導航:首頁 > 裝置知識 > 機械原理課程設計推送裝置

機械原理課程設計推送裝置

發布時間:2022-12-27 05:59:08

機械原理課程設計

好像是機械原理。有點以前看過只是有模糊的記憶了。你試試看吧

㈡ 機械原理課程設計 熱鐓擠送料機械手

圖3.1 機械手的外觀

設計二自由度關節式熱鐓擠送料機械手,由電動機驅動,夾送圓柱形鐓料,往40噸鐓頭機送料。以方案A為例,它的動作順序是:手指夾料,手臂上擺15º,手臂水平回轉120º,手臂下擺15º,手指張開放料。手臂再上擺,水平反轉,下擺,同時手指張開,准備夾料。主要要求完成手臂上下擺動以及水平回轉的機械運動設計。圖3.1為機械手的外觀圖。技術參數見表3.1。

3.2 功能分解[5]

夾料機構:靠平面連桿機構做間歇的直線往復運動

送料機構:送料機構由2種動作的組合,一是間歇的回轉運動,二是做上下擺動。

夾料機構:通過凸輪對手臂上平面連桿機構的控制來調整手指間的間隙從而達到對物料的夾緊和松開。

送料機構:當料被抓緊後,通過凸輪對連桿一端的位置的改變進行對桿的擺角進行調整,從而實現對物料的拿起和放下的動作。手臂的回轉通過回轉機構進行實現。

3.3 選用機構

夾料機構與擺動機構:根據動作要求,由表2.1設計實例庫A3、A1={a31,a41,a42,a11,a51},由於機構要具有停歇功能,且要進行運動變換,故選擇直動從動件盤形凸輪。

送料機構2:由表2.1設計實例庫A2={a14,a24,a34,a44,a54},由工藝動作可得,該機構選用齒輪機構a14。

3.4 機構組合

為使機構能夠順利工作,採用串聯和並聯結合的結構組合,其中A1為夾料機構,A2為擺動機構,A3為回轉機構。如圖3.2所示:

A3

A1

A2

圖3.2 機構組合圖

3.4.1 機構運動簡圖

方案一:

圖3.3 傳動方案一

方案二:

圖3.4 傳動方案二

3.4.2 方案評價

方案一:該機器依靠兩盤狀凸輪及連桿機構實現手指的張合與手臂的上下擺動。而圓柱凸輪的旋轉帶動鏈輪回轉從而實現手臂的回轉。這種雖然方案簡單易行,但結構較大,鏈傳動是撓性的拉拽,難於定位;而且鏈條及鏈輪布置在水平面內,鏈條不宜過長。定位精度不能保證,故不宜採用此方案。

方案二:該方案在手指的動作和手臂的仰俯方面與方案一採取同種設計,在手臂的回轉上採用了不同機構,它通過軸上的圓柱形凸輪12來帶動齒條13的運動,通過齒條來實現齒輪6和7的運動從而完成手臂的回轉。此方案結構簡單,各運動部件之間的運動都易於實現,不會出現干涉現象。由於傳動鏈較短,累積誤差也不會太大,從而可以滿足

3.5 傳動設計

3.5.1 傳動比計算

已知電動機的轉速為1440r/min,送料頻率為15次/min即i總=1440/15=96

3.5.2 運動循環設計

機械手的動作順序:

手指夾料——手臂上擺15°——手臂回轉120°——手臂下擺15°——手指松開——手臂上擺15°——手臂反轉120°——手臂下擺15°

機械手工作的頻率為15次/min,T=4s。軸轉一次要完成一個循環,轉角分配如表3.3所示:

表3.3 轉角分配表

2.5.3凸輪設計[6][7]

1) 手指凸輪設計:由連桿機構(如圖3.5所示)可計算出凸輪尺寸。桿AC=200mm,AB=90mm,ED=215mm。此凸輪為擺動從動件盤狀凸輪。基圓半徑r=35mm,擺桿為70mm。

圖3.5 手指連桿機構

取基圓半徑r=35,由作圖法得到凸輪如圖3.6所示:

圖3.6 手指凸輪

2) 手臂凸輪設計:由連桿機構(如圖3.7所示)可計算出凸輪尺寸。桿AC=684mm,AB=580mm,ED=150mm。此凸輪為擺動從動件盤狀凸輪。基圓半徑r=65mm,擺桿為50mm。

