導航:首頁 > 裝置知識 > 一工程機械傳動裝置中的軸

一工程機械傳動裝置中的軸

發布時間:2022-12-25 18:45:24

Ⅰ 四、計算題(本大題共4小題,每小題6分,共24分)

五、設計題(14分)
37.如圖所示,設計一擺動導桿機構。已知機架lAC=50mm,行程速比系數K=2,用圖解法求曲柄的長度lAB。
(註:寫出簡單的作圖步驟,並保留作圖線。)

Ⅱ 一級減速器軸的設計過程中,各軸段長度尺寸如何確定

根據軸向定位的要求確定軸的各段直徑和長度:

軸段1:L1= (根據大帶輪寬確定的)

軸段2:L2= m+e+螺釘頭部厚度+5~10

軸段3:L3=軸承寬度B+結構確定

軸段4:L4=結構確定

軸段5:L5=小齒輪齒寬

軸段6:L6=結構確定

軸段7:L7=軸承寬度B+結構確定

(2)一工程機械傳動裝置中的軸擴展閱讀:

一、減速器軸按承受載荷的情況可分為:

1、轉軸

既支承傳動件又傳遞動力,承受彎矩和扭矩兩種作用。我們實測的減速器中 的軸就屬於這種軸。

2、 心軸

只起支承旋轉機件的作用而不傳遞動力,即只承受彎矩作用。

3、傳動軸

主要傳遞動力,即主要承受扭矩作用。

二、減速器使用方法:

1、在運轉200~300小時後,應進行第一次換油,在以後的使用中應定期檢查油的質量,對於混入雜質或變質的油須及時更換。一般情況下,對於長期連續工作的減速機,按運行5000小時或每年一次更換新油,長期停用的減速機,在重新運轉之前亦應更換新油。

減速機應加入與原來牌號相同的油,不得與不同牌號的油相混用,牌號相同而粘度不同的油允許混合使用;

2、換油時要等待減速機冷卻下來無燃燒危險為止,但仍應保持溫熱,因為完全冷卻後,油的粘度增大,放油困難。注意:要切斷傳動裝置電源,防止無意間通電;

3、工作中,當發現油溫溫升超過80℃或油池溫度超過100℃及產生不正常的雜訊等現象時應停止使用,檢查原因,必須排除故障,更換潤滑油後,方可繼續運轉;

4、用戶應有合理的使用維護規章制度,對減速機的運轉情況和檢驗中發現的問題應作認真記錄,上述規定應嚴格執行。

Ⅲ 如何確定軸的支點位置和傳動零 件上力的作用點

目 錄
第一部分 設計任務書----------------------------------------------------------------3第二部分 電傳動方案的分析與擬定---------------------------------------------------5第三部分 電動機的選擇計算----------------------------------------------------------6第四部分 各軸的轉速、轉矩計算------------------------------------------------------7第五部分 聯軸器的選擇-------------------------------------------------------------9第六部分 錐齒輪傳動設計---------------------------------------------------------10第七部分 鏈傳動設計--------------------------------------------------------------12第八部分 斜齒圓柱齒輪設計-------------------------------------------------------14第九部分 軸的設計----------------------------------------------------------------17第十部分 軸承的設計及校核-------------------------------------------------------20第十一部分 高速軸的校核---------------------------------------------------------22第十二部分 箱體設計---------------------------------------------------------------23第十三部分 設計小結---------------------------------------------------------------24

第一部分 設計任務書
1.1 機械設計課程的目的
機械設計課程設計是機械類專業和部分非機械類專業學生第一次較全面的機械設計訓練,是機械設計和機械設計基礎課程重要的綜合性與實踐性教學環節。其基本目的是:
(1) 通過機械設計課程的設計,綜合運用機械設計課程和其他有關先修課程的理論,結合生產實際知識,培養分析和解決一般工程實際問題的能力,並使所學知識得到進一步鞏固、深化和擴展。
(2) 學習機械設計的一般方法,掌握通用機械零件、機械傳動裝置或簡單機械的設計原理和過程。
(3) 進行機械設計基本技能的訓練,如計算、繪圖、熟悉和運用設計資料(手冊、圖冊、標准和規范等)以及使用經驗數據,進行經驗估算和數據處理等。

1.2 機械設計課程的內容
選擇作為機械設計課程的題目,通常是一般機械的傳動裝置或簡單機械。
課程設計的內容通常包括:確定傳動裝置的總體設計方案;選擇電動機;計算傳動裝置的運動和動力參數;傳動零件、軸的設計計算;軸承、聯軸器、潤滑、密封和聯接件的選擇及校核計算;箱體結構及其附件的設計;繪制裝配工作圖及零件工作圖;編寫設計計算說明書。
在設計中完成了以下工作:
① 減速器裝配圖1張(A0或A1圖紙);
② 零件工作圖2~3張(傳動零件、軸、箱體等);
③ 設計計算說明書1份,6000~8000字。

1.3 機械設計課程設計的步驟
機械設計課程設計的步驟通常是根據設計任務書,擬定若干方案並進行分析比較,然後確定一個正確、合理的設計方案,進行必要的計算和結構設計,最後用圖紙表達設計結果,用設計計算說明書表示設計依據。
機械設計課程設計一般可按照以下所述的幾個階段進行:
1.設計准備
① 分析設計計劃任務書,明確工作條件、設計要求、內容和步驟。
② 了解設計對象,閱讀有關資料、圖紙、觀察事物或模型以進行減速器裝拆試驗等。
③ 浮系課程有關內容,熟悉機械零件的設計方法和步驟。
④ 准備好設計需要的圖書、資料和用具,並擬定設計計劃等。
2.傳動裝置總體設計
① 確定傳動方案——圓柱齒輪傳動,畫出傳動裝置簡圖。
② 計算電動機的功率、轉速、選擇電動機的型號。
③ 確定總傳動比和分配各級傳動比。
④ 計算各軸的功率、轉速和轉矩。
3.各級傳動零件設計
① 減速器內的傳動零件設計(齒輪傳動)。
4.減速器裝配草圖設計
① 選擇比例尺,合理布置試圖,確定減速器各零件的相對位置。
② 選擇聯軸器,初步計算軸徑,初選軸承型號,進行軸的結構設計。
③ 確定軸上力作用點及支點距離,進行軸、軸承及鍵的校核計算。
④ 分別進行軸系部件、傳動零件、減速器箱體及其附件的結構設計。
5.減速器裝配圖設計
① 標注尺寸、配合及零件序號。
② 編寫明細表、標題欄、減速器技術特性及技術要求。
③ 完成裝配圖。
6.零件工作圖設計
① 軸類零件工作圖。
② 齒輪類零件工作圖。
③ 箱體類零件工作圖。

