導航:首頁 > 裝置知識 > 壓電裝置設計圖

壓電裝置設計圖

發布時間:2022-12-28 05:26:30

A. 跪求· ··關於活塞式壓電式壓力感測器的課程設計,包括各個參數的詳細計算和活塞式感測器的圖片

活塞式壓電感測器課程設計

專業:測控技術與儀器

班級:08測控

姓名:單雨

目 錄
引言 1
1.感測器課程設計的目的和任務 2
1.1目的 2
1.2要求 2
2.感測器設計方案的選擇 3
2.1感測器種類的選擇 3
2.2感測器支承的選擇 4
2.3電級結構的選擇 5
3.感測器機械設計各部分的參數確定 7
3.1晶片的參數 7
3.1.1壓電系數 7
3.1.2晶片的直徑的確定 9
3.2驗算 9
3.3電極的設計 12
3.4彈簧設計 12
4.感測器整體的結構設計 15
附錄 16
參考書目 17

引 言
壓電式壓力感測器基於壓電效應的壓力感測器。它的種類和型號繁多,按彈性敏感元件和受力機構的形式可分為膜片式和活塞式兩類。膜片式主要由本體、膜片和壓電元件組成(見圖)。壓電元件支撐於本體上,由膜片將被測壓力傳遞給壓電元件,再由壓電元件輸出與被測壓力成一定關系的電信號(見壓電式感測器)。這種感測器的特點是體積小、動態特性好、耐高溫等。現代測量技術對感測器的性能出越來越高的要求。例如用壓力感測器測量繪制內燃機示功圖,在測量中不允許用水冷卻,並要求感測器能耐高溫和體積小。壓電材料最適合於研製這種壓力感測器。目前比較有效的辦法是選擇適合高溫條件的石英晶體切割方法,例如XYδ(+20°~+30°)割型的石英晶體可耐350℃的高溫。而LiNbO3單晶的居里點高達1210℃,是製造高溫感測器的理想壓電材料。
壓電式壓力感測器的結構類型很多,但它們的基本原理與結構仍與前述壓電式加速度和力感測器大同小異。突出的不同點是,它必須通過彈性膜、盒等,把壓力收集、轉換成力,再傳遞給壓電元件。為保證靜態特性及其穩定性,通常多採用石英晶體作壓電元件。壓電壓力感測器種類及型號繁多,按彈性敏感元件分,主要有兩種,活塞式和膜片式。在壓電式感測器中,常採用兩或兩片以上的壓電元件組合、並聯兩種方式工作,並聯時,輸出電容大、電荷大,同時,時間常數τ= 大,宜於用於緩慢信號的測量,並宜用於以電荷作輸出的場合。串聯時,輸出電壓高,自身電容小,宜使用於輸出為電壓及測量電路的輸入阻抗很高的場合。活塞式壓力感測器也分為中壓活塞式和高壓活塞式感測器。根據要求選擇的時活塞式直接支承並聯式感測器。其主要是根據外界受力的變化來轉變成電壓的變化從而測到外界的壓力的變化,壓力與外接電壓是一個線性變化的關系。下面就是壓電式壓力感測器的具體選擇方案等說明書

1.感測器課程設計的目的和任務
1.1目的
(1). 鞏固所學知識,加強對感測器原理的進一步理解;
(2). 理論與實際相結合,「學以致用」;
(3). 綜合運用知識,培養獨立設計能力;
(4). 著重掌握典型感測器的設計要點,方法與一般過程;
(5). 培養學生精密機械與測控電路的設計能力。
1.2要求
(1).設計時必須從實際出發,綜合考慮實用性、經濟性、安全性、先進性及操作維修方便。如果可以用比較簡單的方法實現要求,就不必過份強調先進性。並非是越先進越好。同樣,在安全性、方便性要求較高的地方,應不惜多用一些元件或採用性能較好的元件,不能單純考慮簡單、經濟;
(2).獨立完成作業。設計時可以收集、參考感測器同類資料,但必須深入理解,消化後再借鑒。不能簡單地抄襲;
(3).在課程設計中,要隨時復習感測器的工作原理。積極思考。不能直接向老師索取答案和圖紙。
(4). 設計感測器測頭機械機構方案,繪制總裝圖(CAD為工具),編寫感測器設計說明書。

2.感測器設計方案的選擇
設計一台活塞式壓電式壓力感測器
設計的參數
1.量程范圍(壓縮)40 MPa
2.靈敏度為1.6×10-3pC/Pa
3.固有頻率≥40kHz
4.線性度≤1%
5.絕緣電阻≥1012Ω
壓電式壓力感測器的結構類型很多,但它們的基本原理與結構仍與前述壓電式加速度和力感測器大同小異。突出的不同點是,它必須通過彈性膜、盒等,把壓力收集、轉換成力,再傳遞給壓電元件。為保證靜態特性及其穩定性,通常多採用石英晶體作壓電元件。其結構主要是由本體、彈性敏感元件和壓電轉換元件組成。
2.1 感測器種類的選擇
壓電壓力感測器種類及型號繁多,按彈性敏感元件分,主要有兩種,活塞式和膜片式。
活塞式壓電式感測器的應用特點:
(1)靈敏度和解析度高,線性范圍大,結構簡單、牢固,可靠性好,壽命長;
(2)體積小,重量輕,剛度、強度、承載能力和測量范圍大,動態響應頻帶寬,動態誤差小;
(3) 易於大量生產,便於選用,使用和校準方便,並適用於近測、遙測。

(a)中壓活塞式 感測器 (b) 膜片式石英壓力感測器結構圖

圖 1 壓電式壓力感測器結構圖
圖(a) 1本體 2活塞3彈簧4晶片5絕緣套6晶片7電極 8絕緣套9晶體10墊塊

圖(b) 1街頭 2絕緣套3芯體4絕緣管 5電極引線6本體7晶體8壓塊9絕緣管10壓緊螺母11繁定螺母

2.2感測器支承的選擇

(a) 直接支承 (b)間接支承
圖 2 壓電壓力感測器結構簡圖
1本體 2支撐螺桿3壓電轉換元件4電極5壓電轉換元件6膜片
圖1 中(a)為晶片直接支承在本體上 (b) 為晶片間接支承在本體上。這兩種結構形式的諧振頻率相差很大。
2.3 電級結構的選擇
感測器的固有頻率為 0¬2=K/m,為了使活塞活動靈活,必須增加長度,這樣將使質量 增加而使 下降,一般取 0 30kHz 。如果採用導電膠粘接晶片和電極,可提高剛度K,使 0 提高至40kHz。
在壓電式感測器中,常採用兩或兩片以上的壓電元件組合、並聯兩種方式工作,如下圖所示。

