強度大,爐子結構簡單,能耗低,運轉率高,而且煤適應范圍較寬。目前Texaco最大商業裝置是Tampa電站,屬於DOE的CCT-3,1989年立項,1996年7月投運,12月宣布進入驗證運行。該裝置為單爐,日處理煤2000~2400噸,氣化壓力為2.8MPa,氧純度為95%,煤漿濃度68%,冷煤氣效率~76%,凈功率250MW。 Texaco氣化爐由噴嘴、氣化室、激冷室(或廢熱鍋爐)組成。其中噴嘴為三通道,工藝氧走一、三通道,水煤漿走二通道,介於兩股氧射流之間。水煤漿氣化噴嘴經常面臨噴口磨損問題,主要是由於水煤漿在較高線速下(約30m/s)對金屬材質的沖刷腐蝕。噴嘴、氣化爐、激冷環等為Texaco水煤漿氣化的技術關鍵。 80年代末至今,中國共引進多套Texaco水煤漿氣化裝置,用於生產合成氣,我國在水煤漿氣化領域中積累了豐富的設計、安裝、開車以及新技術研究開發經驗與知識。 從已投產的水煤漿加壓氣化裝置的運行情況看,主要優點:水煤漿制備輸送、計量控制簡單、安全、可靠;設備國產化率高,投資省。由於工程設計和操作經驗的不完善,還沒有達到長周期、高負荷、穩定運行的最佳狀態,存在的問題還較多,主要缺點:噴嘴壽命短、激冷環壽命僅一年、褐煤的制漿濃度約59%~61%;煙煤的制漿濃度為65%;因汽化煤漿中的水要耗去煤的8%,比干煤粉為原料氧耗高12%~20%,所以效率比較低。 (2)、Destec(Global E-Gas)氣化爐 Destec氣化爐已建設2套商業裝置,都在美國:LGT1(氣化爐容量2200噸/天,2.8MPa,1987年投運)與Wabsh Rive(二台爐,一開一備,單爐容量2500噸/天,2.8MPa,1995年投運)爐型類似於K-T,分第一段(水平段)與第二段(垂直段),在第一段中,2個噴嘴成180度對置,藉助撞擊流以強化混合,克服了Texaco爐型的速度成鍾型(正態)分布的缺陷,最高反應溫度約1400℃。為提高冷煤氣效率,在第二階段中,採用總煤漿量的10%~20%進行冷激(該點與Shell、Prenflo的循環沒氣冷激不同),此處的反應溫度約1040℃,出口煤氣進火管鍋爐回收熱量。熔渣自氣化爐第一段中部流下,經水冷激固化,形成渣水漿排出。E-Gas氣化爐採用壓力螺旋式連續排渣系統。 Global E-Gas氣化技術缺點為:二次水煤漿停留時間短,碳轉化率較低;設有一個龐大的分離器,以分離一次煤氣中攜帶灰渣與二次煤漿的灰渣與殘炭。這種爐型適合於生產燃料氣而不適合於生產合成氣。 (3)、Shell氣化爐 最早實現工業化的乾粉加料氣化爐是K-T爐,其它都是在其基礎之上發展起來的,50年代初Shell開發渣油氣化成功,在此基礎上,經歷了3個階段:1976年試驗煤炭30餘種;1978年與德國Krupp-Koppers(krupp-Uhde公司的前身)合作,在Harburg建設日處理150t煤裝置;兩家分手後,1978年在美國Houston的Deer Park建設日處理250t高硫煙煤或日處理400t高灰分、高水分褐煤。共費時16年,至1988年Shell煤技術運用於荷蘭Buggenum IGCC電站。該裝置的設計工作為1.6年,1990年10月開工建造,1993年開車,1994年1月進入為時3年的驗證期,目前已處於商業運行階段。單爐日處理煤2000t。 Shell氣化爐殼體直徑約4.5m,4個噴嘴位於爐子下部同一水平面上,沿圓周均勻布置,藉助撞擊流以強化熱質傳遞過程,使爐內橫截面氣速相對趨於均勻。爐襯為水冷壁(Membrame Wall),總重500t。爐殼於水冷管排之間有約0.5m間隙,做安裝、檢修用。 煤氣攜帶煤灰總量的20%~30%沿氣化爐軸線向上運動,在接近爐頂處通入循環煤氣激冷,激冷煤氣量約占生成煤氣量的60%~70%,降溫至900℃,熔渣凝固,出氣化爐,沿斜管道向上進入管式余熱鍋爐。