第一部分 題目及要求
卷揚機傳動裝置的設計
1. 設計題目
設計一卷揚機的傳動裝置。傳動裝置簡圖如下圖所示。
(1)卷揚機數據
卷揚機繩牽引力F(N)、繩牽引速度v(m/s)及捲筒直徑D(mm)見附表。
(2)工作條件
用於建築工地提升物料,空載啟動,連續運轉,三班制工作,工作平穩。
(3) 使用期限
工作期限為十年,每年工作300天,三班制工作,每班工作4小時,檢修期間隔為三年。
(4) 產批量及加工條件
小批量生產,無鑄鋼設備
2. 設計任務
1)確定傳動方案;
2)選擇電動機型號;
3)設計傳動裝置;
4)選擇聯軸器。
3. 具體作業
1)減速器裝配圖一張;
2)零件工作圖二張(大齒輪,輸出軸);
3)設計說明書一份。
4. 數據表

牽引力F/N 12 10 8 7
牽引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
捲筒直徑D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480

卷揚機傳動裝置的設計
5. 設計題目
設計一卷揚機的傳動裝置。傳動裝置簡圖如下圖所示。
(1)卷揚機數據
卷揚機繩牽引力F(N)、繩牽引速度v(m/s)及捲筒直徑D(mm)見附表。
(2)工作條件
用於建築工地提升物料,空載啟動,連續運轉,三班制工作,工作平穩。
(5) 使用期限
工作期限為十年,每年工作300天,三班制工作,每班工作4小時,檢修期間隔為三年。
(6) 產批量及加工條件
小批量生產,無鑄鋼設備。
6. 設計任務
1)確定傳動方案;
2)選擇電動機型號;
3)設計傳動裝置;
4)選擇聯軸器。
7. 具體作業
1)減速器裝配圖一張;
2)零件工作圖二張(大齒輪,輸出軸);
3)設計說明書一份。
8. 數據表

牽引力F/N 12 10 8 7
牽引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
捲筒直徑D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480

第二部分 傳動方案的分析與擬定
確定總傳動比:
由於Y系列三相非同步電動機的同步轉速有750,1000,1500和3000r/min四種可供選擇.根據原始數據,得到卷揚機捲筒的工作轉速為

按四種不同電動機計算所得的總傳動比分別是:
電動機同步轉速
750 1000 1500 3000
系統總傳動比
32.71 43.61 65.42 130.83

確定電動機轉速:
綜合考慮電動機和傳動裝置的尺寸、重量、價格以及總傳動比,750轉的低速電動機傳動比雖小,但電動機極數大價格高,故不可取。3000轉的電動機重量輕,價格便宜,但總傳動比大,傳動裝置外廓尺寸大,製造成本高,結構不緊湊,也不可取。剩下兩種相比,如為使傳動裝置結構緊湊,選用1000轉的電動機較好;如考慮電動機重量和價格,則應選用1500轉的電動機。現選用1500轉的電動機,以節省成本。
確定傳動方案:

驗算:通常V帶傳動的傳動比常用范圍為 ,二級圓柱齒輪減速器為 ,則總傳動比的范圍為 ,因此能夠滿足以上總傳動比為65.42的要求。

第三部分 電動機的選擇計算
1、確定電動機類型
按工作要求和條件,選用Y系列籠型三相非同步電動機,封閉式結構。
2、確定電動機的功率
工作機的功率
KW

效率的選擇:
1. V帶傳動效率: η1 = 0.96
2. 7級精度圓柱齒輪傳動:η2 = 0.98
3. 滾動軸承: η3 = 0.99
4. 彈性套柱銷聯軸器: η4 = 0.99
5. 傳動滾筒效率: η5 = 0.96
傳動裝置總效率為

工作機所需電動機功率
kw
因載荷平穩,電動機額定功率 略大於 即可。由Y系列電動機技術數據,選電動機的額定功率 為7.5 kw,結合其同步轉速,選定電動機的各項參數如下:
取同步轉速: 1500r/min ——4級電動機
型號: Y132M-4
額定功率: 7.5kW
滿載功率: 1440r/min
堵轉轉矩/額定轉矩: 2.2
最大轉矩/額定轉矩: 2.2

第四部分 確定傳動裝置總傳動比和分配各級傳動比
1、確定總傳動比

2、分配各級傳動比
取V帶傳動的傳動比 ,則減速器的傳動比 為

取兩級圓柱齒輪減速器高速級的傳動比

則低速級的傳動比

第五部分 運動參數及動力參數計算
0軸(電動機軸):
P0 = Pd =7.2 kW
n0 = nm = 1440 r/min
T0 = 9550×( )= N?m
1軸(高速軸):
P1 = P0η1 = kW
n1 = = r/min
T1 = 9550×( )= N?m
2軸(中間軸):
P2 = P1η2η3 = kW
n2 = r/min
T2 = 9550×( )= N?m
3軸(低速軸):
P3 = P2η2η3 = kW
n3 = r/min
T3 = 9550×( )= N?m
4軸(輸出軸):
P4 = P3η3η4 = kW
n4 = r/min
T4 = 9550×( )= N?m