(a)並聯方式 (b)串聯方式

圖3 壓電式的連接方式

(1)並聯結構
如圖5(a)所示,負極集中在中間,正極為上、下兩個面的串聯,此種方式稱為並聯方式。
n片並聯時,並聯輸出電容為
輸出電壓為
極板上電荷為
式中 n ¬——片數;
C1、U1、Q1——單片時的電容、電壓、電荷量。

(2)串聯結構
如圖5(b)所示,上極板為正極,下極板為負極,中間正、負電荷抵消方式稱為串聯結構形式。
輸出電荷量為

輸出電壓為

輸出電容量為

由此可見:
(1) 並聯時,輸出電容大、電荷大,同時,時間常數τ= 大,宜於用於
慢信號的測量,並宜用於以電荷作輸出的場合。
(2) 串聯時,輸出電壓高,自身電容小,宜使用於輸出為電壓及測量電路的
入阻抗很高的場合。

根據要求選擇的時活塞式直接支承並聯式感測器

3.感測器機械設計各部分的參數確定:
3.1晶片參數確定
3.1.1 壓電系數
根據正壓電效應原理可知,當一個平行於X軸的力Fx作用於垂直於X軸的壓電元件的平面上時,則在該平面上產生的點和密度為
1=d11 1=d11=d11 (3-1)
式中 d11———壓電系數:晶體受單位力作用時產生的電荷量;
1———Ax面上的作用應力。
所以,在彈性限內電荷密度 1與應力(作用力)成正比。
如果同時在壓電原件的x、y、z三個軸向上作用拉(壓)力,對yz、xy、xz平面上作用切向力,則個平面上的電荷密度可用數學表達式表示如下:
1= d11 1+ d12 2+ d13 3+ d14 23+ d15 31+ d16 12
2= d21 1+ d22 2+ d23 3+ d24 23+ d25 31+ d26 12 (3-2)
3= d31 1+ d32 2+ d33 3+ d34 23+ d35 31+ d36 12

式中 1、 2、 3——Ax、Ay、Az 各平面上的電荷密度;
1、 2、 3——Ax、Ay、Az平面上作用的軸向應力;
23、 31、 12——切向應力;
dij——壓電系數
將式(1-8)以矩陣形式表示,則有

1
2

1 3

2 =D 4

3 5

6

式中 4= 23, 5= 31, 6= 12

d11 d12 d13 d14 d15 d16
D= d11 d12 d13 d14 d15 d16 (3-3)
d11 d12 d13 d14 d15 d16

式(1-4)稱為壓電系數矩陣。實驗得到石英晶體的壓電系數矩陣為

2.31 -2.31 0 0.67 0 0
D= 0 0 0 0 -0.67 -4.62 (3-4)

0 0 0 0 0 0
由式(3-4)可知
(1) 壓電系數矩陣是正確選擇力—電轉換方式和轉換效率的重要依據;
(2) 石英晶體不是在任何方向都存在壓電效應;
(3) 石英晶體的壓電系數共有18個。但由於晶體的對稱性,可以確定的壓電系數只有兩個。
對於右旋石英晶體, <0和 >0:對於左旋石英晶體則是 >0, <0,即
= 2.3× C/N, = 7.3× C/N
3.1.2晶片的直徑的確定
為縱向靈敏度的計算公式為
SQ =nd11•A (3-5)
SQ=1.6×10-3 Pc/Pa=1.6×10-15C/Pa
所以 1.6× =2×2.3× ×A
A=348
A=
D=21.06mm
晶片直徑及厚度大於0.5mm
3.2驗算
彈性元件的材料應具有:
(1)強度高和耐蝕性好;
(2)彈性模量要高;
(3)溫度系數要低。
彈性儲能是衡量彈性材料的一個重要指標。彈性儲能是指單位體積所吸收最大變形的功,它表示在彈性元件的材料吸收最大變形功時,而不產生永久變形的能力。
最大變形功為

式中 W——最大彈性變形功;
——彈性極限;
E——彈性模量。
由上式可見:
(1)要使W增加,則必使E減小;
(2)但彈性元件要求有較高E值;
(3)以上兩者矛盾,綜合考慮,常取E值高的材料作彈性元件;
(4)測量超高壓時,選用超高強度的合金材料( >1600MPa),如馬氏體、不銹鋼、鎳鈷鉬合金等。
無論選用哪種材料,都要求具有良好的機械加工性能、熱處理性能和焊接性能好等。

要保持具有良好的線性。
具有良好的線性關系必使在最大動態力作用下不脫離接觸,此時,必須滿足以下條件:在最大動態力作用下產生的變形 不超過預應力產生的變形x,即

最大動態力為 ,由胡克定律,由

因而,在此動態力作用下產生的變形為

在位移 下產生的彈性力為

所以最小預用力為

顯然, ,預應力的下限值應取 。

機械強度的設計計算
(1) 根據使用條件和測量要求合理選擇材料;
(2) 合理設計整體結構和零件尺寸;
(3) 用於超高壓測量的感測器要進行連接螺紋的強度校合,以滿足整個感測器強度要求和可靠性。壓力感測器的強度設計主要是對彈性元件和轉換元件。
設: 為被測最大壓力;A為膜片有效受力面積;A』為壓電轉換元件(晶片)的面積; 為壓電元件(晶片)的強度極限;[ ]為允許應力。則壓電元件(晶片)上承受的最大力為
= •A
=4.0× ×3.48×
=1.39× N
3.3電極設計
縱向效應晶體組件的設計
晶體元件一般設計成機械串聯(受力)、電氣並聯,以薄金屬片做電極(圖9-41),或以金屬鍍層做電極(圖9-42)。
以金屬片為電極的應用較為普遍,因其結構工藝簡單。

(a)金屬薄片式 (b)金屬鍍層式
圖4 晶體元件組
3.4.彈簧設計

圖5 彈簧設計圖
1.彈簧的作用:
保證測頭與被測目標可靠接觸。
2.設計要求:
測量力要求:小於100g,不能太硬。
行程要求: 2mm,伸縮行程。
3.關於材料的選擇和參數計算:
彈簧材料的選擇,應根據彈簧承受載荷的性質、應力狀態、應力大小、工作溫度、環境介質、使用壽命、對導電導磁的要求、工藝性能、材料來源和價格等因素確定。彈簧材料除了注意其化學成分外,還應特別注意其冶金及熱處理的工藝質量。相同成分的材料由於冶金及熱處理工藝質量不同,其機械性能往往有很大差別。感測器內部彈簧較小,選用經預先熱處理的油淬火回火的彈簧鋼絲。
考慮最大工作負荷為 ,並且在低溫下使用的彈簧材料,應具有良好的低溫韌性。碳素彈簧鋼絲、琴鋼絲和 1Cr18Ni9 等奧氏體不銹鋼彈簧鋼絲、銅合金、鎳合金有較好的低溫韌性和強度,本感測器還需要該材料膨脹系數變化極小。綜上各因素,我們小組決定選取材料1Cr18Ni9,其許用切應力 ,通過查閱機械手冊表,選取其彈簧指數為C=14,則曲度系數

