1. 採煤機的工作原理是什麼
本身採煤機就要好多種分類方式,不知道樓主想了解哪種採煤機呢
目前國內的主流綜采工作面都用的基本是電牽引(液壓牽引的已經很少見了)雙滾筒採煤機,也就是常說的長壁式採煤機,不過神華集團的部分煤礦和美國的大部分煤礦也用連續採煤機,屬於短壁式採煤機。本身採煤機機構比較多,希望問題詳細點。
先給樓主介紹下目前國內的主流採煤機——電牽引雙滾筒採煤機。
簡單說呢,採煤機主要分為截割部和行走部,其他的就可以說是輔助部件了。截割部就是常說的搖臂加滾筒,其實就是一個獨立的減速器,通過搖臂上自帶的電機輸出動力,最後經減速由滾筒(也就是刀具)完成割煤,裝煤,落煤。(煤落在刮板機上,運走)
而牽引部其實也是這個過程,只不過最後的輸出部件是銷軌輪,通過與刮板輸送機上的銷排嚙合完成行走的動作。
至於其他的電控箱,顧名思義就是控制採煤機的動作的,和一些其他輔助動作的完成。
調高系統就是要完成搖臂的上下擺動,實現目標采高的動作,他是由輔助系統里的調高泵產生高壓油從而推動油缸活塞桿,實現搖臂的升降。
採煤機還有些 噴霧冷卻系統啊,高壓箱部分啊,某些採煤機還有檔桿裝置和破碎裝置。
如有需要了可以繼續留言,具體問題,具體解決...
下面是從網路里查的一些資料,希望對樓主有所幫助。
滾筒採煤機
一種銑削式淺截深採煤機,由截割部分、牽引部分和動力部分組成。截割部分包括工作機構和減速器,牽引部分包括行走機構(鏈輪、牽引鏈及其拉緊裝置)和液壓傳動裝置,動力部分包括電動機和電氣控制箱。另外,還有輔助裝置,包括底托架、電纜架、噴霧裝置和信號照明等設備。滾筒採煤機適於在煤層厚度變化小、無夾石、地質構造簡單、煤層傾角 15°以下、頂板易於管理的條件下使用。傾角較大時,需裝防滑裝置。滾筒採煤機騎在可彎曲刮板輸送機上工作,沿工作面往返運行。螺旋式滾筒上裝有按一定規律排列的截齒。滾筒轉動時,截齒按一定順序在煤體上先後截出很多溝槽,使溝槽之間的煤體破落,通過滾筒旋葉和弧形擋煤板裝入輸送機。滾筒直徑為測量到截齒齒尖的截割直徑,各製造廠有各種不同的系列,根據采高選定。滾筒寬度相當於截深,有0.6、0.8、1.0、1.2m等幾種規格。 滾筒採煤機分單滾筒和雙滾筒兩種:
單滾筒採煤機
進刀方式有三種:①先進刀後移機頭,一般採用斜切進刀,這種方式簡單易行,但進刀時間長;②先移機頭後進刀,能充分利用工時,但開缺口工作量大;③進刀同時移機頭,進刀簡單,時間短,但需強力推移輸送機的設備。 割煤方式有兩種:①單向採煤,採煤機上行進一刀割煤,下行裝煤。優點是能充分利用機器裝煤,效率高,但工作面割一刀時間長,頂板懸露時間長,一般適用於頂板穩定、采高較大、裝余煤量大的煤層。②雙向採煤,往返各進一刀。優點是能提高工時利用率,工作面生產能力大,支護頂板及時,工序緊湊,但采高大時清浮煤工作量大。
雙滾筒採煤機
一次采全厚,採煤機兩端各有一個滾筒。前滾筒在上割頂煤,後滾筒在下割底煤。兩滾筒一般相背旋轉,司機左側滾筒用左螺旋,司機右側滾筒用右螺旋。也可相向旋轉,司機左側滾筒用右螺旋,司機右側滾筒用左螺旋。一般採用雙向採煤,先進刀後移機頭的斜切進刀方式;也可採用進刀同時移機頭的正切進刀方式。
2. 機車傳動裝置的分類
利用原動機驅動離心泵,使獲得能量的工作液體(機車用油)沖擊渦輪從而驅動車輪來實現傳遞動力的裝置。1902年德國的費廷格提出了液力循環元件(液力耦合器和液力變扭器)的方案,即將泵輪和渦輪組合在同一殼體內,工作液體在殼體內循環流動。採用這種元件大大提高了液力傳動裝置的效率。液力傳動首先用於船舶。1932年製成第一台約60千瓦的液力傳動柴油動車。