輸出軸功率或輸出軸轉矩為各軸的輸入功率或輸入轉矩乘以軸承效率(0.99),即
P』= 0.99P

軸名 功率P(kW) 轉矩T(N?m) 轉速
n(r/min) 傳動比
i 效率
η
輸入 輸出 輸入 輸出
電動機軸 7.20 47.75 1440
3.8 0.96
1軸 6.91 3.047 155.91 154.35 378.95
4.809 0.97
2軸 6.70 2.896 811.99 803.83 78.80
3.435 0.97
3軸 6.50 2.753 2705.97 2678.91 22.94
1 0.98
輸出軸 6.37 2.590 2651.85 2625.33 22.94

第六部分 傳動零件的設計計算
高速級斜齒圓柱齒輪設計
材料選擇:小齒輪40Cr (調質)硬度280HBs;
大齒輪45#鋼(調質)硬度240HBs;(硬度差40HBs)
七級精度,取Z1=21,Z2= =4.809×21=100.989,取Z2=101,
初選螺旋角β=14°,
按齒輪面接觸強度設計:

1) 試選載荷系數 Kt=1.6
2) 由動力參數圖,小齒輪傳遞的轉矩

3) 由表10-7(機械設計)選取齒寬系數
4) 由表10-6查得材料的彈性影響系數
5) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 ;
6) 由式10-13計算應力循環次數

7) 由圖10-19查得接觸疲勞壽命系數 ;
8) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得

9)由圖10-26(機械設計)得
εα1 = 0.76
εα2 = 0.86
則端面重合度
10)由圖10-30選取區域系數ZH = 2.433
11) 計算許用接觸應力
=
12)計算:
試算小齒輪分度圓直徑 ,由計算公式得
計算圓周速度

計算齒寬b及模數
= 1×60.59 = 60.59 mm
mnt = = mm
h = 2.25 mnt = mm

計算縱向重合度
縱向重合度 =0.318×φdZ1tanβ =
計算載荷系數K
已知,KA=1,取Kv=1.05(由圖10-8查得),由表10-4查得的計算公式
∴KHβ = 1.15+0.18(1+0.6φd2)+0.23×10-3×60.59 = 1.45
由圖10-13,得KFβ = 1.4
由表10-3,得
∴K = KA?Kv?KHα?KHβ = 1×1.05×1.3×1.45 = 1.98
按實際得載荷系數校正所算得德分度圓直徑,由試(10-10a)得

計算模數
mn= =
13) 按齒根彎曲強度設計

由圖10-20c查得小齒輪的彎曲疲勞強度極限 ;大齒輪的彎曲疲勞強度極限 ;
由圖10-18查得彎曲疲勞壽命系數 ;
計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4,由式10-12得

計算載荷系數
K = KA?Kv?KFα?KFβ = 1×1.05×1.3×1.4= 1.91
根據縱向重合度εβ=1.6650,由圖10-28,查得螺旋角影響系數Yβ=0.88
計算當量齒數
= 22.9883

查取齒形系數
由表10-5查得 YFα1=2.69,YFα2=2.20,
查取應力校正系數
由表10-5查得 YSα1=1.56,YSα2=1.79
計算大、小齒輪的 並加以比較

大齒輪的數值較大。
設計計算

經園整,mn=2 mm
∵ ,∴mn=2.5 mm
Z1 = = ,取Z1=25,Z2=120

幾何尺寸計算:
中心距 a =
經園整,a = 187 mm
修正螺旋角, =
∵β變動不大,
∴εα、εβ、ZH無需修正。
計算大、小齒輪的分度直徑
mm
mm
計算齒輪寬度
b = φdd1 = mm
園整後,B2=65mm,B1=70mm

da1 = d1+2ha1 =69.48
da2 = d2+2ha2 = 315.08
df1 = d1-2hf1 = 49.48
df2 = d2-2hf2 =305.08

第九部分 軸的設計
1) 高速軸:
初定最小直徑,選用材料45#鋼,調質處理。取A0=112(下同)
則dmin = A0 = mm
∵最小軸徑處有鍵槽
∴dmin』 = 1.07 dmin = 17.72mm
∵最小直徑為安裝聯軸器外半徑,取KA=1.7,同上所述已選用TL4彈性套柱聯軸器,軸孔半徑d=20mm
∴取高速軸的最小軸徑為20mm。
由於軸承同時受徑向和軸向載荷,故選用單列圓錐滾子軸承按國標T297-94選取30206。
D×d×T=17.25mm
∴軸承處軸徑d=30mm
高速軸簡圖如下:
2)
取l1=38+46=84mm,l3=72mm,取擋圈直徑D=28mm,取d2=d4=25mm,d3=30mm,l2=l4=26.5mm,d1=d5=20mm。
齒輪輪轂寬度為46mm,取l5=28mm。

聯軸器用鍵:園頭普通平鍵。
b×h=6×6,長l=26mm
齒輪用鍵:同上。b×h=6×6,長l=10mm,倒角為2×45°
3) 中間軸:
中間軸簡圖如下:
初定最小直徑dmin= =22.1mm
選用30305軸承,
d×D×T = 25×62×18.25mm
∴d1=d6=25mm,取l1=27mm,l6=52mm
l2=l4=10mm,d2=d4=35mm,l3=53mm
d3=50mm,d5=30mm,l5=1.2×d5=36mm
齒輪用鍵:園頭普通鍵:b×h=12×8,長l=20mm
4) 低速軸:
低速軸簡圖如下: 初定最小直徑:
dmin = = 34.5mm
∵最小軸徑處有鍵槽
∴dmin』=1.07dmin=36.915mm
取d1=45mm,d2=55mm,d3=60mm,d4=d2=55mm
d5=50mm,d6=45mm,d7=40mm;
l1=45mm,l2=44mm,l3=6mm,l4=60mm,l5=38mm,l6=40mm,l7=60mm
齒輪用鍵:園頭普通鍵:b×h=16×6,長l=36mm
選用30309軸承:d×D×T = 40×90×25.25mm;B=23mm;C=20mm