計算彈簧絲徑 ,選取標准值 。
彈簧中徑 。節距一般取 ,這里取 。根據量程 ,查機械手冊表,選取彈簧工作圈數的標准值 ,由此得彈簧自由高度 。壓縮高度 。

表1彈簧設計所有參數
絲徑 中徑 載荷 壓縮高度 自由高度
0.35 5 0.1kg 1.225 4

為了進一步提高彈簧的許用剪切應力,需對彈簧採取強壓處理。經強壓處理後的彈簧,可提高彈簧的許用剪切應力,最高可增加25%左右。強壓處理的基本原理是將彈簧預制的比要求的自由高度高一些,然後壓縮彈簧至並緊,使其應力超過彈簧材料的彈性極限。強壓處理過的彈簧再載入時,其許用彈性極限比強壓處理前提高很多。強壓處理方式採用長時間一次強壓,保持時間為48h左右。
4.感測器整體的結構設計

圖6 活塞式壓力感測器總設計圖

總結
1•通過這次課程設計,我對感測器設計基礎知識復習了一遍,而且更重要的是又學到了很多新的知識,獲得了新的經驗。我從中學會了根據具體的數據進行查表、篩選,從而進行設計。學會知道團隊精神的重要性,在這次的課程設計當中,在一些材料的選用,數據的演算法等方面與其他同學進行了交流,提高了自己的工作效率。
2•在如此短的時間內,依靠個人能力是不可能完成如此繁瑣的資料查找與收集。所以,通過這次課程設計,加強了同學之間的交流,大大增進了我們組的凝聚力,協作的精神更強了。而且自己也學到了很多實際的有用的東西,相信對以後的工作一定會有很大的益處。
3•最後,在此對郭易老師的指導與教學表示感謝,通過老師的幫助使得我們的工作效率得到了很大的提高。

參考書目
[1] 黃賢武 ,鄭筱霞 . 感測器原理與應用 .北京:電子科技大學出版社 1995年 35-40
[2] 王化祥,張淑英.感測器原理及應用.天津:天津大學出版社 ,1999年 56-60
[3] 高曉蓉.感測器技術.西南交通大學出版社,2003年 66-70
[4] 郁有文,常健.感測器原理及工程應用.西安:西安電子科技大學出版社,2001年 75-80
[5]何希才.感測器及其應用電路 .北京:電子工業出版社 2001 90-100
[6] 陳傑 ,黃鴻.感測器與檢測技術 .北京:高等教育出版社 2002年 100-103
[7] 於建紅 . 感測技術學報 .2007年 2-4

B. 壓電材料詳細資料大全

壓電材料是受到壓力作用時會在兩端面間出現電壓的晶體材料。

材料原理,材料分類,無機壓電材料,有機壓電材料,材料套用,換能器,驅動器,感測器,機器人,發展現狀,細晶粒壓電陶瓷,PbTiO3系壓電陶瓷,壓電復合材料,多元單晶壓電體,材料參數, 基本介紹 受到壓力作用時會在兩端面間出現電壓的晶體材料。1880年,法國物理學家P. 居里和J.居里兄弟發現,把重物放在石英晶體上,晶體某些表面會產生電荷,電荷量與壓力成比例。這一現象被稱為壓電效應。隨即,居里兄弟又發現了逆壓電效應,即在外電場作用下壓電體會產生形變。壓電效應的機理是:具有壓電性的晶體對稱性較低,當受到外力作用發生形變時,晶胞中正負離子的相對位移使正負電荷中心不再重合,導致晶體發生巨觀極化,而晶體表面電荷面密度等於極化強度在表面法向上的投影,所以壓電材料受壓力作用形變時兩端面會出現異號電荷。反之,壓電材料在電場中發生極化時,會因電荷中心的位移導致材料變形。 利用壓電材料的這些特性可實現機械振動(聲波)和交流電的互相轉換。因而壓電材料廣泛用於感測器元件中,例如地震感測器,力、速度和加速度的測量元件以及電聲感測器等。這類材料被廣泛運用,舉一個很生活化的例子,打火機的火花即運用此技術。

材料原理

壓電現象是100多年前居里兄弟研究石英時發現的。那麼,什麼是壓電效應呢? 當你在點燃煤氣灶或熱水器時,就有一種壓電陶瓷已悄悄地為你服務了一次。生產廠家在這類壓電點火裝置內,藏著一塊壓電陶瓷,當用戶按下點火裝置的彈簧時,傳動裝置就把壓力施加在壓電陶瓷上,使它產生很高的電壓,進而將電能引向燃氣的出口放電。於是,燃氣就被電火花點燃了。壓電陶瓷的這種功能就叫做壓電效應。 壓電效應的原理是,如果對壓電材料施加壓力,它便會產生電位差(稱之為正壓電效應),反之施加電壓,則產生機械應力(稱為逆壓電效應)。如果壓力是一種高頻震動,則產生的就是高頻電流。而高頻電信號加在壓電陶瓷上時,則產生高頻聲信號(機械震動),這就是我們平常所說的超音波信號。也就是說,壓電陶瓷具有機械能與電能之間的轉換和逆轉換的功能,這種相互對應的關系確實非常有意思。 壓電石英晶體材料 壓電材料可以因機械變形產生電場,也可以因電場作用產生機械變形,這種固有的機-電耦合效應使得壓電材料在工程中得到了廣泛的套用。例如,壓電材料已被用來製作智慧型結構,此類結構除具有自承載能力外,還具有自診斷性、自適應性和自修復性等功能,在未來的飛行器設計中佔有重要的地位。