圖3.7 手臂連桿機構

取基圓半徑r=65mm,由作圖法得到手臂凸輪如圖3.8所示:

圖3.8 手臂凸輪

3)圓柱形凸輪設計:

XD=2*3.14*30=188.4mm;

升程h=56.72mm;

圓柱半徑rP=30mm;

由作圖法得到圓柱凸輪如圖3.9所示:

圖3.9 圓柱凸輪

參考: http://xiajuxiong2008.blog.163.com/blog/static/11158719200855105035456/#comment=fks_

㈢ 機械原理課程設計 冷霜自動灌裝機,

機械原理課程設計
旋轉型灌裝機運動方案設計

指導教師:庄幼敏
小組成員:
機械0404 王小琛 040800404
機械0404 趙鳳滿 040800405

2007年1月19日

目錄

1. 題目
2. 設計題目及任務 …………………………………………………………………………1
2.1 設計題目 …………………………………………………………………………1
2.2 設計任務 …………………………………………………………………………1

3.運動方案 …………………………………………………………………………2
3.1 方案一 …………………………………………………………………………2
3.1方案二 …………………………………………………………………………2
3.3方案三 …………………………………………………………………………2
3.4 凸輪式灌裝機 …………………………………………………………………………4

4.運動循環圖 …………………………………………………………………………4

5.尺寸設計 …………………………………………………………………………4
5.1 蝸輪蝸桿設計 …………………………………………………………………………5
5.2 齒輪設計 …………………………………………………………………………5
5.3 傳送帶設計 …………………………………………………………………………5
5.4 曲柄滑塊設計 …………………………………………………………………………5
5.5 平行四邊形機構設計 …………………………………………………………………5
5.6 槽輪的設計 …………………………………………………………………………5

6. 電演算法與運動曲線圖 ………………………………………………………………………6
6.1 曲柄滑塊機構運動曲線圖…………………………………………………………………6
6..2 平行四邊形機構的運動曲線圖…………………………………………………………6

7.小結 ……………………………………………………………………………………………8
7.2設計小結……………………………………………………………………………………8

8.參考數目………………………………………………………………………………………8

9.附圖――方案一二機構運動簡圖

一、題目:旋轉型灌裝機運動方案設計
二、設計題目及任務
2.1設計題目
設計旋轉型灌裝機。在轉動工作台上對包裝容器(如玻璃瓶)連續灌裝流體(如飲料 、酒、冷霜等),轉台有多工位停歇,以實現灌裝,封口等工序為保證這些工位上能夠准確地灌裝、封口,應有定位裝置。如圖1中,工位1:輸入空瓶;工位2:灌裝;工位3:封口;工位4:輸出包裝好的容器。

圖1 旋轉型灌裝機

該機採用電動機驅動,傳動方式為機械傳動。技術參數見表1
表1 旋轉型灌裝機技術參數
方案號 轉台直徑
mm 電動機轉速
r/min 灌裝速度
r/min
A 600 1440 10
B 550 1440 12
2.2設計任務
1.旋轉型灌裝機應包括連桿機構、凸輪機構、齒輪機構等三種常用機構。
2.設計傳動系統並確定其傳動比分配。
3.圖紙上畫出旋轉型灌裝機地運動方案簡圖,並用運動循環圖分配各機構運動節拍。
4.電演算法對連桿機構進行速度、加速度分析,繪出運動曲線圖。用圖解法或解析法設計連桿機構。
5.凸輪的設計計算。按凸輪機構的工作要求選擇從動件的運動規律,確定基圓半徑,校核最大壓力角與最小曲率半徑。對盤狀凸輪要用電演算法計算出理論廓線、實際廓線值。畫出從動件運動規律線圖及凸輪廓線圖
6.齒輪機構的設計計算。
7.編寫設計計算說明書。
8.完成計算機動態演示。
2.3 設計提示
1.採用灌裝泵灌裝流體,泵固定在某工位的上方。
2.採用軟木塞或金屬冠蓋封口,它們可以由氣泵吸附在壓蓋機構上,由壓蓋機構壓入(或通過壓蓋模將瓶蓋緊固在瓶口)。設計者只需設計作直線往復運動的壓蓋機構。壓蓋機構可採用移動導桿機構等平面連桿機構或凸輪機構。
3.此外,需要設計間歇傳動機構,以實現工作轉台的間歇傳動。為保證停歇可靠,還應有定位(縮緊)機構。間歇機構可採用槽輪機構、不完全齒輪機構等。定位縮緊機構可採用凸輪機構等。