Ⅳ 機械傳動系統包括哪五大部分

機械式傳動系
1、組成 主要由離合器、變速器、萬向傳動裝置和驅動橋(包括主減速器、差速器、半軸和橋殼等)組成、在越野車輛上,還設有分動器。負責將變速器的功力分回給各驅動橋。
2、各主要總成的結構特點
(1) 離合器:
離合器位於發動機飛輪與變速器之間。主動部分(壓盤與離合器蓋)固定於飛輪後端面,從動部分(摩擦片)位於飛輪與壓盤之間,並通過中心的花鍵孔與變速器第一軸相連。壓緊部分位於壓盤與離合器蓋之間,利用其彈力將摩擦片緊緊地夾在飛輪與壓盤之間,主從動部分利用摩擦力矩來傳遞發動機輸出的扭矩。分離機構由安裝於離合器蓋和壓盤上的分離杠桿、套於變速器第一軸軸承蓋套筒上的分離軸承以及安裝於飛輪殼上的分離叉組成。分離叉通過機械裝置或者液壓機構與駕駛室內的離合器踏板相連。離合器是經常處於接合狀態傳遞扭矩的,只有將離合器踏板踩了,分離機構將壓盤後移與摩擦片分開而呈現分離狀態。此時扭矩傳遞中斷,可以進行諸如起步、換檔、制動等項操作作業。當汽車傳動系過載時,離合器會啟動打滑,對傳動系實現過載保護。
中型以下及部分大型車輛,多採用只有一片摩擦片的單片式離合器,部分大型車輛則採用雙片式離合器,離合器的摩擦片直徑越大,數目越多,所能傳遞的扭矩就越大,但分離時需要加在踏板上的力就要大些.在摩擦片上還設有扭矩減振器,以使傳動系工作更加平穩。
傳統結構的離合器壓緊部分多採用一圈沿四周均布的螺旋彈簧。數目多為8~16個不等。雖然壓緊可靠,但操縱離合器時比較費力,彈力也不容易均勻。還存在軸向尺寸大、高速時壓緊力下降等缺點,正逐步被膜片式離合器所取代。
目前在中小型甚至在部分大型車輛上,都採用了膜片式離合器。它利用一個碟狀的膜片彈簧取代了螺旋彈簧和分離杠桿,不但使軸向尺才減小,而且操縱輕便,不論在何種情況下都能可靠地壓緊。
離合器的操縱機構是指離合器踏板到分離叉之間的傳動部分。大部分汽車採用機械式結構,通過拉桿或者鋼絲繩將二者相連。也有一些車輛採用液壓機構,通過液力傳動來將二者聯在一起。
(2)變速器:
在汽車行駛中,要求驅動力的變化范圍是很大的,而發動機輸出扭矩的變化范圍有限。必須通過變速器來使發動機輸出扭矩的變化范圍能滿足汽車行駛的需要。同時,變速器還應能實現汽車的倒駛和發動機的空轉。目前汽車上多採用機械有級式變速器,由變速傳動機構(傳遞和變換扭矩)和變速操縱機構(用來變換檔位)組成。一般設有3~6個前進擋和1個倒檔。每一個檔位都有一個傳動比,可以將發動機輸出扭矩增大到和傳動比相同的倍數。同時將發動機轉速降低到和傳動比相同的倍數。擋位越低,傳動比越大。因此,當汽車低速行駛需要大扭矩時,可以將變速器掛入低擋,而汽車高速行駛需要小扭矩時,可將變速器掛入高檔。在前進檔中,有一個檔的傳動比為1。掛入該擋時變速器第一軸(輸入軸)和第二輪(輸出軸)初成一體同步轉動,發出動力不經變化直接輸出,稱之為直接擋。直接擋傳動效率最高,應經常使用。當變速器不掛入任何擋位,稱之為空擋,動力傳送中斷,實現發動機怠速運轉,滿足汽車滑行和怠速時的需要。
(3)萬向傳動裝置:
萬向傳動裝置主要由萬向節和傳動軸組成,將變速器或者是分動器發出的動力輸送給驅動橋。
(4)驅動橋:
主減速器:用來將變速器輸出的扭矩進一步增加,轉速進一步降低。對於縱置發動機來說,還將旋轉平面旋轉90度,變成與車輪平面平行。
差速器:驅動橋上設置差速器,可以在必要時允許兩側驅動輪轉速不同步,以滿足汽車轉向、路面不平時行駛的需要。
半軸:半軸為兩根,每根半軸內端通過花鍵與半軸齒輪相連,外端與車輪轂機連。
橋殼與輪轂:橋殼構成驅動橋的外殼。輪轂是車輪的一部分,通過輪轂將車輪安裝於驅動橋上。
分動器:全輪驅動的越野汽車上設有分動器,將變速器輸出的動力分配給各驅動橋。

Ⅳ 什麼是工程機械傳動裝置

工程機械的動力源一般是發動機,把動力從發動機傳遞到車輪的中間裝置成為傳動系。
一般包括變速箱、傳動軸、驅動橋等,其中傳遞的內容可能包括變向、變速、變扭矩、以及制動等。

Ⅵ 傳動裝置都有哪些分類

傳動裝置是指把動力源的運動和動力傳遞給執行機構的裝置,介於動力源和執行機構之間,可以改變運動速度,運動方式和力或轉矩的大小。
任何一部完整的機器都由動力部分、傳動裝置和工作機構組成,能量從動力部分經過傳動裝置傳遞到工作機構。根據工作介質的不同,傳動裝置可分為四大類:機械傳動、電力傳動、氣體傳動和液體傳動。
(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。