材料分類

無機壓電材料

分為壓電晶體和壓電陶瓷,壓電晶體一般是指壓電單晶體;壓電陶瓷則泛指壓電多晶體。壓電陶瓷是指用必要成份的原料進行混合、成型、高溫燒結,由粉粒之間的固相反應和燒結過程而獲得的微細晶粒無規則集合而成的多晶體。具有壓電性的陶瓷稱壓電陶瓷,實際上也是鐵電陶瓷。在這種陶瓷的晶粒之中存在鐵電疇,鐵電疇由自發極化方向反向平行的180 疇和自發極化方向互相垂直的90疇組成,這些電疇在人工極化(施加強直流電場)條件下,自發極化依外電場方向充分排列並在撤消外電場後保持剩餘極化強度,因此具有巨觀壓電性。如:鈦酸鋇BT、鋯鈦酸鉛PZT、改性鋯鈦酸鉛、偏鈮酸鉛、鈮酸鉛鋇鋰PBLN、改性鈦酸鉛PT等。這類材料的研製成功,促進了聲換能器,壓電感測器的各種壓電器件性能的改善和提高。 壓電材料 壓電晶體一般指壓電單晶體,是指按晶體空間點陣長程有序生長而成的晶體。這種晶體結構無對稱中心,因此具有壓電性。如水晶(石英晶體)、鎵酸鋰、鍺酸鋰、鍺酸鈦以及鐵電晶體鈮酸鋰、鉭酸鋰等。 相比較而言,壓電陶瓷壓電性強、介電常數高、可以加工成任意形狀,但機械品質因子較低、電損耗較大、穩定性差,因而適合於大功率換能器和寬頻濾波器等套用,但對高頻、高穩定套用不理想。石英等壓電單晶壓電性弱,介電常數很低,受切型限制存在尺寸局限,但穩定性很高,機械品質因子高,多用來作標准頻率控制的振子、高選擇性(多屬高頻狹帶通)的濾波器以及高頻、高溫超聲換能器等。由於鈮鎂酸鉛Pb(Mg1/3Nb2/3)O3單晶體(Kp ≥90%, d33≥900×10-3C/N, ε≥20,000)性能特異,國內外上都開始這種材料的研究,但由於其居里點太低,離使用化尚有一段距離。

有機壓電材料

又稱壓電聚合物,如聚偏氟乙烯(PVDF)(薄膜)及以它為代表的其他有機壓電(薄膜)材料。這類材料及其材質柔韌,低密度,低阻抗和高壓電電壓常數(g)等優點為世人矚目,且發展十分迅速,水聲超聲測量,壓力感測,引燃引爆等方面獲得套用。不足之處是壓電應變常數(d)偏低,使之作為有源發射換能器受到很大的限制。第三類是復合壓電材料,這類材料是在有機聚合物基底材料中嵌入片狀、棒狀、桿狀、或粉末狀壓電材料構成的。至今已在水聲、電聲、超聲、醫學等領域得到廣泛的套用。如果它製成水聲換能器,不僅具有高的靜水壓回響速率,而且耐沖擊,不易受損且可用與不同的深度。 換能器

材料套用

壓電材料的套用領域可以粗略分為兩大類:即振動能和超聲振動能-電能換能器套用,包括電聲換能器,水聲換能器和超聲換能器等,以及其它感測器和驅動器套用。

換能器

換能器是將機械振動轉變為電信號或在電場驅動下產生機械振動的器件壓電聚合物電聲器件利用了聚合物的橫向壓電效應,而換能器設計則利用了聚合物壓電雙晶片或壓電單晶片在外電場驅動下的彎曲振動,利用上述原理可生產電聲器件如麥克風、立體聲耳機和高頻揚聲器。對壓電聚合物電聲器件的研究主要集中在利用壓電聚合物的特點,研製運用其它現行技術難以實現的、而且具有特殊電聲功能的器件,如抗雜訊電話、寬頻超聲信號發射系統等。 壓電聚合物水聲換能器研究初期均瞄準軍事套用,如用於水下探測的大面積感測器陣列和監視系統等,隨後套用領域逐漸拓展到地球物理探測、聲波測試設備等方面。為滿足特定要求而開發的各種原型水聲器件,採用了不同類型和形狀的壓電聚合物材料,如薄片、薄板、疊片、圓筒和同軸線等,以充分發揮壓電聚合物高彈性、低密度、易於制備為大和小不同截面的元件、而且聲阻抗與水數量級相同等特點,最後一個特點使得由壓電聚合物制備的水聽器可以放置在被測聲場中,感知聲場內的聲壓,且不致由於其自身存在使被測聲場受到擾動。而聚合物的高彈性則可減小水聽器件內的瞬態振盪,從而進一步增強壓電聚合物水聽器的性能。 超音波感測器 壓電聚合物換能器在生物醫學感測器領域,尤其是超聲成像中,獲得了最為成功的套用、PVDF薄膜優異的柔韌性和成型性,使其易於套用到許多感測器產品中。

驅動器

壓電驅動器利用逆壓電效應,將電能轉變為機械能或機械運動,聚合物驅動器主要以聚合物雙晶片作為基礎,包括利用橫向效應和縱向效應兩種方式,基於聚合物雙晶片開展的驅動器套用研究包括顯示器件控制、微位移產生系統等。要使這些創造性構想獲得實際套用,還需要進行大量研究。電子束輻照P(VDF-TrFE)共聚合物使該材料具備了產生大伸縮應變的能力,從而為研製新型聚合物驅動器創造了有利條件。在潛在國防套用前景的推動下,利用輻照改性共聚物制備全高分子材料水聲發射裝置的研究,在美國軍方的大力支持下正在系統地進行之中。除此之外,利用輻照改性共聚物的優異特性,研究開發其在醫學超聲、減振降噪等領域套用,還需要進行大量的探索。

感測器

1.壓電式壓力感測器 壓電式壓力感測器是利用壓電材料所具有的壓電效應所製成的。壓電式壓力感測器的基本結構如右圖所示。由於壓電材料的電荷量是一定的,所以在連線時要特別注意,避免漏電。壓電式壓力感測器的優點是具有自生信號,輸出信號大,較高的頻率回響,體積小,結構堅固。其缺點是只能用於動能測量。需要特殊電纜,在受到突然振動或過大壓力時,自我恢復較慢。 2.壓電式加速度感測器 壓電元件一般由兩塊壓電晶片組成。在壓電晶片的兩個表面上鍍有電極,並引出引線。在壓電晶片上放置一個質量塊,質量塊一般採用比較大的金屬鎢或高比重的合金製成。然後用一硬彈簧或螺栓,螺帽對質量塊預載入荷,整個組件裝在一個原基座的金屬殼體中。為了隔離試件的任何應變傳送到壓電元件上去,避免產生假信號輸出,所以一般要加厚基座或選用由剛度較大的材料來製造,殼體和基座的重量差不多佔感測器重量的一半。 測量時,將感測器基座與試件剛性地固定在一起。當感測器受振動力作用時,由於基座和質量塊的剛度相當大,而質量塊的質量相對較小,可以認為質量塊的慣性很小。因此質量塊經受到與基座相同的運動,並受到與加速度方向相反的慣性力的作用。這樣,質量塊就有一正比於加速度的應變力作用在壓電晶片上。由於壓電晶片具有壓電效應,因此在它的兩個表面上就產生交變電荷(電壓),當加速度頻率遠低於感測器的固有頻率時,感測器給輸出電壓與作用力成正比,亦即與試件的加速度成正比,輸出電量由感測器輸出端引出,輸入到前置放大器後就可以用普通的測量儀器測試出試件的加速度;如果在放大器中加進適當的積分電路,就可以測試試件的振動速度或位移。