液力耦合器有相對布置的一個泵輪和一個渦輪。泵輪軸和渦輪軸的扭矩相等。渦輪轉速略低於泵輪轉速,二者轉速之比即為液力耦合器的效率。液力耦合器用於機車主傳動時,效率約為97%。液力變扭器除泵輪和渦輪外,還有固定的導向輪。渦輪與泵輪的扭矩之比稱變扭比,轉速比越小則變扭比越大。在同樣的泵輪轉速下,渦輪轉速越低則渦輪扭矩越大。因此機車速度越低則牽引力越大,機車起動時的牽引力最大。液力變扭器的效率只在最佳工況下達到最大值。現代機車用的液力變扭器效率可達90%~91%。但當轉速比低於或高於最佳工況時,效率曲線即呈拋物線形狀下降。為使機車在常用速度范圍內都有較高的傳動效率,機車的液力傳動裝置一般採用不止一個簡單的液力變扭器。機車液力傳動裝置如梅基特羅型、克虜伯型、蘇里型、SRM型、ΓΤК型等,都是將一個液力變扭器與某種機械傳動裝置結合使用。福伊特型則是採用 2~3個液力變扭器(最佳工況點的轉速比一般並不相同)或液力耦合器(圖1),利用充油和排油換檔,在各種機車速度下都使當時效率最佳的那一液力循環元件充油工作。換檔時,前一元件排油和後一元件充油有一段重疊時間,所以換檔過程中的機車牽引力只是稍有起伏而不中斷。和其他類型相比,福伊特型液力傳動裝置的重量較大,但有結構簡單、可靠性較高的優點。到60年代,經驗證明:對於1500千瓦以上的液力傳動裝置,福伊特型較為適用。中國機車所用的液力傳動裝置都是這一類型的。
大功率增壓柴油機車的液力傳動裝置都不用液力耦合器,但燃氣輪機車的液力傳動裝置則用一個啟動變扭器,並在高速時用一個液力耦合器。
液力循環元件傳遞功率P的能力也像其他液力機械一樣,與工作液體重度r的一次方、泵輪轉速n的三次方和元件尺寸D的五次方成正比,即P∝rnD。在柴油機車上,為了減小傳動裝置的尺寸,柴油機都不直接驅動液力循環元件的泵輪,而是通過一對增速齒輪,在軸承和其他旋轉件容許線速度的限制范圍內,盡可能提高泵輪轉速。燃氣輪機車由於轉速很高,所以用一級甚至兩級減速齒輪來驅動泵輪。同一種傳動裝置,只要改變這種齒輪的增速比或減速比,即可在經濟合理的范圍內應用於不同功率的機車。
液力傳動裝置通常包括一組使輸出軸能改變轉向的換向齒輪和離合器機構。輸出軸通過適當的機械部件(萬向軸和車軸齒輪箱,或曲拐和連桿等)驅動機車車輪。液力傳動系統還可包括一組工況機構,使機車具有兩種最高速度,在高速檔有較高的行車速度,在低速檔有較高的效率和較大的起動牽引力和加速能力。因此同一機車既可用於客運,也可用於貨運,或者既可用於調車,也可用作小運轉機車。而當調車工況的最高速度定得較低時,機車在起動和低速運行時的牽引力可以超過同功率的電力傳動柴油調車機車。
1965年出現的液力換向柴油調車機車,傳動裝置有兩組液力變扭器,每個行車方向各用一組,換向動作也用充油排油的方式來完成。當機車正在某一方向行駛時改用另一方向的液力變扭器充油工作,由於變扭器的渦輪轉向與泵輪相反,對機車即起制動作用。機車換向不必先停車。只要司機改換行車方向手把的位置,機車即可自動地完成從牽引狀態經過制動、停車,又立即改換行車方向的全部過程。