煤灰總量的70%~80%以熔態流入氣化爐底部,激冷凝固,自爐底排出。 粉煤由N2攜帶,密相輸送進入噴嘴。工藝氧(純度為95%)與蒸汽也由噴嘴進入,其壓力為3.3~3.5MPa。氣化溫度為1500~1700℃,氣化壓力為3.0MPa。冷煤氣效率為79%~81%;原料煤熱值的13%通過鍋爐轉化為蒸汽;6%由設備和出冷卻器的煤氣顯熱損失於大氣和冷卻水。 Shell煤氣化技術有如下優點:採用干煤粉進料,氧耗比水煤漿低15%;碳轉化率高,可達99%,煤耗比水煤漿低8%;調解負荷方便,關閉一對噴嘴,負荷則降低50%;爐襯為水冷壁,據稱其壽命為20年,噴嘴壽命為1年。主要缺點:設備投資大於水煤漿氣化技術;氣化爐及廢鍋爐結構過於復雜,加工難度加大。 我公司直接液化項目採用此技術生產氫氣。 (4)、GSP氣化爐 GSP(GAS Schwarze Pumpe)稱為「黑水泵氣化技術」,由前東德的德意志燃料研究所(簡稱DBI)於1956年開發成功。目前該技術屬於成立於2002年未來能源公司(FUTURE ENERGY GmbH)(Sustec Holding AG子公司)。GSP氣化爐是一種下噴式加壓氣流床液態排渣氣化爐,其煤炭加入方式類似於shell,爐子結構類似於德士古氣化爐。1983年12月在黑水泵聯合企業建成第一套工業裝置,單台氣化爐投煤量為720噸/天,1985年投入運行。GSP氣化爐目前應用很少,僅有5個廠應用,我國還未有一台正式使用,寧煤集團(我公司控股)將要引進此技術用於煤化工項目。 總之,從加壓、大容量、煤種兼容性大等方面看,氣流床煤氣化技術代表著氣化技術的發展方向,水煤漿和干煤粉進料狀態各有利弊,界限並不十分明確,國內技術界也眾說紛紜。
3、我國煤氣化技術進展
煤氣化技術在中國已有近百年的歷史,但仍然較落後和發展緩慢,就總體而言,中國煤氣化以傳統技術為主,工藝落後,環保設施不健全,煤炭利用效率低,污染嚴重。目前在國內較為成熟的仍然只是常壓固定床氣化技術。它廣泛用於冶金、化工、建材、機械等工業行業和民用燃氣,以UGI、水煤氣兩段爐、發生爐兩段爐等固定床氣化技術為主。常壓固定床氣化技術的優點是操作簡單,投資小;但技術落後,能力和效率低,污染重,急需技術改造。如不改變現狀,將影響經濟、能源和環境的協調發展。 近40年來,在國家的支持下,中國在研究與開發、消化引進技術方面進行了大量工作。我國先後從國外引進的煤氣化技術多種多樣。通過對煤氣化引進技術的消化吸收,尤其是通過國家重點科技攻關,對引進裝置進行技術改造並使之國產化,使我國煤氣化技術的研究開發取得了重要進展。50年代末到80年代進行了仿K-T氣化技術研究與開發;80年代中科院山西煤化所開發了灰熔聚流化床煤氣化工藝並取得了專利;「九五」期間華東理工大學、兗礦魯南化肥廠、中國天辰化學工程公司承擔了國家重點科技攻關項目「新型(多噴嘴對置)水煤漿氣化爐開發」(22噸煤/天裝置),中試裝置的結果表明:有效氣成分~83%,比相同條件下的Texaco生產裝置高1.5~2個百分點;碳轉化率>98%,比Texaco高2~3個百分點;比煤耗、比氧耗均比Texaco降低7%。 「十五」期間多噴嘴對置式水煤漿氣化技術已進入商業示範階段。「新型水煤漿氣化技術」獲「十五」國家高技術研究發展計劃(863計劃)立項,由兗礦集團有限公司、華東理工大學承擔,在兗礦魯南化肥廠建設多噴嘴對置式水煤漿氣化爐及配套工程,利用兩台日處理1150噸煤多噴嘴對置式水煤漿氣化爐(4.0MPa)配套生產24萬噸甲醇、聯產71.8MW發電,總投資為~16億元。該裝置於2005年7月21日一次投料成功,並完成80小時連續、穩定運行。裝置初步運行結果表明:有效氣CO+H2超過82%,碳轉化率高於98%。它標志著我國擁有了具備自主知識產權的、與國家能源結構相適應的煤氣化技術具有重大的突破,其水平填補了國內空白,並達到國際先進水平。