機器人

機器人安裝接近覺感測器主要目的有以下三個:其一,在接觸對象物體之前,獲得必要的信息,為下一步運動做好准備工作;其二,探測機器人手和足的運動空間中有無障礙物。如發現有障礙,則及時採取一定措施,避免發生碰撞;其三,為獲取對象物體表面形狀的大致信息。 超音波是人耳聽見的一種機械波,頻率在20KHZ以上。人耳能聽到的聲音,振動頻率范圍只是20HZ-20000HZ。超音波因其波長較短、繞射小,而能成為聲波射線並定向傳播,機器人採用超聲感測器的目的是用來探測周圍物體的存在與測量物體的距離。一般用來探測周圍環境中較大的物體,不能測量距離小於30mm的物體。 超聲感測器包括超聲發射器、超聲接受器、定時電路和控制電路四個主要部分。它的工作原理大致是這樣的:首先由超聲發射器向被測物體方向發射脈沖式的超音波。發射器發出一連串超音波後即自行關閉,停止發射。同時超聲接受器開始檢測回聲信號,定時電路也開始計時。當超音波遇到物體後,就被反射回來。等到超聲接受器收到回聲信號後,定時電路停止計時。此時定時電路所記錄的時間,是從發射超音波開始到收到回聲波信號的傳播時間。 利用傳播時間值,可以換算出被測物體到超聲感測器之間的距離。這個換算的公式很簡單,即聲波傳播時間的一半與聲波在介質中傳播速度的乘積。超聲感測器整個工作過程都是在控制電路控制下順序進行的。 壓電材料除了以上用途外還有其它相當廣泛的套用。如鑒頻器、壓電震盪器、變壓器、濾波器等。

發展現狀

下面介紹幾種處於發展中的壓電陶瓷材料和幾種新的套用。

細晶粒壓電陶瓷

以往的壓電陶瓷是由幾微米至幾十微米的多疇晶粒組成的多晶材料,尺寸已不能滿足需要了。減小粒徑至亞微米級,可以改進材料的加工性,可將基片做地更薄,可提高陣列頻率,降低換能器陣列的損耗,提高器件的機械強度,減小多層器件每層的厚度,從而降低驅動電壓,這對提高疊層變壓器、制動器都是有益的。減小粒徑有上述如此多的好處,但同時也帶來了降低壓電效應的影響。為了克服這種影響,人們更改了傳統的摻雜工藝,使細晶粒壓電陶瓷壓電效應增加到與粗晶粒壓電陶瓷相當的水平。製作細晶粒材料的成本已可與普通陶瓷競爭了。人們用細晶粒壓電陶瓷進行了切割研磨研究,並製作出了一些高頻換能器、微制動器及薄型蜂鳴器(瓷片20-30um厚),證明了細晶粒壓電陶瓷的優越性。隨著納米技術的發展,細晶粒壓電陶瓷材料研究和套用開發仍是熱點。

PbTiO3系壓電陶瓷

PbTiO3系壓電陶瓷具最適合製作高頻高溫壓電陶瓷元件。雖然存在PbTiO3陶瓷燒成難、極化難、製作大尺寸產品難的問題,人們還是在改性方面作了大量工作,改善其燒結性。抑制晶粒長大,從而得到各個晶粒細小、各向異性的改性PbTiO3材料。近幾年,改良PbTiO3材料報導較多,在金屬探傷、高頻器件方面得到了廣泛套用。該材料的發展和套用開發仍是許多壓電陶瓷工作者關心的課題。

壓電復合材料

無機壓電陶瓷和有機高分子樹脂構成的壓電復合材料,兼備無機和有機壓電材料的性能,並能產生兩相都沒有的特性。因此,可以根據需要,綜合二相材料的優點,製作良好性能的換能器和感測器。它的接收靈敏度很高,比普通壓電陶瓷更適合於水聲換能器。在其它超音波換能器和感測器方面,壓電復合材料也有較大優勢。國內學者對這個領域也頗感興趣,做了大量的工藝研究,並在復合材料的結構和性能方面做了一些有益的基礎研究工作,正致力於壓電復合材料產品的開發。

多元單晶壓電體

傳統的壓電陶瓷較其它類型的壓電材料壓電效應要強,從而得到了廣泛套用。但作為大應變,高能換能材料,傳統壓電陶瓷的壓電效應仍不能滿足要求。於是近幾年來,人們為了研究出具有更優異壓電性的新壓電材料,做了大量工作,現已發現並研製出了Pb(A1/3B2/3)PbTiO3單晶(A=Zn2+,Mg2+)。這類單晶的d33最高可達2600pc/N(壓電陶瓷d33最大為850pc/N),k33可高達0.95(壓電陶瓷K33最高達0.8),其應變>1.7%,幾乎比壓電陶瓷應變高一個數量級。儲能密度高達130J/kg,而壓電陶瓷儲能密度在10J/kg以內。鐵電壓電學者們稱這類材料的出現是壓電材料發展的又一次飛躍。美國、日本、俄羅斯和中國已開始進行這類材料的生產工藝研究,它的批量生產的成功必將帶來壓電材料套用的飛速發展。