液力傳動裝置不用銅,重量輕,成本低,可靠性高,維修量少,並具有隔振、無級調速和恆功率特性好等優點,因而得到廣泛採用。聯邦德國和日本的柴油機車全部採用液力傳動。 把機車原動機的動力變換成電能,再變換成機械能以驅動車輪而實現傳遞動力的裝置。電力傳動裝置按發展的順序有直-直流電力傳動裝置、交-直流電力傳動裝置、交-直-交流電力傳動裝置、交-交流電力傳動裝置四種。它們所用的牽引發電機、變換器(指整流器、逆變器、循環變頻器等)和牽引電動機類型各不相同。
直-直流電力傳動裝置
1906年美國製造的150千瓦汽油動車最先採用了直-直流電力傳動裝置。1965年以前,世界各國單機功率75~2200千瓦的電傳動機車都採用這種電力傳動裝置。這是因為同步牽引發電機無法高效變流,非同步牽引電動機難於變頻調速,只能採用直流電機。直-直流電力傳動原理是基於直流電機是一種電能和機械能的可逆換能器,其原理見圖 2。原動機G為柴油機,通過聯軸器驅動直流牽引發電機ZF,後者把柴油機軸上的機械能變換成可控的直流電能,通過電線傳送給1台或多台串並聯或全並聯接線的直流牽引電動機ZD,直流牽引電動機將電能變換成轉速和轉矩都可調節的機械能,經減速齒輪驅動機車動輪,實現牽引。此外設有自控裝置。自控裝置由既對柴油機調速又對牽引發電機調磁的聯合調節器、牽引發電機磁場和牽引電動機磁場控制裝置等組成,用來保證直-直流電力傳動裝置接近理想的工作特性。
交-直流電力傳動裝置
直流牽引發電機受整流子限制,不能製造出大功率電力傳動裝置。60年代前期,美國發明大功率硅二極體和可控硅,為製造大功率的電力傳動裝置准備了條件。1965年法國研製成 1765千瓦交-直流電力傳動裝置,它是世界各國單機功率 700~4400千瓦機車普遍採用的電力傳動裝置。
交-直流和直-直流電力傳動原理相似。由圖3可以看出兩者差異在於柴油機 G驅動同步牽引發電機TF,經硅二極體整流橋ZL,把增頻三相交流電變換成直流電,事實上TF和ZL組成等效無整流子直流電機。其餘部分和自控裝置主要工作原理與直-直流電力傳動裝置相同。
交-直-交流電力傳動裝置
非同步牽引電動機結構簡單,體積小,工作可靠,在變頻調壓電源控制下,能提供優良調速性能。聯邦德國於 1971年研製成實用的交-直-交流電力傳動裝置,如圖4所示。
交-直-交流電力傳動原理如下:柴油機 G驅動同步牽引發電機TF,產生恆頻可調壓三相交流電(柴油機恆速時),經硅整流橋ZL變換成直流電,再經過可控硅逆變器 N(具有分諧波調制功能)再將直流電逆變成三相變頻調壓交流電,通過三根電線傳輸給多台全並聯接線的非同步牽引電動機AD。AD將交流電能變換成轉速和轉矩可調的機械能,驅動機車動軸,實現牽引。它的自控裝置由聯合調節器以及對同步牽引發電機磁場、變換器、非同步牽引電動機作脈沖、數模或邏輯控制的裝置組成,從而提供接近理想的工作特性。
交-交流電力傳動裝置
交-直-交變頻調壓電能經二次變換,降低了傳動裝置的效率,而且逆變器用可控硅需要強迫關斷,對主電路技術有較高的要求。為提高效率,在交-交流電力傳動裝置中採用了自然關斷可控硅相控循環變頻器(圖5)。60~70年代,美國在重型汽車上,蘇聯在電力機車上都採用了交-交流電力傳動裝置。不過美國用的是非同步牽引電動機牽引,蘇聯用的是同步牽引電動機牽引。
交-交流電力傳動原理如圖5所示。柴油機G驅動同步牽引發電機TF,發出增頻可調壓交流電,經相控循環變頻器FB變換成可變頻調壓的三相交流電(降頻),輸給多台全並聯接線的非同步牽引電動機AD。AD將交流電能變換成轉速和轉矩可調的機械能,驅動動輪實現牽引。它的自控裝置也是由聯合調節器、脈沖、數模、邏輯電路等裝置構成(但對可控硅導通程序要求嚴格),同樣能保證優良的工作特性。