Ⅶ 齒輪軸的結構特點及分析

按齒輪的齒向不同分,齒輪傳動有直齒圓柱齒輪傳動;三、標準直齒圓柱齒輪傳動直齒圓柱齒輪傳動是齒輪傳動的最基本形式,它在機械傳動裝置中應用極為廣泛。四、其他類型齒輪傳動常用的齒輪傳動除直齒圓柱齒輪傳動外,還有斜齒圓柱齒輪傳動、直齒錐齒輪傳動和蝸桿傳動等。2、直齒錐齒輪傳動分度曲面為圓錐面的齒輪稱為錐齒輪,它是輪齒分布在圓錐面上的齒輪,當其齒向線是分度圓錐面的直母線時稱為直齒錐齒輪。
關節機器人核心部件-RV減速器慕勇修笛
3.1.2 RV減速器的結構分析本課題研究的減速器型號為RV-6AⅡ,用於120kg點焊機器人上,其額定工況是輸入轉速1500r/min,負載為58N·m,下圖為利用UG生成的該型號RV減速器的爆炸圖,主要由齒輪軸、行星輪、曲柄軸、轉臂軸承、擺線輪、針輪、剛性盤及輸出盤等零部件組成。(4)擺線輪(RV齒輪):為了實現徑向力的平衡在該傳動機構中,一般應採用兩個完全相同的擺線輪,分別安裝在曲柄軸上,且兩擺線輪的偏心位置相互成180°。
04ch03acpz學習提高...
設圖4-5中漸開線齒廓和在任意點K接觸,過K點作兩齒廓的公法線nn與兩齒輪連心線交於C點。根據漸開線的特性,nn同時與兩基圓相切,或者說,過嚙合點所作的齒廓公法線就是兩基圓的內公切線。即無論兩齒廓在何處接觸,過接觸點所作的齒廓公法線均通過連心線上同一點C,故漸開線齒廓滿足定角速比要求。式(4-3)表明:漸開線齒輪的傳動比等於兩輪基圓半徑的反比。
T型同步帶齒輪型尺寸mrhg
T型同步帶齒輪型尺寸。T型同步帶輪齒型尺寸(單位:MM)齒距代號。上下偏差。備註: 表中的SE表示帶輪齒數小於等於20齒;N表示帶輪的齒數大於20齒。
自動變速器動力傳遞路線分析(一)luosanping
2.單排單級行星齒輪機構行星架的假想齒數在式(4)中,假設固定內齒圈,使n3=0,代入式(5)得式(6):n1/nH=(Z1 Z3)/Z1 式(5)又:i1H=n1/nH=ZH/Z1 式(6)聯解式(5)、(6)可得出:ZH=Z1 Z3即"行星架的假想齒數是太陽輪齒數和內齒圈齒數之和",注意,這一結論只適用於單級行星齒輪機構,在雙級行星齒輪系就不適用了。將兩個單排單級行星齒輪機構組合起來形成的雙排單級行星齒輪機構,稱為辛普森結構;
行星齒輪打補丁
行星齒輪 被我們所熟知的齒輪絕大部分都是轉動軸線固定的齒輪。大傳動比行星輪系1.實現大傳動比的減速傳動 右圖所示的行星齒輪系中,若各輪的齒數分別為z1=100,z2=101,z2''=100,z3=99,則輸入構件H對輸出構件1的傳動比 =10000。可見,根據需要行星齒輪系可獲得很大的傳動比 2. 實現結構緊湊的大功率傳動 行星齒輪系可以採用幾個均勻分布的行星輪同時傳遞運動和動力(見左圖)。
新型傳動裝置——諧波齒輪傳動-分享 - 機械技...yiherainbow...

Ⅷ 液壓傳動技術在工程機械中的應用

1、概述

行走驅動系統是工程機械的重要組成部分。與工作系統相比,行走驅動系統不僅需要傳輸更大的功率,要求器件具有更高的效率和更長的壽命,還希望在變速調速、差速、改變輸出軸旋轉方向及反向傳輸動力等方面具有良好的能力。於是,採用何種傳動方式,如何更好地滿足各種工程機械行走驅動的需要,一直是工程機械行業所要面對的課題。尤其是近年來,隨著我國交通、能源等基礎設施建設進程的快速發展,建築施工和資源開發規模不斷擴大,工程機械在市場需求大大增強的同時,更面臨著作業環境更為苛刻、工況條件更為復雜等所帶來的挑戰,也進一步推動著對其行走驅動系統的深入研究。

這里試圖從技術構成及性能特徵等角度對液壓傳動技術在工程機械行走驅動系統的發展及其規律進行探討。

2、基於單一技術的傳動方式

工程機械行走系統最初主要採用機械傳動和液力機械傳動(全液壓挖掘機除外)方式。現在,液壓和電力傳動的傳動方式也出現在工程機械行走驅動裝置中,充分表明了科學技術發展對這一領域的巨大推動作用。

2.1機械傳動

純機械傳動的發動機平均負荷系數低,因此一般只能進行有級變速,並且布局方式受到限制。但由於其具有在穩態傳動效率高和製造成本低方面的優勢,在調速范圍比較小的通用客貨汽車和對經濟性要求苛刻、作業速度恆定的農用拖拉機領域迄今仍然占據著霸主地位。

2.2液力傳動

液力傳動用變矩器取代了機械傳動中的離合器,具有分段無級調速能力。它的突出優點是具有接近於雙曲線的輸出扭矩-轉速特性,配合後置的動力換擋式機械變速器能夠自動匹配負荷並防止動力傳動裝置過載。變矩器的功率密度很大而負荷應力卻較低,大批生產成本也不高等特點使它得以廣泛應用於大中型鏟土運土機械、起重運輸機械領域和汽車、坦克等高速車輛中。但其特性匹配及布局方式受限制,變矩范圍較小,動力制動能力差,不適合用於要求速度穩定的場合。

2.3液壓傳動

與機械傳動相比。液壓傳動更容易實現其運動參數(流量)和動力參數(壓力)的控制,而液壓傳動較之液力傳動具有良好的低速負荷特性。由於具有傳遞效率高,可進行恆功率輸出控制,功率利用充分,系統結構簡單,輸出轉速無級調速,可正、反向運轉,速度剛性大,動作實現容易等突出優點,液壓傳動在工程機械中得到了廣泛的應用。幾乎所有工程機械裝備都能見到液壓技術的蹤跡,其中不少已成為主要的傳動和控制方式。極限負荷調節閉式迴路,發動機轉速控制的恆壓,恆功率組合調節的變數系統開發,給液壓傳動應用於工程機械行走系提供了廣闊的發展前景。