材料參數

C. 電器控制裝置設計的基本步驟和方法有哪些

設計方法及步驟
在接到設計任務書後,按原理設計和工藝設計兩方面進行。
1.原理圖設計的步驟
(1)根據要求擬定設計任務。
(2)根據拖動要求設計主電路。在繪制主電路時,可考慮以下幾個方面:
①每台電動機的控制方式,應根據其容量及拖動負載性質考慮其啟動要求,選擇適當的啟動線路。對於容量小(7.5kw以下)、啟動負載不大的電動機,可採用直接啟動}對於大容量電動機應採用降壓啟動。
②根據運動要求決定轉向控制。
③根據每台電動機的工作制,決定是否需要設置過載保護或過電流控制措施。
④根據拖動負載及工藝要求決定停車時是否需要制動控制,並決定採用何種控制方式。
⑤設置短路保護及其他必要的電氣保護。
⑥考慮其他特殊要求:調速要求、主電路參數測量、信號檢測等。
(3)根據主電路的控制要求設計控制迴路,其設計方法是:
①正確選擇控制電路電壓種類及大小。
②根據每台電動機的啟動、運行、調速、制動及保護要求,依次繪制各控制環節(基本單元控制線路)。
③設置必要的聯鎖(包括同一台電動機各動作之間以及各台電動機之間的動作聯鎖)。
④設置短路保護以及設計任務書中要求的位置保護(如極限位、越位、相對位置保護)、電壓保護、電流保護和各種物理量保護(溫度、壓力、流量等)。
⑤根據拖動要求,設計特殊要求控制環節,如自動抬刀、變速與自動循環、工藝參數測量等控制。
⑥按需要設置應急操作。
(4)根據照明、指示、報警等要求設計輔助電路。
(5)總體檢查、修改、補充及完善。主要內容包括:
①校核各種動作控制是否滿足要求,是否有矛盾或遺漏。
②檢查接觸器、繼電器、主令電器的觸點使用是否合理,是否超過電器元件允許的數量。
③檢查聯鎖要求能否實現。
④檢查各種保護能否實現。
⑤檢查發生誤操作所引起的後果與防範措施。
(6)進行必要的參數計算。
(7)正確、合理地選擇各電器元件,按規定格式編制元件目錄表。
(8)根據完善後的設計草圖,按GB/T 6988電氣制圖標准繪制電氣原理線路圖,並按GB/T 5094-1985《電氣技術中的項目代號》要求標注器件的項目代號,按GB 4884-1985《絕緣導線的標記》的要求對線路進行統一編號。
2.工藝設計步驟
(1)根據電氣設備的總體配置及電器元件的分布狀況和操作要求劃分電器組件,繪制電氣控制系統的總裝配圖和接線圖。
(2)根據電器元件的型號、外形尺寸、安裝尺寸繪制每一組件的元件布置圖(如電器安裝板、控制面板、電源、放大器等)。
(3)根據元件布置圖及電氣原理編號繪制組件接線圖,統計組件進出線的數量、編號以及各組件之間的連接方式。
(4)繪制並修改工藝設計草圖後,便可按機械、電氣制圖要求繪制工程圖。最後按設計過程和設計結果編寫設計說明書及使用說明書。

D. 如何利用壓電式感測器設計一個測量軸承支座受力情況的裝置。

基於壓電效應的感測器。是一種自發電式和機電轉換式感測器。它的敏感專元件由壓電材屬料製成。壓電材料受力後表面產生電荷。此電荷經電荷放大器和測量電路放大和變換阻抗後就成為正比於所受外力的電量輸出。壓電式感測器用於測量力和能變換為力的非電物理量。它的優點是頻帶寬、靈敏度高、信噪比高、結構簡單、工作可靠和重量輕等。缺點是某些壓電材料需要防潮措施,而且輸出的直流響應差,需要採用高輸入阻抗電路或電荷放大器來克服這一缺陷。
軸承是當代機械設備中一種重要零部件。它的主要功能是支撐機械旋轉體,降低其運動過程中的摩擦系數,並保證其回轉精度。
按運動元件摩擦性質的不同,軸承可分為滾動軸承和滑動軸承兩大類。其中滾動軸承已經標准化、系列化,但與滑動軸承相比它的徑向尺寸、振動和雜訊較大,價格也較高。
滾動軸承一般由外圈、內圈、滾動體和保持架四部分組成,嚴格的說是由外圈、內圈、滾動體、保持架、密封、潤滑油 六大件組成。主要具備外圈、內圈、滾動體就可定意為滾動軸承。按滾動體的形狀,滾動軸承分為球軸承和滾子軸承兩大類。

E. 分析壓電換能器的工作原理

極化的壓電陶瓷在周期周期信號激勵下,產生伸縮振動。推動周圍媒介運動-此為發射換能器。一般結構為1/2波長振子、極化的壓電陶瓷,在媒介的推動下,產生伸縮振動,產生電信號。此為接收換能器。
換能器:實現電能、機械能或聲能從一種形式的能量轉換為另一種形式的能量的裝置稱為換能器,也稱有源感測器。換能器是超聲波設備的核心器件,其特性參數決定整個設備的性能。

F. 震動送料盤結構圖

近十幾年利用壓電陶瓷作為驅動源的新型振動送料裝置正在快速發展起來,壓電振動送料裝置是將壓點技術應用於振動輸送的一種新型振動送料裝置,它利用壓電片的逆壓電效應產生振動,作為驅動源驅動料槽實現物料的輸送。

振動盤原理結構圖:

1、國內外的研究現狀: 對於這種新型的振動送料裝置,其結構和工作原理都不同於傳統的電磁或機械驅動的振動送料裝置,因此它具有許多傳統振動送料裝置所不具備的特點:

(1)結構簡單,安裝和維護更加方便;
(2)應用壓電片作為驅動源,無需電機、電磁激振器等驅動裝置,也無需軸、桿、皮帶等機械傳動部件,結構簡單,易於加工製作;
(3)改變驅動信號中的幅值、脈寬及頻率中的任意一個,都可以調節輸送率,控制參數多,可控性好;
(4)無轉動慣性,幾乎沒有加速和減速過程,啟動、停止迅速,反應性能快;
(5)不產生干擾電磁振動盤場,也不受電磁干擾信號的影響;
(6)在低頻率段或超聲段工作,噪音小;
(7)在共振或無共振狀態下工作,因此能量消耗少;
(8)驅動力略顯不足,無法輸送過重之料件,因此這類裝置大多應用於物料的微量或精量輸送。 壓電振動送料裝置是振動送料領域的一個重大的突破,國內外的科技人員都進行了不同程度的研究,取得了一定的成果,其按照物料前進的方式可將其分為直進型和螺旋型兩種。