3. 採煤機按照牽引方式可分為什麼
電牽引(電動機,變頻與開關磁阻電機),液壓馬達(電磁閥控制速度)
4. 薄煤層採煤機的分類各種參數
側面工作式和正面工作式兩類
洛陽高邁機電設備有限公司致力於煤機配件製造供應,該公司主要做MG160/390-WD電牽引採煤機配件 電詢037964616990 13938819933
採煤工藝特點
薄煤層工作面采高低, 要求採煤機機身矮, 且要有足夠的功率, 通常功率不應低於100 ~200kW; 機身盡可能短, 以適應煤層的起伏變化; 要有足夠的過煤和過機空間高度; 盡可能實現工作面不用人工開切口進刀; 有較強破岩過地質構造能力; 結構簡單、可靠, 便於維護和安裝。根據這些要求, 薄煤層採煤機分為騎輸送機式和爬底板式兩類。騎輸送機式採煤機由輸送機機槽支承和導向,只能用於開采厚度大於018~019 m煤層。爬底板式採煤機機身位於滾筒開出的機道內, 機面高度低, 當采高相同時, 與騎輸送機式相比, 過煤空間高, 電機功率可以增大, 具有較大生產能力, 並且工作面過風斷面大、工作安全, 可用於開采016~018 m的煤層[ 1 ] 。
存在的主要問題和發展趨勢
(1) 採用大功率電動機或多電動機以增大總裝機容量。實踐表明, 採煤機的單機效能, 在很大程度上取決於電動機功率的大小, 只有大功率, 才有高效能。薄煤層採煤機的技術關鍵是矮機身與大功率之間的矛盾, 如何解決這一矛盾, 是設計的難點和重點。
由於薄煤層賦存條件變化較大(斷層、夾矸、變薄帶較多) , 薄煤層採煤機截割堅硬矸石的概率比中厚煤層要多, 帶來的振動、沖擊也要比中厚煤層頻繁和劇烈, 因此, 整機結構的動態優化設計是今後應重點研究的問題。
(2) 改進螺旋滾筒的結構、完善液壓系統以及提高電動機的性能; 提高加工製造工藝和裝配工藝的技術水平; 更好地解決採煤機自動化及遙控的問題。
(3) 從有鏈牽引向無鏈牽引及電牽引方向發展 。
主要國產薄煤層滾筒採煤機技術參數(表1)
MG180/435-W 型採煤機組在薄煤層中的應用
鄂庄煤礦現生產水平為-300 水平,開拓水平為-530 水平,315 采區為後組煤生產,薄煤層開采,隨著現代化礦井高檔普采工作單產水平的不斷提高,對採煤機技術性能的要求越來越高,根據315 采區煤層構造情況,採用DY-150 型機組單滾筒割煤,與放振動炮相結合的工藝,帶采底板,該工藝存在著佔用人員多,消耗材料大,打眼需用時間長,易出現丟炮、落炮不安全隱患,針對存在問題,經調研論證,在31507E 面選用MG180/435-W 型液壓牽引機組,提高了普采工作面單產水平。
31507E 面地質條件
31507E 面為-300 水平後組煤315 采區315 運輸機下山以西薄煤層開采工作面,工作面走向長度270m, 傾斜長度112m, 煤層厚度為111~1125m, 平均為1118m, 傾角為13°,煤層直接頂為淺粉色粉砂岩,性脆,易冒落,直接底粉砂岩,淺灰色堅硬,含少量植物根化石,厚度2m, 如圖1 所示。
採煤工藝
該面採用MG180/435-W 型採煤機,配SGD-630/220 型刮板運輸機,工作面基本支護為DZ 系列單體液壓支柱,配HDJA-800 型金屬鉸接頂梁,全部跨落法管理頂板,直接帶采底板015m, 采高1168m, 機組由原單滾筒直徑<111m, 截深630mm, 到採用雙滾筒直徑<1135m, 截深800mm, 落煤、裝煤、裝矸,實現了雙向割煤,提高了割煤功率利用率,三班生產。