B. 《燃煤鍋爐清潔燃燒技術的研究與探討》這方面的論文

下面是我找的,不知道對你有沒有幫助 ,如果有的話請您給個紅旗吧

一、前言
眾所周知,能源消費是造成當今環境惡化的一個主要原因,尤其是煤炭在直接作為能源燃燒過程中,存在著效率低、污染嚴重的問題。統計表明,我國每年排入大氣的污染物中有80%的煙塵,87%的SO2,67%的NOx來源於煤的燃燒。我國的大氣污染主要是鍋爐、窯爐燃煤產生煙氣形成的煤煙型污染。目前我國能源仍然以煤炭為主,改變能源結構,使用油氣電等清潔能源,與我國的國情又不太相適應,未來相當長一段時間內,煤炭在我國一次能源結構中的主體地位不會改變,這已成為不爭的現實。因此大力發展和應用潔凈煤燃燒技術與裝置,是解決和控制大氣污染的一條重要措施。
近年來,人們已在潔凈煤燃燒技術方面進行了大量的研究與實踐,但綜合效果還都有待於提高。多年來在總結、借鑒、完善、發展國內外相關技術的基礎上,我們對原煤氣化和分相燃燒技術進行了大量研究,通過幾年來的大量實驗和工作實踐,解決了十多項技術難題,掌握了一種鍋爐清潔燃燒技術——煤氣化分相燃燒技術, 並利用該技術研製出一種煤轉化成煤氣燃燒的一體化鍋爐,我們稱之為煤氣化分相燃燒鍋爐。其突出特點是無需爐外除塵系統,經過爐內全新的燃燒、氣固分離及換熱機理,實現「爐內消煙、除塵」,使其排煙無色——俗稱無煙。煙塵、SO2、NOX排放濃度符合國家環保標準的要求,而且熱效率高達80~85%。這種鍋爐根據氣固分相燃燒理論,把互補控制技術、氣固分相燃燒技術集於一爐,將煤炭氣化、燃燒集於一體,組成煤氣化分相燃燒鍋爐,從而實現了原煤的連續燃燒與潔凈燃燒。

二、煤氣化分相燃燒技術
煙塵的主要污染物是碳黑,它是不完全燃燒的產物。形成黑煙的原因主要是煤在燃燒過程中,形成易燃的輕碳氫化合物和難燃的重碳氫化合物及游離碳粒。這些難燃的重碳氫化合物、游離碳粒隨煙氣排出,便可見到濃濃的黑煙。
一般情況下,煤的燃燒屬於多相混合燃燒,煤在燃燒過程中析出揮發物,而揮發物的燃燒對煤焦的燃燒起到制約作用,使固體碳的燃燒過程繁雜化、困難化。固體燃料氧化反應過程中的次級反應,即一氧化碳和二氧化碳的產生以及一氧化碳的氧化反應和二氧化碳的還原反應,都不利於固體碳和天然礦物煤的燃燒,而氣固分相燃燒就可以有效地解決上述問題。
氣固分相燃燒就是使固體燃料在同一個裝置內分解成氣相態的燃料和固相態的燃料,並使其按照各自的燃燒特點和與此相適應的燃燒方式,在同一個裝置內有聯系地、互相依託地、相互促進地燃燒,從而達到完全燃燒或接近完全燃燒的目的。
煤氣化分相燃燒技術是根據氣固分相燃燒理論,將煤炭氣化、氣固分相燃燒集於一體,以煤炭為原料,採用空氣和水蒸氣為氣化劑,先通過低溫熱解的溫和氣化,把煤易產生黑煙的可燃性揮發份中的碳氫化合物先轉化為煤氣,與脫去揮發份的煤焦一同在燃燒室進行燃燒。這樣在同一個燃燒室內氣態燃料與固態燃料有聯系地、互相依託地、相互促進地按照各自的燃燒規律和特點分別燃燒,消除了黑煙,提高了燃燒效率,並且在整個燃燒過程中,有利於降低氮氧化物和二氧化硫的生成,進而達到潔凈燃燒和提高鍋爐熱效率的雙重功效。