與純機械和液力傳動相比,液壓傳動的主要優點是其調節的便捷性和布局的靈活性,可根據工程機械的形態和工況的需要,把發動機、驅動輪、工作機構等各部件分別布置在合理的部位,發動機在任一調度轉速下工作,傳動系統都能發揮出較大的牽引力,而且傳動系統在很寬的輸出轉速范圍內仍能保持較高的效率,並能方便地獲得各種優化的動力傳動特性,以適應各種作業的負荷狀態。

在車速較高的行走機械中所採用的帶閉式油路的行走液壓驅動裝置能無級調速,使車輛柔和起步、迅速變速和無沖擊地變換行駛方向。對在作業中需要頻繁起動和變速、經常穿梭行駛的車輛來說這一性能十分寶貴。但與開式迴路相比,閉式迴路的設計、安裝調試以及維護都有較高的難度和技術要求。
藉助電子技術與液壓技術的結合,可以很方便地實現對液壓系統的各種調節和控制。而計算機控制的引入和各類感測元件的應用,更極大地擴展了液壓元件的工作范圍。通過感測器監測工程車輛各種狀態參數,經過計算機運算輸出控制目標指令,使車輛在整個工作范圍內實現自動化控制,機器的燃料經濟性、動力性、作業生產率均達到最佳值。因此,採用液壓傳動可使工程機械易於實現智能化、節能化和環保化,而這已成為當前和未來工程機械的發展趨勢。

2.4電力傳動

電力傳動是由內燃機驅動發電機,產生電能使電動機驅動車輛行走部分運動,通過電子調節系統調節電動機軸的轉速和轉向,具有凋速范圍廣,輸人元件(發電機)、輸出元件(電動機)、及控制裝置可分置安裝等優點。電力傳動最早用於柴油機電動船舶和內燃機車領域,後又推廣到大噸位礦用載重汽車和某些大型工程機械上,近年來又出現了柴油機電力傳動的叉車和牽引車等中小型起重運輸車輛。但基於技術和經濟性等方面的一些原因,適用於行走機械的功率電元件還遠沒有像固定設備用的那樣普及,電力傳動對於大多數行走機械還僅是「未來的技術」。

3、發展中的復合傳動技術

從前面的分析可以看出,應用於工程機械行走驅動系統中的基於單一技術的傳動方式構成簡單、傳動可靠,適用於某些特定的場合和領域。而在大多數的實際應用中,這些傳動技術往往不是孤立存在的,彼此之間都存在著相互的滲透和結合,如液力、液壓和電力的傳動裝置中都或多或少的包含有機械傳動環節,而新型的機械和液力傳動裝置中也設置了電氣和液壓控制系統。換句話說,採用有針對性的復合集成的方式,可以充分發揮各種傳動方式各自的優勢,揚長避短,從而獲得最佳的綜合效益。值得注意的是,兼有調節與布局靈活性及高功率密度的液壓傳動裝置在其中充當著重要角色。

3.1液壓與機械和液力傳動的復合

(1)串聯方式

串聯方式是最為簡單和常見的復合方式,是在液壓馬達或液壓變速器的輸出端和驅動橋之間設置機械式變速器以擴大調速的高效區,實現分段的無級變速。目前已廣泛用於裝載機、聯合收獲機和某些特種車輛上。對其的發展是將可在行進間變換傳動比的動力換擋行星變速器直接安裝在驅動輪內,實現了大變速比的輪邊液壓驅動,因而取消了驅動橋,更便於布局。

(2)並聯方式

即為通常所稱的「液壓機械功率分流傳動」,可理解為一種將液壓與機械裝置「並聯」分別傳輸功率流的傳動系統,也就是是利用多自由度的行星差速器把發動機輸出的功率分成液壓的和機械的兩股「功率流」,藉助液壓功率流的可控性,使這兩股功率流在重新匯合時可無級調節總的輸出轉速。這種方式將液壓傳動的無級調速性能好和機械傳動的穩態效率高這兩方面的優點結合起來,得到一個既有無級變速性能,又有較高效率和較寬高效區的變速裝置。

按其結構,這種復合式傳動裝置可分為兩類:第一類為利用行星齒輪差速器分流的外分流式,其中常見的分流傳動機構又可分為輸入分流式和輸出分流式兩種基本形式;第二類為利用液壓泵或馬達轉子與外殼間的差速運動分流的內分流式。

日本小松公司開發的這種復合方式的液壓傳動變速器,已經應用在裝載機、推土機等工程機械上。德國Fendt拖拉機生產的採用Vario型無級變速器裝備的農用拖拉機,到2003年總銷量超過了30000台。

由此可以看出,這種新型的傳動裝置已日益成為大中功率液力傳動和動力換檔變速器的有力競爭者。

(3)分時方式

對於作業速度和非作業狀態下轉移空駛速度相差懸殊的專用車輛,採用傳統機械變速器用於高速行駛、附加液壓傳動裝置用於低速作業的方式能很好地滿足這兩種工況的矛盾要求。機械——液壓分時驅動的方式在此類車輛上的應用已很普遍,這一技術也已被應用於飛機除冰車和田間移栽機等需要「爬行速度」的車輛和機具上。

(4)分位方式

把液壓馬達直接安裝在車輪內的「輪邊液壓驅動裝置」是一種輔助液壓驅動裝置,可以解決工程機械需要提高牽引性能,但又無法採用全輪驅動方式,難以布置傳統的機械傳動裝置的問題。液壓傳動的無級調速性能使以不同方式傳動的驅動輪之間能協調同步,這在某種意義上也可視為一種功率分流傳動:動力機的功率被分配到幾組驅動輪上,經地面耦合後產生推動車輛運動的牽引力。目前,許多工程機械製造廠商將這一技術用於具有部分自走驅動能力的,諸如自走式平地機和鏟運機這樣的工程機械上。