MG180/435-W型採煤機的組成及結構特點
MG180/435-W 型採煤機由截割部(左、右) 、液壓傳動部、牽引行走部、輔助裝置、電氣部分組成。MG180/ 435- W型採煤機的結構特點如下:
(1) MG180/435-W 型採煤機為多電機橫向布置液壓牽引,採用液壓無級調速系統來控制採煤機牽引速度。
(2) 適應煤層采高范圍114~312m, 煤層傾角≤35°;煤質硬度中硬或中硬以上,含有少量夾矸。
(3) 截割電機橫向布置在搖臂上,搖臂和機身連接沒有動力傳遞,取消了螺旋傘齒輪和結構復雜的軸。主機身分三段,既左牽引部,中間控制箱,右牽引部,取消了底托架結構,採用高強度液壓螺栓聯接,簡單可靠、拆裝方便。
(4) 液壓系統採用斜軸式柱塞馬達,主要元件與成熟採煤機通用,系統效率高,故障率低,互換性好。
系統主要技術特點
1.截割部
(1) 截割部(搖臂) 回轉採用銷鉸軸結構,與其它部件間沒有傳動鏈,回轉部分的磨損與截割部傳動齒輪嚙合無關。
(2) 截割部齒輪減速都是簡單的直齒傳動,傳動效率高。
(3) 截割電機和截割部—軸齒輪之間採用細長扭矩軸聯接,電機和截割部—齒輪安裝位置的小量誤差不影響動力傳遞,便於安裝,在受到較大的沖擊載荷時對截割傳動系統的齒輪和軸承起到緩沖作用。
(4) 高速軸油封線速度大大降低,提高了油封的可靠性和使用壽命。
(5) 截割部殼體採用彎搖臂結構形式,加大了裝煤口,提高了裝煤效率,增加了塊煤率。
2.液壓傳動部
(1) 主迴路採用閉式系統,以保證系統工作油液的清潔度,提高液壓元件的可靠性和使用壽命。
(2) 調速系統用來改變主油泵的流量和排油方向,即改變採煤機的牽引速度、牽引方向。
(3) 保護系統設有截割電機功率保護、恆壓控制、高壓保護、低壓保護、防滑保護、調高液壓系統,保護齊全,安全可靠。
3. 牽引行走部
(1) 採用銷軌牽引,承載能力大,導向好,拆裝、維修方便。
(2) 採用雙浮動、四行星輪行星減速機構,軸承壽命和齒輪的強度大,可靠性高。
(3) 導向滑靴回轉中心同軸,保證行走輪與銷軌的正常嚙合。
4. 輔助裝置
(1) 機組左、右滾筒設有冷卻裝置、內外噴霧裝置,達到了降低煤塵和稀釋瓦斯的目的。
(2) 機組設有拖纜裝置,能保護電纜和水管,使其在拖曳時平緩過渡,不會因受力而損壞。
5.電氣部分
採用1 台300A 真空磁力起動器配合,保護功能齊全,其最大特點是在傾斜工作面上防止採煤機在不牽引時下滑
經濟效益
(1) MG180/435-W 型採煤機它具有功率大,破岩能力強,可直接割煤層底板015m, 采高1168m,
提高了生產效率。
(2) 採用MG180/435-W 型採煤機,省去了原先打眼、放炮等工序,消除了放炮帶來的不安全隱患,給工人工作帶來安全感,省去了打眼放炮程序後,可減少人員10 人/ 班,年節約費用10 人×3 班×3 萬元=90 萬元,年節約爆破材料費用28417 元/ 班×3班×350d=29 189 萬元。
(3) 採用MG180/435-W 型採煤機真正實現了雙向割煤,滾筒割煤截深由630mm 提高到800mm,加快了工作面的推進速度,提高了工作面單產,每月增加產量1 萬t, 年提高產量12 萬t, 按160 元/t, 增加銷售收入160 元/t ×12 萬t=1920 萬元。