煤氣化分相燃燒技術在鍋爐上的應用,使固體燃料的乾燥、干餾、氣化以及由此產生的氣相態的煤氣和固相態的煤焦在同一爐內同時燃燒。並使鍋爐在結構上實現了兩個一體化,即煤氣發生爐和層燃鍋爐一體化,層燃鍋爐與除塵器一體化,因此無需另設煤氣發生爐便實現了煤的氣化燃燒;也無需爐外除塵器,就可實現爐內消煙除塵,鍋爐排煙無色。其燃燒機理如圖一所示,雙點劃線框內表示固相煤和煤焦的燃燒過程,單點劃線框內表示氣相煤氣的燃燒過程,實線框內表示煤的干餾過程,虛線框內表示煤焦的氣化過程。
原煤首先在氣化室缺氧條件下燃燒和氣化熱解,煤料自上部加入,煤層從下部引燃,自下而上形成氧化層、還原層、干餾層和乾燥層的分層結構。其中氧化層和還原層組成氣化層,氣化過程的主要反應在這里進行。以空氣為主的氣化劑從氣化室底部進入,使底部煤層氧化燃燒,生成的吹風氣中含有一定量的一氧化碳,此高溫鼓風氣流經干餾層,對煤料進行乾燥、預熱和干餾。煤料從氣化室上部加入,隨著煤料的下降和吸熱,低溫干餾過程緩慢進行,逐漸析出揮發份,形成干餾煤氣。其成份主要是水份、輕油和煤中揮發物。
原煤經干餾後形成熱煤焦進入到還原層,靠下層部分煤焦的氧化反應熱進行氣化反應。同時可注入適量的水蒸汽發生水煤氣反應,這樣以空氣和水蒸汽的混合物為氣化劑,在氣化室內與灼熱的碳作用生成氣化煤氣。其成份主要是一氧化碳和二氧化碳以及由固體燃料中的碳與水蒸碳與產物、產物與產物之間反應生成的氫氣、甲烷,還有50%以上的氮氣。這樣干餾層生成的干餾煤氣和進入干餾層的氣化煤氣混合,由煤氣出口排出。氣化室內各層的作用及主要化學反應見表一。
表一:氣化室內各層的作用及主要化學反應
層區名 作用及工作過程 主要化學反應
灰層 分配氣化劑,借灰渣顯熱預熱氣化劑
氧化層 碳與氣化劑中氧進行氧化反應,放出熱量,供還原層吸熱反應所需 C+O2=CO2 放熱
2C+O2=2CO 放熱
還原層 CO2 還原成CO,水蒸汽與碳分解為氫氣, CO2+C=2CO 放熱
H2O+C=CO+H2 放熱
CO+H2O=CO2+H2 吸熱
干餾層 煤料與熱煤氣換熱進行熱分解,析出干餾煤氣:水份、輕油和煤中揮發物。
乾燥層 使煤料進行乾燥

在鍋爐的氣化室中,煤料自上而下加入,在氣化過程中逐步下移,氣化劑則由下部進入,通過爐柵自下而上,生成的煤氣由燃料層上方引出。這一過程屬逆流過程,它能充分利用煤氣的顯熱預熱氣化劑,從而提高了鍋爐的熱效率,並且由於干餾煤氣不經過高溫區裂解,使氣化煤氣的熱值有所提高。
原煤經溫和氣化低溫熱解產生的煤氣,在經過上部干餾層後,通過氣化室的煤氣出口進入燃燒室,與充足的二次風充分混合,在燃燒室的高溫條件下自行點燃,並與進入燃燒室爐排上煤焦向上的火焰相交,這樣在燃燒室內煤氣與煤焦分別按照氣相和固相的燃燒特點和燃燒方式分別燃燒,又相互聯系、相互促進,使一氧化碳和煙黑燃燼,達到或接近完全燃燒。