3.2液壓與電力傳動的復合

由於現代技術的發展,電子技術在信號處理的能力和速度方面佔有很大的優勢,而液壓與電力傳動在各自功率元件的特性方面各有所長。因此,除了現在已普遍存在的「電子神經+液壓肌肉」這種模式外,兩者在功率流的復合傳輸方面也有許多成功的實例,如:由變頻或直流調速電機和高效、低脈動的定量液壓泵構成的可變流量液壓油源,用集成安裝的電動泵-液壓缸或低速大扭矩液壓馬達構成的電動液壓執行單元,以及混合動力工業車輛的驅動系統等。 < 本文由中國測控

Ⅸ 工程機械軸承都有哪幾大類 分什麼型號

工程機械軸承:
1.滾針軸承滾針軸承
滾針軸承裝有細而長的滾子(滾子長度為直徑的3~10倍,直徑一般不大於5mm),因此徑向結構緊湊,其內徑尺寸和載荷能力與其他類型軸承相同時,外徑最小,特別適用於徑向安裝尺寸受限制的支承結構.滾針軸承根據使用場合不同,可選用無內圈的軸承或滾針和保持架組件,此時與軸承相配的軸頸表面和外殼孔表面直接作為軸承的內、外滾動表面,為保證載荷能力和運轉性能與有套圈軸承相同,軸或外殼孔滾道表面的硬度,加工精度和表面質量應與軸承套圈. 用途組合滾針軸承是由向心滾針軸承和推力軸承部件組合的軸承單元,其結構緊湊體積小,旋轉精度高,可在承受很高徑向負荷的同時承受一定的軸向負荷。並且產品結構形式多樣、適應性廣、易於安裝。組合滾針軸承廣泛用於機床、冶金機械、紡織機械和印刷機械等各種機械設備,並可使機械繫統設計的十分緊湊靈巧。
2.調心球軸承
調心球軸承:二條滾道的內圈和滾道為球面的外圈之間,裝配有鼓形滾子的軸承。 外圈滾道面的曲率中心與軸承中心一致,所以具有與自動調心球軸承同樣的調心功能。在軸、外殼出現撓曲時,可以自動調整,不增加軸承負擔。調心滾子軸承可以承受徑向負荷及二個方向的軸向負荷。 調心球軸承徑向負荷能力大,適用於有重負荷、沖擊負荷的情況。內圈內徑是錐孔的軸承,可直接安裝。或使用緊定套、拆卸筒安裝在圓柱軸上。保持架使用鋼板沖壓保持架、聚醯胺成形. 調心球軸承適用於承受重載荷與沖擊載荷、精密儀表、低噪音電機、汽車、摩托車、冶金、軋機、礦山、石油、造紙、水泥、榨糖等行業及一般機械等。
3.深溝球軸承
工作原理:深溝球軸承主要承受徑向載荷,也可同時承受徑向載荷和軸向載荷。當其僅承受徑向載荷時,接觸角為零。當深溝球軸承具有較大的徑向游隙時,具有角接觸軸承的性能,可承受較大的軸向載荷 ,深溝球軸承的摩擦系數很小,極限轉速也很高。
SKF深溝球軸承的深溝型連續不間斷滾道。滾道與鋼球之間有非常好的密合度,可以使軸承承受雙向的徑向和軸向載荷。 此類軸承用途非常廣泛,並且設計極其簡單 不可分離 適用於高速和超高速環境 運行穩定,從維護角度來說也是基本上不需要做任何維護的。 並且深溝球軸承也是應用最廣泛的一種軸承類型。 所以,SKF也提供多種設計、品種、系列和尺寸的軸承。 SKF深溝球軸承適用的軸徑范圍從 3 到 1500 mm 不等。 它們按三種性能等級供貨:
SKF 高質量的標准軸承
SKF 高載荷能力的探索者軸承 [1]
SKF 節能的能效型 (E2) 軸承
SKF 也針對具體應用場合生產經過工程設計的解決方案,包括以下幾種:
SKF 用於極端溫度的軸承
SKF DryLube 軸承
SKF 固態油軸承
SKF 絕緣軸承
SKF 聚合物軸承
SKF NoWear 永不磨損軸承
SKF 感測器軸承單元
4.調心滾子軸承
調心滾子軸承是在有二條滾道的內圈和滾道為球面的外圈之間,組裝著鼓形滾子的軸承。
調心滾子軸承具有兩列滾子,主要承受徑一載荷,同時也能承受任一方向的軸向載荷。有高的徑向載荷能力,特別適用於重載或振動載荷下工作,但不能承受純軸向載荷。該類軸承外圈滾道是球面形,故其調心性能良好,能補償同軸度誤差。
調心滾子軸承有兩列對稱型球面滾子,外圈有一條共用的球面滾道,內圈有兩條與軸承軸線傾斜一角度的滾道,具有良好的調心性能,當軸受力彎曲或安裝不同心時軸承仍可正常使用,調心性隨軸承尺寸系列不同而異,一般所允許的調心角度為1~2.5度 ,該類型軸承的負荷能力較大,除能承受徑向負荷外軸承還能承受雙向作用的軸向負荷,具有較好的抗沖擊能力,一般來說調心滾子軸承所允許的工作轉速較低。
雙列圓錐滾子軸承調心滾子軸承按滾子截面形狀分為對稱形球面滾子和非對稱形球面滾子兩種不同結構,非對稱調心滾子軸承屬早期產品,主要是為主機維修服務,新設計主機時則很少選用對稱形調心滾子軸承,內部結構經過全面改進設計及參數優化,與早期生產的調心滾子軸承相比,能夠承受更大的軸向負荷,這種軸承的運行溫度較低,故可適應較高轉速的要求,根據內圈有無擋邊及所用保持架的不同可分為C型與CA型兩種,C型軸承的特點是內圈無擋邊和採用鋼板沖壓保持架,CA型軸承的特點則為內圈兩側均有擋邊和採用車制實體保持架為了改善軸承的潤滑, 可向用戶提供外圈帶有環狀油槽和三個油孔的調心滾子軸承,以軸承後置代號/W33 表示,根據用戶的要求也可供應帶內圈油孔的調心滾子軸承,為了便於客戶裝卸和更換軸承, 還可提供內孔帶有錐度的調心滾子軸承軸承,錐孔錐度為1:12 以後置代號為K 表示,為了適應特殊用戶的要求也可提供內孔錐度為1:30 的軸承,其後置代號為K30 內孔帶錐度的軸承可用鎖緊螺母將軸承直接裝在錐形軸頸上,也可藉助緊定套或退卸套將軸承安裝在圓柱形軸頸上。
推力軸承分緊圈和活圈兩部分。緊圈與軸套緊,活圈支承在軸承座上。套圈和滾動體通常採用強度高、耐磨性好的滾動軸承鋼製造,淬火後表面硬度應達到HRC60~65。保持架多用軟鋼沖壓製成,也可以採用銅合金夾布膠木或塑料等製造。
5.推力滾子軸承
滾動體是滾子的推力滾動軸承。
6.直線軸承
直線軸承分為金屬直線軸承和塑料直線軸承
金屬直線軸承是一種以低成本生產的直線運動系統,用於無限行程與圓柱軸配合使用。由於承載球與軸呈點接觸,故使用載荷小。鋼球以極小的摩擦阻力旋轉,從而能獲得高精度的平穩運動。
塑料直線軸承是一種自潤滑特性的直線運動系統,其於金屬直線軸承最大的區別就是金屬直線軸承是滾動摩擦,軸承與圓柱軸之間是點接觸,所以這種適合低載荷高速運動;而塑料直線軸承是滑動摩擦,軸承與圓柱軸之間是面接觸,所以這種適合高載荷中低速運動;
推力圓柱滾子軸承 調心滾子軸承滾動體是圓柱滾子的推力滾動軸承。推力圓錐滾子軸承:滾動體是圓錐滾子的推力滾動軸承。
7.推力滾針軸承
滾動體是滾針的推力滾動軸承。
8.推力球面滾子軸承
滾動體是凸球面或凹面滾子的調心推力滾動軸承。有凸球面滾子的軸承座圈的滾道為球面形,有凹球面滾子的軸承軸圈的滾道為球面形。
9.帶座軸承
向心軸承與座組合在一起的一種組件,在與軸承軸心線平行的支撐表面上有個安裝螺釘的底板。
10.關節軸承
推力球軸承滑動接觸表面為球面,主要適用於擺動運動、傾斜運動和旋轉運動的球面滑動軸承。
11.組合軸承
軸承一套軸承內同時由上述兩種以上軸承結構形式組合而成的滾動軸承。如滾針和推力圓柱滾子組合軸承、滾針和推力球組合軸承、滾針和角接觸球組合軸承等。
其他軸承:除上述以外的其他結構的滾動軸承。
滑動軸承:滑動軸承不分內外圈也沒有滾動體,一般是由耐磨材料製成。常用於低速,重載及加註潤滑油及維護困難的機械轉動部位。
12.軋機軸承
圓錐滾子軸承軋機軸承一般只用來承受徑向負荷,與相同尺寸的深溝球軸承相比,有較大的徑向負荷能力,極限轉速接近深溝球軸承,但與這類軸承配合的軸﹑殼體孔的加工要求較高,允許內圈軸線與外圈軸線傾斜度很小(2°-4°),兩軸線傾斜如超越限度,滾子與套圈滾道的接觸情況將要惡化,嚴重影響軸承的負荷能力,降低軸承的使用壽命。所以該類軸承如需要安裝在承受軸向負荷作用的主機部件中,只有在同時使用其他類型軸承去承受軸向負荷的前提下,才可使用。
13.角接觸球軸承
一般習慣上稱為36、46型軸承為代表的六類軸承,角接觸一般為15度、25度、45度等。
外球面球軸承種類
軸承帶座外球面球軸承
帶立式座外球面球軸承
帶方形座外球面軸承
帶菱形座外球面球軸承
帶凸台圓形座外球面球軸承
帶環形座外球面球軸承
帶滑塊座外球面球軸承
帶懸吊式座外球面球軸承
帶懸掛式座外球面球軸承
帶可調菱形座外球面球軸承
帶沖壓座外球面球軸承
帶其他座的外球面球軸承
推力角接觸球軸承推力角接觸球軸承接觸角一般為60°常用的推力角接觸球軸承一般為雙向推力角接觸球軸承,主要用於精密機床主軸,一般與雙列圓柱滾子軸承一起配合使用,可承受雙向軸向載荷,具有精度高,剛性好,溫升低,轉速高,裝拆方便等優點。
深溝球軸承