(4) 採用MG180/435-W 型採煤機,實現了採煤機遙控操作,降低了工人的勞動強度,減少了成本,提高了生產效率,具有較大的安全效益。
(5) 採用MG180/435-W 型採煤機薄煤層帶采底板,可最大限度地利用黑矸石資源,用於非煤三產矸石發電,以滿足高速增長的經濟對資源的渴求,加快建設節約型社會,以最小的資源消耗取得最大的經濟效益和社會效益,具有重大的現實意義。
(6) 採用MG180/435-W 型採煤機實現了軟底復雜結構薄煤層安全高效生產,它成功應用填補了新汶煤田深部復雜結構薄煤層帶采底板安全高效開采技術空白,具有極高的推廣應用價值。
MG300/700-WD型電牽引採煤機
主要特點:
(1)總體傳動採用多部電機橫向布置形式
採煤機的總體傳動,採用多部電機橫向布置的傳動形式,各部件之間縱向沒有直接的動力傳動,完全取消了螺旋傘齒傳動及通軸結構等縱向布置傳動環節,各部件的傳動分別獨立,並且簡單直接,從而大大地提高了機械傳動效率,降低了機體發熱程度,從根本上克服了電機縱向布置傳動形式的諸多不足。
(2)長搖臂、短機身
為了增大采高范圍和卧底量,本機採用長搖臂結構,搖臂有效長度為:2160mm,實現采高范圍:1.9~3.8m,最大卧底量可達到464mm,同時為了增強搖臂潤滑,本機搖臂設有強迫潤滑系統。另外,為 更好地適應底板起伏變化,輸送機水平彎曲以及提高爬行輸送機端頭能力,本機設計較短機身,機身總長為5940mm,兩行走輪跨距為4860mm。
(3)左右牽引部可實現電液互換
本機左右牽引部可實現電液互換,動力輸入部位可安裝液壓馬達,也可安裝40Kw牽引電機,兩種形式聯接尺寸相同,使牽引部機械傳動系統
本身電液完全互換。
(4)截割電機容量調整范圍寬
為了加寬截割電機的調整范圍,採煤機截割部設計強度為300Kw,電機容量調整范圍為200~300Kw, 行星機構基本借用MG300-W型採煤機結構,通過調整截割電機容量,可實現一機多型,液壓牽引一機派生機型為:MG200/490-W、MG250/590-W、MG300/690-W,改造成電牽引後,一機派生機型為:MG200/500-WD、MG250/600 -WD和MG300/700-WD,從而能夠更好地適應不同工作面煤質變化要求。三種容量截割電機的聯接尺寸完全相同。
(5)液壓傳動及電控部合二為一
為了增強機身的整體剛性和部件強度,液壓傳動部和電控箱合二為一設計,其結構採用軋制厚鋼板組焊結構,組焊後箱體整體回火處理,有效地增強了機身的剛性和部件強度。為了進一步提高整體剛性,防止彈性變形過大,機體開焊,液壓傳動及電控部底部設有兩條長絲杠,通過液壓螺母與左右牽引部加固聯接,使機身縱向更加牢固可靠。
(6)取消底托架和栽絲聯接方式
為增大過煤高度,採煤機取消了底托架,過煤高度:600mm,機身各對節之間,採用大直徑穩釘銷定位,自製高強度螺栓聯接,取消了傳統的楔鐵定位和底座螺栓。為進一步提高大部件聯接的可靠性,採煤機除行走箱個別部位外,其它聯接環節一律採用特製螺母或螺母板聯接,取消了栽絲聯接方式。
(7)液壓元件成熟可靠,與過去主導產品互換率高
液壓傳動部中的主要液壓元件基本選用MG300-W和MG2×400-W系列採煤機的液壓元件,其互換率為96%,由於MG300-W和MG2×400-W系列採煤機屬於雞西煤礦機械有限公司早期研製的主導產品,分布范圍廣泛,液壓元件成熟可靠,因此,該採煤機的液壓傳動原理及控制系統與MG2×400-W型採煤機基本相同。