三、運動方案
3.1 方案一:(機構簡圖見附圖)
用定軸輪系減速,由不完全齒輪實現轉台的間歇性轉動。此方案的優點是,標準直齒輪與不完全齒輪均便於加工。缺點:一方面,傳動比過大,用定軸輪系傳動時,佔用的空間過大,使整個機構顯得臃腫,且圓錐齒輪加工較困難;另一方面,不完全齒輪會產生較大沖擊,同時只能實現間歇性轉動而不能實現自我定位。
3.2 方案二:

灌裝與壓蓋部分採用如圖所示的等寬凸輪,輸送部分採用如圖所示的步進式傳輸機構。缺點:等寬凸輪處會因摩擦而磨損,從而影響精確度;步進式傳輸機構在輸出瓶子的時候,需要一運動精度高的撥桿。
3.3 方案三:
1.如圖所示,由發動機帶動,經蝸桿渦輪減速;通過穿過機架的輸送帶輸入輸出瓶子;

由槽輪機構實現間歇性轉動與定位;壓蓋灌裝機構採用同步的偏置曲柄滑塊機構,另外,在

壓蓋灌裝機構中,分別設置了進料口、進蓋口以及余料的出口,如上圖所示。
此方案為我們最終所選擇的方案。
2.優缺點分析。
優點:蝸輪蝸桿傳動平衡,傳動比大,使結構緊湊;傳送帶靠摩擦力工作,傳動平穩,能緩沖吸震,雜訊小;槽輪機構能實現間歇性轉動且能較好地定位,便於灌裝、壓蓋的進行。
缺點:在平行四邊行機構中會出現死點,在機構慣性不大時會影響運動的進行;由於機構尺寸的限制,槽輪需用另外的電動機來帶動。
3.4 在設計過程中,曾考慮過用下圖的凸輪機構作為壓蓋灌裝機構,從而六個工位連續工作,以提高效率,但考慮到輸送裝置等各方面原因後,放棄了此方案。

四、運動循環圖
以曲柄滑塊機構的曲柄轉過的角度為參考(與槽輪的導輪轉過的角度相同)

工作轉台

停止
轉動

停止

灌裝壓蓋機構的滑塊

退



0 60 120 150 180 240 300 360

五、尺寸設計
5.1 蝸輪蝸桿設計:
齒數 模數(mm) 壓力角(0) 螺旋角 直徑(mm)
蝸輪 20 25 20 14.04 100
蝸桿 1 25 20 14.04 500

5.2 齒輪設計(下圖所示的惰輪以及與其嚙合的一對齒輪)——採用標准齒輪

模數(mm) 壓力角(0) 齒數 直徑(mm)
齒輪1 5 20 20 100
齒輪2 5 20 60 300

5.3 傳送帶的設計
速度:V=wr=72r/min*50mm
每兩個瓶子之間的距離S: t=S/v=1/(w1/6 ) 其中 w1為轉台的角速度 12r/min
解得:S=50mm
5.4 曲柄滑塊機構的計算
由機構整體尺寸,行程為137mmm ,行程速比系數K=1.4 偏心距為50mmm 具體設計過程見圖解法
5.5 平行四邊形機構的設計
由於已知曲柄長度為50mm,連架桿長度為706.61mm,由平行四邊形定理可得出該機構的尺寸。
5.6 槽輪的設計
L=450mm Ψ=30 ∴ R=LsinΨ =225 mm s=LcosΨ=389 mm
h≥s-(L-R-r)=130mm d1≤2(L-s)=60mm d2<2(L-R-r)=100mm
其中 L為中心距 圓銷半徑r=30mm d1為撥盤軸的直徑 d2為槽輪軸的直徑