三、煤氣化分相燃燒鍋爐的結構特點及應用
鍋爐在發展的過程中一直重視提高鍋爐熱效率和煙塵排放達標兩大問題。傳統的鍋爐解決這兩大問題的基本上是靠強化燃燒和傳熱提高鍋爐熱效率和設置爐外除塵器。強化燃燒往往會導致鍋爐煙塵初始排放濃度的加大,增大除塵器的負擔,在發達國家可使用除塵效率在99%以上的電除塵器或布袋除塵器,使煙塵排放濃度控制在50mg/Nm3以下,而在我國由於經濟條件的原因,只能使用價格相對低廉的機械式或濕式除塵器,除塵效率一般低於95%,使煙塵排放濃度大於100-200 mg/Nm3,達不到國家的環保要求。這種依靠爐外除塵器解決除塵的辦法,不僅增加鍋爐房的佔地面積和基建投資,而且增大引風機電耗,還造成二次污染。由於煤氣化分相燃燒鍋爐徹底改變了傳統鍋爐的燃燒原理,利用氣固分相燃燒理論,使煤在燃燒過程中易產生黑煙的可燃性揮發份中的碳氫化合物先轉化為可燃煤氣,與脫去揮發份的煤焦一同在燃燒室進行燃燒。由於燃燒室溫度高達1000℃以上,煙霧得以充分分解,解決了煤直接燃燒產生黑煙的難題。這種鍋爐不僅使原煤盡可能地完全燃燒和高效利用,有較高的熱效率,而且還盡可能地減少煙塵和有害氣體SO2、NOX等的排放,達到消煙除塵的作用,使鍋爐各項環保及節能指標大大優於國家標准。
煤氣化分相燃燒技術在鍋爐上的應用,打破了傳統鍋爐加除塵器的模式,創建了無需爐外除塵器的一體化模式。而這種一體化並不是機械式地將除塵器加入鍋爐。煤氣化分相燃燒鍋爐與普通煤氣鍋爐和層燃鍋爐相比,具有自己獨特的結構,它將後兩者有機結合,主要由前部的煤氣化室,中部的燃燒室和尾部的對流受熱面三大部分組成。(見圖二:鍋爐結構與燃燒示意圖)
氣化室是鍋爐的技術核心部分,它看上去象是一個開放式的煤氣發生爐,其主要功能,一是將煤中的可燃揮發份和煤的氣化反應生成氣,以煤氣的形式排入到燃燒室進行燃燒;二是將釋放出揮發份的半焦煤輸送到燃燒室繼續進行燃燒;三是控制氣化室內的反應溫度和煤焦層厚度。實現上述功能的關鍵:一是要保證一定的原煤層;二是要合理配置送風和氣化劑,提高煤炭氣化率和氣化室的氣化強度;三是要在煤氣化室和燃燒室的連接部位,合理配置煤氣出口和煤焦出口。氣化室產要由爐體、進煤裝置、爐柵、氣化劑進口、煤氣出口和煤焦出口等部分組成。
在氣化室內以煤炭為原料,採用空氣和水蒸汽為氣化劑,在常壓下進行煤的溫和氣化反應,將煤在低溫熱分解產生的揮發性物質從煤中趕出。當氣化室內溫度達到設定條件時,將氣化室內脫揮發份的高溫煤焦輸送到燃燒室的爐排上進行強化燃燒。

燃燒室的主要功能:一是使煤氣和煤焦燃燒完全,提高燃燒效率;二是降低煙塵初始排放量和煙氣黑度。氣化室內產生的煤氣經煤氣出口,噴入到燃燒室,在可控二次風的擾動下旋向下方,與由氣化室進入到燃燒室的煤焦向上的火焰相交而混合燃燒。煤氣與固定碳(煤焦)燃燒相結合,強化了燃燒,達到了充分燃燼,潔凈燃燒的目的,提高了燃燒效率。並且因為在爐排上的燃燒是半焦化的煤焦,因此產生的飛灰量小,煙塵濃度、煙氣黑度都比較低。同時,在燃燒室上方設置了防爆門,確保鍋爐的安全運行。
對流受熱面的主要功能就是完成與煙氣的熱量交換,達到鍋爐額定出力,提高鍋爐換熱效率。其結構形式可有多種,與普通鍋爐沒有太大的區別,因此對大多數鍋爐來說,都可以改造成煤氣化分相燃燒鍋爐。並且鍋爐無需除塵器,大大節省鍋爐房總投資和佔地面積。
設計煤氣化分相燃燒鍋爐時,應注意的幾點:
1、合理布置煤氣出口和煤焦出口的位置和大小;
2、煤焦的溫度控制;
3、氣化劑進口和進煤口;
4、合理設置二次風和防爆門;
5、氣化室與燃燒室的水循環要合理。
由上述可知,煤氣化分相燃燒鍋爐的結構並不復雜,只需在傳統鍋爐的基礎上,在其前部加一個氣化室,在原爐膛上設置二次風和防爆門,再結合一些控制技術。利用該原理可以設計出多種規格型號的鍋爐,類型主要為0.2t/h~10t/h各參數的鍋爐。現僅在東北地區已有幾十台此類型的鍋爐在運行,廣泛用於洗浴、採暖、醫葯衛生等領域,並已經利用該技術,改造了很多工業鍋爐,效果都非常好。
下面以一台DZL2t/h鍋爐為例,改造前後對比見表二。
表二:DZL2t/h鍋爐改造前後對比
改造前 改造後 比較
熱效率 73% 78% 提高5%
耗煤量(AII) 380kg/h 356kg/h 節煤6.3%
適應煤種 AII AIII 褐煤 石煤AI AII AIII 無煙煤 煤種適應性廣
鍋爐外形體積 5.4×2×3.2m 5.9×2×3.2m 長度約增加一米
環保性能 冒黑煙,環保不達標 排煙無色,滿足環保要求