(8)具有很好的維護性
為提高採煤機的維護性,液壓傳動各主要控制閥,均設於箱體以外,以便於調整,另外,行走箱與牽引部採用乾式聯接方式,除設計出整體結構以外,還設計出上下分體結構,以便於行走機構易損元部件的拆裝維護,此兩種行走箱供用戶選用。
(9)操縱靈活方便
採煤機的操縱形式,包括牽引,調高在內,機身兩端為集中液控(改造成電牽引後為集中電控),中間手動,操縱靈活方便,液壓牽引時,操縱控制原理與MG2×400-W型採煤機相同,改造成電牽引時,操縱控制原理與MG400/985-WD型電牽引採煤機相同。
(10)保護和控制功能完善
為進一步提高採煤機的可靠性,除設有電機過載,過熱保護之外,液壓傳動設有恆功率自動控制,高壓保護和失壓保護,另外左右截割部(搖臂)高速端各設有機械離合,機身兩端和中間各設有急停開關。
(11)與不同輸送機的配套能力強
本採煤機標准配套輸送機槽寬規格為:830mm各種輸送機,同時可配套槽寬規格為:730mm、764mm和880mm各種輸送機,與多種輸送機配套,只需調整煤壁側聯接板。另外,本機煤壁側支撐組件設計有滾輪和滑靴兩種形式,供用戶不同選擇。
使用情況:
該機在鄭州局做工業性試驗,並於2002年7月通過簽定。試驗期間,最高日產7200噸,最高月產160000噸。目前該機已銷售12台,其中鄭州局2台、義馬局2台、靈武局2台、雞西局2台、鶴崗局2台、大同局2台。
MGTY400/900-3.3D型電牽引採煤機
太原礦山機器集團有限公司
該機型是太礦通過10多年AM500採煤機的消化、吸收和製造實踐,在其它國外電牽引採煤機基礎上興利除弊,結合中國國情,根據用戶要求而新開發設計出的機載式交流變頻調速電牽引採煤機,是煤礦綜采實現高產高效的理想設備。
性能特點
(1)採煤機總體採用了多電機橫向布置,截割電機橫向布置在搖臂上,搖臂和機身之間沒有動力傳遞,取消了傘齒輪和結構煩雜的通軸、過輪,用結構簡單的銷軸與主機架鉸接在一起。
(2)機載式交流變頻調速,超級鏈軌無鏈牽引系統。低頻起動特性好、牽引力大,能實現恆功率無級調速。
(3)主機架採用了整體結構(也可分段組合)。滾筒的切割反力、調高油缸的支承力,牽引驅動的反作用力及工作面輸送機的支承、限位、導向的作用力均由結構簡單,堅固的主機架所承受,各部件均可方便地從主機架采空側單獨裝拆,使用可靠,維修方便。
(4)關鍵的元、器件選用了國外進口件,如軸承、密封、泵、變頻器等。傳動部件進行了載入試驗,整機的可靠性高。
(5)該機採用了系列設計、適應性強、通用性好。搖臂、牽引傳動箱、外牽引均可左右互換,僅改變外牽引的惰輪,搖臂的擺角,滾筒直徑,就能適用采高1.6m-4.5m的要求。搖臂電機和牽引電機各有三種不同功率規格供用戶選擇,並可左右互換。
(6)採用鎬型截齒的強力滾筒,能在硬煤層和有夾矸及地質有構造的地段使用。
(7)水路系統和液壓系統的主要元件設置在多通塊上,減少了管路聯接和維修工作量。
(8)控制系統採用了計算機集中控制,具有先導監控、操作保護、連行和故障顯示、數據儲存,以及故障自動診斷記憶、功率自動平衡等功能。顯示實現了漢字化,控制智能化。水冷式電機設有溫度保護,牽引系統可設制限速保護,並設有零速自動制動裝置。
MG300/700-WD系列交流電牽引採煤機
◆產品用途及適用條件