六、電演算法與運動曲線圖

6.1 曲柄滑塊機構運動曲線圖
滑塊的位移分析

滑塊的速度分析

滑塊的加速度分析

由上述運動曲線圖知:該機構具有急回特性,由加速度曲線知,該機構沖擊較小。

6.2 平行四邊形機構的運動曲線圖
對A點進行位移、速度、加速度分析:

A點的加速度曲線

位移曲線

速度曲線

由上述曲線可以看出,平行四邊形機構在運動過程中,為勻速運動,加速度會發生突變,因而存在著沖擊。

七、小結

7.1方案簡介
在整個系統運用到了蝸桿蝸輪機構,槽輪機構,偏置曲柄滑塊機構等常用機構。完成了從瓶子的傳輸到灌裝,壓蓋,最後輸出的機器。
旋轉型灌裝機,是同時要求有圓盤的轉動,曲柄滑塊機構的運動和傳送帶的傳送的機構。
圓盤間歇轉動部分:因為在系統的原始要求中需要有間歇轉動的特性,而工位為6個,所以在其中首先引入了可以實現間歇轉動的典型機構——槽輪機構。且槽輪機構的轉動速度是圓盤轉速的6倍,並且在轉動時分別在6個工位進行停歇。
灌裝封口急回部分:灌裝和風口雖然為兩個工位,但其的運動特性是一樣的,只是有一個時間的差值而已。而我們學過的有急回特性的最典型且簡單的機構就是偏置曲柄滑塊機構。因為圓盤的轉動為12r/min,而每一轉有6個瓶子需要進行灌裝和封口的工序,所以需要曲柄的轉速也為72r/min。所以曲柄與發動機的傳動比就為20:1,所以其前面的輪系傳動只需要完成傳動從1440r/min到72r/min的變化,所以,在這之後用了蝸桿蝸輪機構將其傳動比直接變為20:1。但由於在這兩個位置的方向問題,兩個偏置曲柄滑塊為反方向的運動。因為這樣,又在兩個曲柄之間添加了兩對小的齒輪副,以實現其方向的轉換。
7.2設計小結
在真正開始設計這個機構之前,我們曾經有過很多想法,有些很幼稚,甚至不能算是機械專業的學生設計的方案,有些又過於復雜,只能想出來,卻很難實現。這次課程設計,是我們第一次將本學期《機械原理》這門課程中所學的知識綜合運用到實際中,另外對於機械設計也有了初步的認識。這次課程設計,我們用了一個多月的時間,從最初的毫無頭緒到逐漸做出雛形,然後進一步改進。在這整個過程中,我們在實踐中摸索成長,同時也更加清晰地認識到只有認真地掌握好理論知識,在實際應用才能夠得心應手。

八、參考資料
1.《機械原理》(第六版) 孫桓 陳作模 主編 高等教育出版社
2.《機械設計課程設計》(第二版)朱文堅 黃平 編 華南理工大學出版社
3.《機械設計基礎課程設計》 孫德志 張偉華 鄧子龍 編 科學出版社
4.《機械設計與理論》 李柱國 主編 科學出版社
5.《機械設計課程設計》 朱家誠 主編 合肥工業大學出版社

㈣ 機械原理課程設計的設計目的

機械原理課程設計的主要目的是為學生在完成課堂教學基本內容後提供一個較完整的從事機械設計初步實踐的機會。《機械原理課程設計》的編寫宗旨就是指導學生能在短時間內,將所學的機械基礎理論運用於一個簡單的機械繫統,通過機械傳動方案總體設計,機構分析和綜合,進一步鞏固掌握課堂教學知識,並結合實際得到工程設計方面的初步訓練,培養學生綜合運用技術資料,提高繪圖、運算的能力。同時,注重學生創新意識的開發。1.設計目的
機械原理課程是培養學生具有機械理論能力的技術基礎課。
課程設計則是機械設計課程的實踐性教學環節,同時也是我學習機械專業來第一次全面的自主進行機械設計能力的訓練。在這個為期兩周的過程里,我們有過緊張,有過茫然,有過喜悅,感受到了學習的艱辛,也收獲到了學有所獲的喜悅,回顧一下,我覺得進行機械原理課程設計的目的有如下幾點:
(1)通過課程設計實踐,樹立正確的設計思想,增強創新意識,培養綜合運用機械原理課程和其他先修課程的的理論與實際知識去分析和解決機械設計問題的能力。