2、國內研究現狀我國對壓電振動送料裝置的研究整體水平仍然落後於發達國家和地區,成型產品很少。

G. 壓電效應——將壓力轉化成電力的系統,結構及其原理圖

壓力變送器是工業實踐中最為常用的一種感測器,其廣泛應用於各種工業自控環境,涉及水利水電、鐵路交通、智能建築、生產自控、航空航天、軍工、石化、油井、電力、船舶、機床、管道等眾多行業,下面就簡單介紹一些常用壓力變送器的原理及其應用
1、應變片壓力變送器原理與應用
力學感測器的種類繁多,如電阻應變片壓力變送器、半導體應變片壓力變送器、壓阻式壓力變送器、電感式壓力變送器、電容式壓力變送器、諧振式壓力變送器及電容式加速度感測器等。但應用最為廣泛的是壓阻式壓力變送器,它具有極低的價格和較高的精度以及較好的線性特性。下面我們主要介紹這類感測器。
在了解壓阻式壓力變送器時,我們首先認識一下電阻應變片這種元件。電阻應變片是一種將被測件上的應變變化轉換成為一種電信號的敏感器件。它是壓阻式應變變送器的主要組成部分之一。電阻應變片應用最多的是金屬電阻應變片和半導體應變片兩種。金屬電阻應變片又有絲狀應變片和金屬箔狀應變片兩種。通常是將應變片通過特殊的粘和劑緊密的粘合在產生力學應變基體上,當基體受力發生應力變化時,電阻應變片也一起產生形變,使應變片的阻值發生改變,從而使加在電阻上的電壓發生變化。這種應變片在受力時產生的阻值變化通常較小,一般這種應變片都組成應變電橋,並通過後續的儀表放大器進行放大,再傳輸給處理電路(通常是 A/D轉換和CPU)顯示或執行機構。
金屬電阻應變片的內部結構
如圖1所示,是電阻應變片的結構示意圖,它由基體材料、金屬應變絲或應變箔、絕緣保護片和引出線等部分組成。根據不同的用途,電阻應變片的阻值可以由設計者設計,但電阻的取值范圍應注意:阻值太小,所需的驅動電流太大,同時應變片的發熱致使本身的溫度過高,不同的環境中使用,使應變片的阻值變化太大,輸出零點漂移明顯,調零電路過於復雜。而電阻太大,阻抗太高,抗外界的電磁干擾能力較差。一般均為幾十歐至幾十千歐左右。
電阻應變片的工作原理
金屬電阻應變片的工作原理是吸附在基體材料上應變電阻隨機械形變而產生阻值變化的現象,俗稱為電阻應變效應。金屬導體的電阻值可用下式表示:
式中:ρ——金屬導體的電阻率(Ω?cm2/m)
S——導體的截面積(cm2)
L——導體的長度(m)
我們以金屬絲應變電阻為例,當金屬絲受外力作用時,其長度和截面積都會發生變化,從上式中可很容易看出,其電阻值即會發生改變,假如金屬絲受外力作用而伸長時,其長度增加,而截面積減少,電阻值便會增大。當金屬絲受外力作用而壓縮時,長度減小而截面增加,電阻值則會減小。只要測出加在電阻的變化(通常是測量電阻兩端的電壓),即可獲得應變金屬絲的應變情
2、陶瓷壓力變送器原理及應用
抗腐蝕的壓力變送器沒有液體的傳遞,壓力直接作用在陶瓷膜片的前表面,使膜片產生微小的形變,厚膜電阻印刷在陶瓷膜片的背面,連接成一個惠斯通電橋(閉橋),由於壓敏電阻的壓阻效應,使電橋產生一個與壓力成正比的高度線性、與激勵電壓也成正比的電壓信號,標準的信號根據壓力量程的不同標定為2.0 / 3.0 / 3.3 mV/V等,可以和應變式感測器相兼容。通過激游標定,感測器具有很高的溫度穩定性和時間穩定性,感測器自帶溫度補償0~70℃,並可以和絕大多數介質直接接觸。
陶瓷是一種公認的高彈性、抗腐蝕、抗磨損、抗沖擊和振動的材料。陶瓷的熱穩定特性及它的厚膜電阻可以使它的工作溫度范圍高達-40~135℃,而且具有測量的高精度、高穩定性。電氣絕緣程度>2kV,輸出信號強,長期穩定性好。高特性,低價格的陶瓷感測器將是壓力變送器的發展方向,在歐美國家有全面替代其它類型感測器的趨勢,在中國也越來越多的用戶使用陶瓷感測器替代擴散硅壓力變送器。
3、擴散硅壓力變送器原理及應用
工作原理
被測介質的壓力直接作用於感測器的膜片上(不銹鋼或陶瓷),使膜片產生與介質壓力成正比的微位移,使感測器的電阻值發生變化,和用電子線路檢測這一變化,並轉換輸出一個對應於這一壓力的標准測量信號。
4、藍寶石壓力變送器原理與應用
利用應變電阻式工作原理,採用硅-藍寶石作為半導體敏感元件,具有無與倫比的計量特性。
藍寶石系由單晶體絕緣體元素組成,不會發生滯後、疲勞和蠕變現象;藍寶石比硅要堅固,硬度更高,不怕形變;藍寶石有著非常好的彈性和絕緣特性(1000 OC以內),因此,利用硅-藍寶石製造的半導體敏感元件,對溫度變化不敏感,即使在高溫條件下,也有著很好的工作特性;藍寶石的抗輻射特性極強;另外,硅 -藍寶石半導體敏感元件,無p-n漂移,因此,從根本上簡化了製造工藝,提高了重復性,確保了高成品率。
用硅-藍寶石半導體敏感元件製造的壓力感測器和變送器,可在最惡劣的工作條件下正常工作,並且可靠性高、精度好、溫度誤差極小、性價比高。
表壓壓力感測器和壓力變送器由雙膜片構成:鈦合金測量膜片和鈦合金接收膜片。印刷有異質外延性應變靈敏電橋電路的藍寶石薄片,被焊接在鈦合金測量膜片上。被測壓力傳送到接收膜片上(接收膜片與測量膜片之間用拉桿堅固的連接在一起)。在壓力的作用下,鈦合金接收膜片產生形變,該形變被硅-藍寶石敏感元件感知後,其電橋輸出會發生變化,變化的幅度與被測壓力成正比。
感測器的電路能夠保證應變電橋電路的供電,並將應變電橋的失衡信號轉換為統一的電信號輸出(0-5,4-20mA或0-5V)。在絕壓壓力感測器和壓力變送器中,藍寶石薄片,與陶瓷基極玻璃焊料連接在一起,起到了彈性元件的作用,將被測壓力轉換為應變片形變,從而達到壓力測量的目的。
5、壓電壓力感測器原理與應用
壓電感測器中主要使用的壓電材料包括有石英、酒石酸鉀鈉和磷酸二氫胺。其中石英(二氧化硅)是一種天然晶體,壓電效應就是在這種晶體中發現的,在一定的溫度范圍之內,壓電性質一直存在,但溫度超過這個范圍之後,壓電性質完全消失(這個高溫就是所謂的「居里點」)。由於隨著應力的變化電場變化微小(也就說壓電系數比較低),所以石英逐漸被其他的壓電晶體所替代。而酒石酸鉀鈉具有很大的壓電靈敏度和壓電系數,但是它只能在室溫和濕度比較低的環境下才能夠應用。磷酸二氫胺屬於人造晶體,能夠承受高溫和相當高的濕度,所以已經得到了廣泛的應用。
現在壓電效應也應用在多晶體上,比如現在的壓電陶瓷,包括鈦酸鋇壓電陶瓷、PZT、鈮酸鹽系壓電陶瓷、鈮鎂酸鉛壓電陶瓷等等。
壓電效應是壓電感測器的主要工作原理,壓電感測器不能用於靜態測量,因為經過外力作用後的電荷,只有在迴路具有無限大的輸入阻抗時才得到保存。實際的情況不是這樣的,所以這決定了壓電感測器只能夠測量動態的應力。
壓電感測器主要應用在加速度、壓力和力等的測量中。壓電式加速度感測器是一種常用的加速度計。它具有結構簡單、體積小、重量輕、使用壽命長等優異的特點。壓電式加速度感測器在飛機、汽車、船舶、橋梁和建築的振動和沖擊測量中已經得到了廣泛的應用,特別是航空和宇航領域中更有它的特殊地位。壓電式感測器也可以用來測量發動機內部燃燒壓力的測量與真空度的測量。也可以用於軍事工業,例如用它來測量槍炮子彈在膛中擊發的一瞬間的膛壓的變化和炮口的沖擊波壓力。它既可以用來測量大的壓力,也可以用來測量微小的壓力。
壓電式感測器也廣泛應用在生物醫學測量中,比如說心室導管式微音器就是由壓電感測器製成的,因為測量動態壓力是如此普遍,所以壓電感測器的應用就非常廣泛。(轉載)
要問壓電效應,網路上有