該新型鍋爐綜合地應用當代高新技術和高效率傳熱技術,將煤氣發生爐與層燃鍋爐有機結合為一體,做到清潔燃燒,爐內自行消煙除塵,鍋爐運行期間,在無需爐外除塵器的情況下,排煙無色,煙塵濃度≤100mg/Nm3,比傳統鍋爐減少30-50%,SO2濃度≤1200mg/Nm3,NOx<400mg/ Nm3,符合國家環保標准GB13271-2001中一類地區的要求,同時,熱效率在82%以上。而成本僅比傳統鍋爐增加不到一萬元,但卻省了一台除塵器。每小時加煤次數少,僅2~3次,並可實現機械上煤和除渣,因而大大減輕了司爐工的勞動強度。

四、煤氣化分相燃燒鍋爐的特點
傳統的煤炭燃燒方式在煤的燃燒過程中會產生大量的污染物,造成嚴重的環境污染。主要原因是:
(1)煤炭不易與氧氣充分接觸而形成不完全燃燒,燃燒效率低,相對增加了污染排放;
(2)燃燒過程不易控制,例如揮發份大量析出時往往供氧不足,造成煙塵析出與冒黑煙;
(3)固體燃料燃燒時溫度難以均勻,形成局部高溫區,促使大量NOx形成;
(4)原煤中的硫大多在燃燒過程中氧化成SO2;
(5)未經處理的固態煤炭直接燃燒時,大量粉塵將隨煙氣一同排出,造成大量粉塵污染。
煤氣化分相燃燒鍋爐將煤炭氣化、氣固分相燃燒集於一體,有效地解決環境污染問題,與傳統的燃煤鍋爐相比,它有以下優點:
1、煙塵濃度、煙氣黑度低,環保性能好。
在氣化層生成的氣化煤氣和在干餾層生成的干餾煤氣最終混合在一起,在燃燒室內與二次風充分混合,因是氣態燃料,供氧充分,容易達到完全燃燒,使一氧化碳和煙黑燃燼。而從氣化室進入到燃燒室的熾熱煤焦,因大部分揮發份已被析出,避免了揮發物對固定碳燃燒的不良影響,剩餘的揮發份在煤焦內部進一步得到氧化,生成的一氧化碳和煙黑等可燃物在通過煤焦層表面時被燃燼。另外煤焦在燃燒時產生的飛灰量小,同時在鍋爐內採用除塵技術,因此從根本上消除了「炭黑」,高效率地清除了煙塵中的飛灰。
2、節約能源、熱效率高。
煤料在氣化室充分氣化熱解之後再燃燒,不僅避免了揮發物、一氧化碳、二氧化碳等對煤焦燃燒的不良影響,而且從氣化室進入燃燒室的熱煤氣更容易燃燒,並對煤焦的燃燒有一定的促進作用。進入燃燒室的熾熱煤焦已脫去大部分揮發份,不僅有較高的溫度,而且具有內部孔隙,能增強內部和外部擴散氧化反應,起到強化煤焦燃燒的作用,從而在降低過量空氣系數下,使一氧化碳和炭黑燃燼,燃燒更加充分,因而降低了化學和機械不完全燃燒熱損失,提高了煤的燃燒熱效率,與直接燒煤相比可節煤5-10%。
3、氮氧化物的排放低
在氣化室內煤層從下部引燃,並在下部燃燒,總體上氣化室內溫度比較低,屬低溫燃燒。而且在氣化室內過量空氣系數很小,大約在0.7-1.0之間,屬低氧燃燒。這為降低氮氧化物的排放提供了有利條件。煤中有機氮化學劑量小,並處在還原氣氛中,只轉變成不參與燃燒的無毒氮分子。煤中含有的氮氧化物,一部分在煤層半焦催化作用下反應生成氮氣、水蒸汽和一氧化碳,還有一部分在穿過上部還原層時被還原成氮氣。而氣化室內脫去絕大部分揮發份的高溫煤焦在進入燃燒室後,進行充足供氧強化燃燒,其中剩餘的少量揮發份在半焦內部進一步熱解氧化,氮氧化物在煤焦內部被進一步還原,生成的煙黑可燃物在經過焦層表面時被燃燼,從而控制和減少了氮氧化物的生成與排放。
4、有一定的脫硫作用
煤中的硫主要以無機硫(FeS2和硫酸鹽)和有機硫的形式存在,而硫酸鹽幾乎全部存留在灰渣中,不會造成燃煤污染。在煤氣化分相燃燒鍋爐中,煤中的FeS2和有機硫在氣化室內發生熱分解反應,以及與煤氣中的氫氣發生還原反應,使煤中的硫以硫化氫氣體的形式脫除釋放出來。而且在氣化室下部,溫度一般在800℃左右,恰好是脫硫劑發揮作用的最佳反應溫度。如燃用含硫量較高的煤,只需在碎煤粒中添加適量的石灰石或白雲石,即可得到較好的脫硫效果,從而大大降低煙氣中二氧化硫的含量。
5、操作和控制簡單易行
煤氣的發生和燃燒在同一設備的兩個裝置中進行,不用設置單獨的煤氣點火裝置,煤氣在燃燒室內由高溫明火自行點燃,易於操作和控制,簡化了運行管理,操作方便,減輕司爐工勞動強度,改善鍋爐房衛生條件,實現文明生產。
6、燃燒穩定,煤種適應性強
煤在鍋爐氣化室的下部引燃,因而燃燒穩定。可燃劣質煤礦和燃點高的煤,其煤種適應性較強,在難熔區或中等結渣范圍以內的煤種均適合。其中褐煤、長焰煤、不粘結或弱粘結煙煤、小球形型煤是比較理想的燃料。