(2)學習設計機械產品的一般方法,掌握機械設計的一般規律。

(3)通過制定設計方案,合理選擇傳動機構,正確計算零件的工作能力,確定尺寸及掌握機械零件,再進行結構設計,達到了解和掌握機械零件,機械傳動裝置或簡單機械的設計過程和方法。

(4)學習進行機械基礎技能的訓練,例如:計算、繪圖、查閱設計資料和手冊等。

㈤ 機械原理課程設計-----粉料壓片機的設計

全套都有的

㈥ 機械原理課程設計問答題,能答幾個都行

  1. 原動部份是電機。
    傳動部分是齒輪,曲軸連桿機構。
    執行部份是滑枕。
    控制部分包括工作部,離合手柄,變速控制手柄。

  2. 機構應具有較好的傳力性能,特別是工作段的壓力角應盡可能小;傳動角γ大於或等於許用傳動角[γ]=40o

  3. 上模到達工作段之前,送料機構已將坯料送至待加工位置(下模上方)

  4. 擺動導桿機構它將曲柄的旋轉運動轉換成為導桿的往復擺動,他具有急回運動性質,且其傳動角始終為90度,其壓力角為0,具有最好的傳力性能,常用於牛頭刨床、插床和送料裝置中。
    缺點就是自由度略小一些



  5. 不知道你的機床的精度是幾級的,一般加工母機的精度起碼要比你加工零件的尺寸精度高一級,比如你加工零件的尺寸精度是0.01mm的,那你的數控車床的最小進給量起碼是0.001mm.


  6. 每轉的的長度=0.4*π=1.256M,由此計算滿足傳輸速度1.2M/s的轉數:n=60*1.2/1.256=57.32轉/分;
    轉矩T=2300*0.2=460Nm
    功率P=T*ω=T*n*2π/60=2761W=2.761KW
    我理解你說的功耗,也就是損耗的意思,這樣反過來說,效率就是91%.
    因此對電機功率的要求為:P1=P/0.91=3.034KW。
    考慮一定的過載餘量,實際應該選4-5KW的電機。
    由於電機的轉數實際都是採用標準的,1480轉/分(四極電機)或960轉/分(六極電機)。
    這樣還需要一個減速器,減速後滿足57.32轉/分的要求。
    對於1480轉的電機,減速比為1480/57.32=25.81,
    對於960轉的電極,減速比為960/57.32=16.75。

    功率=線圈匝數*磁通量*角速度/時間


  7. 在一個周期內的,等效驅動力矩所做的功等於等效阻力矩所做的功,所以
    Md=(1600×π/2)/2π=400(Nm)
    最大盈虧功 [W]= π×Md=400π(J)
    根據公式
    J=[W]/( δ×ω2)
    那麼轉動慣量為
    J=400π/{0.05×[(1500×2π)/60]2}=1.019(kg.㎡)



  8. 大概么,收獲:學習了新知識,鍛煉了實際解決問題能力
    體會:實踐很重要
    經驗:學會了查閱資料等等
    教訓:哪裡做的不好了

㈦ 求一份機械原理相關的課程設計

已發去機械原理相關的課程設計4份,供參考。

閱讀全文

與機械原理課程設計推送裝置相關的資料

熱點內容
江湖多功能電動工具 瀏覽:995
光碟機如何改裝機械硬碟嗎 瀏覽:480
工具箱漢化smart 瀏覽:133
鑄造除塵器為什麼要做保溫層 瀏覽:617
怎麼看機械表要保養 瀏覽:517
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60
03儀表盤模式怎麼換 瀏覽:284
ktv設備有哪些設備 瀏覽:191
關節軸承怎麼安裝使用 瀏覽:838
生產山楂糕需要哪些設備 瀏覽:91
機械表後面的飛輪是什麼 瀏覽:163
怎麼實現儀表盤ar導航 瀏覽:722
某同學設計了如下裝置來 瀏覽:633
超聲波儀器動態范圍是什麼意思 瀏覽:11
傳動裝置分析 瀏覽:263
風機與閥門連鎖怎麼實現 瀏覽:314
消防管道閥門抽檢比例 瀏覽:313