MG300/700-WD系列交流電牽引採煤機是為高產高效工作面設計的新型採煤機,採取多電機驅動,電機橫向布置,各大部件可積木式組合,適用於傾角小於40°,中硬或硬煤含矸石夾層的工作面開采。具有先進的技術性能和完善的監測保護系統,是綜采理想機型。
◆主要結構特點
1.整機為多電機橫向布置,框架式結構,機身由三段組成,無底托架。三段機身採用液壓拉杠聯結,所有部件均可從老塘側抽出。
2.採用直搖臂,左右可互換,左右牽引部對稱,結構完全相同。
3.用二台交流電機牽引,電氣拖動系統為一拖一,技術領先。
4.電氣系統具有四象限運行的能力,可用於大傾角工作面。
5.採用水冷式變頻器,技術領先,可靠性高,體積小。
6.採用PLC控制,全中文液晶顯示系統。
7.具有簡易智能監測,系統保護功能齊全,查找故障方便。
8.具有手控、電控、遙控操作方式。
5. 傳動裝置都有哪些分類
傳動裝置是指把動力源的運動和動力傳遞給執行機構的裝置,介於動力源和執行機構之間,可以改變運動速度,運動方式和力或轉矩的大小。
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。
6. MLQ1-80型單滾筒採煤機由哪幾部分組成各自功用是什麼
MLQ1—80 型單滾筒採煤機的組成
採煤機的類型很多,但基本上以雙滾筒採煤機為主,其基本組成部分也大體相同。各
種類型的採煤機一般都由下列部分組成:
截割部
截割部包括搖臂齒輪箱(對整體調高採煤機來說,搖臂齒輪箱和機頭齒輪箱為一整
體)、機頭齒輪箱、滾筒及附件。截割部的主要作用是落煤、碎煤和裝煤。
牽引部
牽引部由牽引傳動裝置和牽引機構組成。牽引機構是移動採煤機的執行機構,又可分
為鏈牽引和無鏈牽引兩類。牽引部的主要作用是控制採煤機,使其按要求沿工作面運行,並
對採煤機進行過載保護。
電氣系統
電氣系統包括電動機及其箱體和裝有各種電氣元件的中間箱(聯接筒)。該系統的主要
作用是為採煤機提供動力,並對採煤機進行過載保護及控制其動作。
輔助(附屬)裝置
輔助裝置包括擋煤板、底托架、電纜拖曳裝置、供水噴霧冷卻裝置以及調高、調斜等
裝置。該裝置的主要作用是同各主要部件一起構成完整的采
7. 5.滾筒採煤機主要由哪幾部分組成以及各部分的主要功能
滾筒叫Roller,是採煤機的一部分,
長壁開採的機器叫「雙滾筒採煤機」,主要由左、右牽引部、截割部、行走箱、左右牽引活接、左右搖臂活接、底拖架及電控部組成.
牽引部當然就是帶動機器在溜槽上行走的機構
截割部就是電動機,行星減速器,滾筒的組合機構,割煤,破碎.
行走箱是牽引部的箱體
左右活連接是液壓螺栓,連接各部分
電控部:電氣控制系統、液壓傳動系統及噴霧冷卻系統
品牌美譽度:JOY=Eickhoff=DBT>西安=天地=太重=雞西IMM>蛟河=三一等
8. 採煤機組成的傳動是什麼傳動有什麼傳動特點
傳動方式有四種:1電動機——固定減速箱——搖臂 2電動機——固定減速箱——搖臂——專星屬型齒輪傳動——滾筒 3電動機——減速箱——滾筒 4電動機——搖臂——星型齒輪傳動——滾筒
9. 採煤機主要有哪幾部分組成各部分有什麼作用
如下:
1、截割部,用於破煤和裝煤。
2、牽引部,為移動採煤機提供動力。
3、電控箱,控制採煤機上各電器設備。
4、行走部,用於採煤機移動。
採煤機是實現煤礦生產機械化和現代化的重要設備之一。機械化採煤可以減輕體力勞動、提高安全性,達到高產量、高效率、低消耗的目的。