五、結束語
實踐證明,新的燃燒理論及多種專利組成的集成技術,保證了煤氣化分相燃燒鍋爐高效環保的穩定性及先進性,克服了舊技術無法解決的浪費及污染的難題,獲得了明顯的經濟效益和環境效益,受到用戶青睞。中國的煤炭資源十分豐富,隨著能源政策和環境的要求越來越高,煤氣化分相燃燒鍋爐在我國市場前景十分廣闊。

C. 煤制乙二醇的工業化生產中發生的催化劑吸附問題。

近幾天,中金公司披露說「催化劑吸附問題影響產量提升」,弄得大家「人心惶惶」,其實只要大家對「煤制乙二醇」的工藝過程有些了解,就對此事很容理解了。首先,澄清中金公司報告中一個概念性的錯誤,非「催化劑」吸附,而是「吸附劑」。

丹化科技煤制乙二醇是要經歷兩個步驟,一是褐煤經恩德爐氣化制備「一氧化碳」和「氫氣」;第二步是分離出的CO進行耦合(過程復雜,就不詳說)製成草酸酯等,草酸酯後加氫催化生成乙二醇。

那麼,根據其工藝和丹化公司前期披露的一些信息得知,目前吸附問題就出在第一階段。在褐煤經中壓氣化後,要經過一系列脫硫脫碳和變壓氣分的過程,最後分離出較為純凈的CO和H2,目前問題就出在「變壓吸附」這一環節上,也就是我們所說的PSA(Pressured Swing Adsorption)技術(利用吸附劑對吸附質在不同的分壓下有不同的吸附容量、吸附速度和吸附力,並且在一定壓力下對被分離的氣體混合物的各組分有選擇吸附的特性,加壓吸附除去原料氣中的雜質組分,減壓脫附這些雜質而使吸附劑獲得再生)。而丹化科技採用是「低甲醇洗」對氣化混合物先進行脫硫脫碳,然後再在「甲烷洗冷箱裝置」進行「氣分」(最後要獲取CO和H2),而在「氣分」過程中就要除去氣化混合物中的雜質,那如何除去這些雜質,就是使用「吸附劑」,再利用度的控制,對這些雜質進行清除。如果氣化後的混合物中雜質不能有效除去,就會導致「吸附劑」吸附效率低,嚴重就「吸附劑中毒」(需要更換吸附劑)。依據該工藝過程,目前丹化科技的「吸附問題」,就很可能出在「氣化混合物」進行「分壓吸附」前的「脫硫脫碳」上(前面提到,採用「低甲醇洗」技術,目前該技術是最好的脫硫脫碳方法,具有低能耗的特點),而這些技術在中國是非常成熟的技術,很多化工裝置都採用,前期,丹化科技稱要更換新的「冷卻設備」,估計就是讓「低甲醇洗」得到更好的應用。本人認為,上面提到的這些技術和問題,在國內都是很成熟的,沒什麼「大驚小怪」的,我相信丹化科技的相關技術人員也很了解這方面情況,只要對「氣化後混合物」的成分,分階段進行「化驗分析」,找出源頭,就很容易解決「吸附問題」。以上是純技術問題探討,僅個人之見。