H. 製作一套可以實際應用的壓電發電裝置成本高么

可以共用一個發電機。
但是使用時需要考慮發電機的功率是否能滿足要求。

注意事項:回
正確使用和維護發答電機組可延長發電機組的使用壽命:
起動前的准備工作:
1、機房操作人員應遵守安全操作規程,
發電機(圖9)
穿工作服和絕緣鞋,機組人員應分工明確;
2、檢查飛輪及發電機部分防欄桿罩是否完好;
3、檢查各變速箱、離合器、調速器、油位、各緊固件等,確認完好,油水溫度不低於20度時,方可起動;
4、將各系統管路閘門設置在「工作」位置;
5、檢查傳動的鏈接螺栓,並緊固好;
6、將離合器手柄壓力是否正常,超速保險裝置是否定位;
7、檢查貯氣瓶壓力是否正常,超速保險裝置是否定位;
8、打開打氣泵的排污閥;
9、檢查循環水泵、機油泵、燃油泵是否正常;
10、將勵磁電阻置於最大的電阻位置,並將送電開關斷開。

I. 打火機裡面的這個東西的發電原理是什麼威力為什麼還會越來越弱

打火機中產生電火花的裝置原理,其核心部件是壓電陶瓷。壓電陶瓷是一種可以將機械能轉化成電能的材料,當壓電陶瓷受到外界的壓力時,陶瓷中正負電荷中心發生分離,導致它的兩個表面上分別積累正負電荷形成電勢差。

電打火機工作的時候主要是通過電火花點燃丁烷。所以,點火的關鍵在於如何產生電火花。

如果電荷積累足夠多,產生的電勢差將足以把空氣擊穿產生電火花,打火機正是利用這種電火花來點火。在打火機的點火裝置中,通過按壓頂部按鈕在彈簧後中儲存勢能,然後通過突然釋放儲存的勢能撞擊壓電陶瓷從而在一瞬間實現陶瓷兩側電荷的積累產生放電。完成點火。

打火機裡面的丁烷隨著使用次數越多而減少,故威力越來越弱。

(9)壓電裝置設計圖擴展閱讀:

打火機品種分類:

1、火石鋼輪打火機其鋼輪用特殊鋼製成,外周有齒;火石用低溫合金製成,燃點在160℃左右,發熱量大。

火石被彈簧頂靠在鋼輪面上,操作時受鋼輪磨擦升溫,產生引燃火。這種打火機操作不如其他打火機輕快,但產生的火花多,燃點率較高。

2、壓電陶瓷打火機

發火機構內設壓電陶瓷元件。壓電陶瓷在機械應力作用下,引起內部正負電荷中心相對位移而發生極化,導致材料兩端表面出現符號相反的束縛電荷。因此,當壓電陶瓷元件受到沖擊壓力時,將機械能轉換為電能,在尖端放出瞬時高壓電火花,點燃燃料。

3、磁感應打火機

內有磁電轉換器。操作時,磁鐵與線圈產生相對運動,改變磁通,產生放電電壓,使電極氣隙間產生火花,點燃燃氣。

4、電池打火機

以集成電路電池或普通電池為能源。當電容和變壓器的電路導通時,產生高壓電火花,點燃燃氣。

5、太陽能打火機

經陽光或其他光照射後,其光電池將光能轉為電能,充入蓄電池。使用時蓄電池對電容充電,升壓線圈瞬間產生高反抗電動勢,在絕緣的二級管間放出電火花,點燃燃氣。

6、微電腦打火機

打火機內裝有由電池供電的微型電腦,微型電腦的集成電路上有自動循環系統。操作時使電路接通即可發火。一旦火焰被風熄滅即可自動重新燃燒。

7、氣態打火機

其標准壓力在24攝氏度,超過104kpa。

8、後混式打火機

這類氣態打火機在點火後空氣與燃料混合燃燒。

9、前混式打火機

這類氣態打火機的燃料氣體與空氣先混合作用後燃燒。

10、一次性打火機

這類打火機製作時充入燃料,不能重復充氣。

11、可重復充氣打火機

這類打火機可對其用外部氣罐進行重復充氣或插入新的燃料氣箱。

12、可調節打火機

這類打火機提供可自由調整火焰高度的裝置。

13、可自動調節的煙鬥打火機

這類打火機提供一個在從直立到傾斜時可自動提高火焰高度的裝置,這種裝置是專門為煙斗設計的。

14、整蠱打火機

這類打火機主要是他的娛樂性,比如帶有電人功能的整人打火機,通過發揮創意,設計師可以設計出很多品種的此類打火機,通常用於作為送人的禮品。

參考資料來源:網路-打火機

閱讀全文

與壓電裝置設計圖相關的資料

熱點內容
江湖多功能電動工具 瀏覽:995
光碟機如何改裝機械硬碟嗎 瀏覽:480
工具箱漢化smart 瀏覽:133
鑄造除塵器為什麼要做保溫層 瀏覽:617
怎麼看機械表要保養 瀏覽:517
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60
03儀表盤模式怎麼換 瀏覽:284
ktv設備有哪些設備 瀏覽:191
關節軸承怎麼安裝使用 瀏覽:838
生產山楂糕需要哪些設備 瀏覽:91
機械表後面的飛輪是什麼 瀏覽:163
怎麼實現儀表盤ar導航 瀏覽:722
某同學設計了如下裝置來 瀏覽:633
超聲波儀器動態范圍是什麼意思 瀏覽:11
傳動裝置分析 瀏覽:263
風機與閥門連鎖怎麼實現 瀏覽:314
消防管道閥門抽檢比例 瀏覽:313