D. 關於燃煤鍋爐 工作原理

燃煤鍋爐工作原理是氣粉混合物從磨煤機出來後,經煤粉管道直接送入燃燒器,並由燃燒器噴入爐膛燃燒。煤粉在爐膛內燃燒釋放出大量熱量,火焰中心溫度大。

爐膛內側鋪設有由金屬管道組成的水冷管壁,燃燒放出的熱量主要以熱輻射的形式被水冷壁受熱面強烈吸收。但是由於熱負荷的限制和爐膛體積的限制,爐膛出口處的煙溫一般仍高達左右。

為了對這股高溫煙氣進行利用,煙道里還依次裝有過熱器(分為幾級)、再熱器、省煤器和空氣預熱器等受熱面。高溫煙氣依次流過這些受熱面,通過對流、輻射等換熱方式向這些受熱面放熱。從空氣預熱器出來的排煙溫度一般在左右。

這時的煙氣已無法再利用,被送入除塵器進行分離,將煙氣攜帶的絕大部分飛灰除掉,再由引風機引入煙囪,最終排入大氣。

(4)恆溫恆濕褐煤復吸裝置設計擴展閱讀

有機熱載體爐(導熱油爐)以煤、油、氣、電為燃料,以導熱油為介質,利用循環油泵強制導熱油在爐內加熱液相循環,經過管網將熱能輸送到用熱設備後,返回導熱油爐的高溫、低壓、節能設備。

1、受熱面採用密排圓盤管,受熱面布置充足,降低管子表面熱負荷,熱效率高,使用更安全。

2、燃料在燃燒室內絕熱燃燒,著火更容易,燃燒更充分,提高了鍋爐的熱效率。

3、介質流程合理,導熱油有低進口到高出口,運行中產生的氣體很難在爐內保留,可方便的排除系統。

4、爐頂布置密排盤管,更好的保護爐頂,避免爐頂燒壞的現象。

5、安裝方便,不用地基,只按上部本體和下部爐排合攏即可,安裝周期短。

閱讀全文

與恆溫恆濕褐煤復吸裝置設計相關的資料

熱點內容
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60
03儀表盤模式怎麼換 瀏覽:284
ktv設備有哪些設備 瀏覽:191
關節軸承怎麼安裝使用 瀏覽:838
生產山楂糕需要哪些設備 瀏覽:91
機械表後面的飛輪是什麼 瀏覽:163
怎麼實現儀表盤ar導航 瀏覽:722
某同學設計了如下裝置來 瀏覽:633
超聲波儀器動態范圍是什麼意思 瀏覽:11
傳動裝置分析 瀏覽:263
風機與閥門連鎖怎麼實現 瀏覽:314
消防管道閥門抽檢比例 瀏覽:313
礦用自動除塵噴霧裝置生產工藝 瀏覽:334
鑄造灰鐵很硬怎麼回事 瀏覽:505
天然氣灶沒有自動滅火裝置會有什麼後果 瀏覽:221
江蘇旭潤設備有限公司怎麼樣 瀏覽:653
預作用裝置開箱檢查記錄 瀏覽:355