Ⅹ 機械設計課程設計 帶式運輸機

武漢工程大學

機械設計課程
說明書

課題名稱:帶式運輸機傳動裝置的設計
專業班級:2006級機制(中)1班
學生學號:0603070105
學生姓名:陳 明 偉
學生成績:
指導教師:徐建生 教授
課題工作時間:2008.12.15至2008.01.02

武漢工程大學教務處
機械設計課程設計
-單級圓柱齒輪減速箱
機械設計課程--帶式運輸機傳動裝置中的同軸式1級圓柱齒輪減速器 目 錄
第一節:設計任務書……………………………………………………2
第二節:傳動方案的擬定及說明………………………………………3
第三節:電動機的選擇…………………………………………………5
第四節:計算傳動裝置的運動和動力參數……………………………6
第五節:傳動件的設計計算……………………………………………8
第六節:軸的設計計算…………………………………………………20
第七節:滾動軸承的選擇及計算………………………………………23
第八節:鍵聯接的選擇及校核計算……………………………………23
第九節;連軸器的選擇…………………………………………………23
第十節:減速器附件的選擇……………………………………………23
第十一節:潤滑與密封…………………………………………………23
第十二節:設計小結…………………………………………………… 23
第十三節參考資料目錄………………………………………………. 24

第一節 機械設計課程設計任務書
題目:設計一用於帶式運輸機傳動裝置中V帶輪機展開式二級斜齒圓柱齒輪減速器
一. 總體布置簡

圖1—1
1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器
二. 工作情況:
一般條件,通風良好,連續工作,近於平穩,單向旋轉。
三. 原始數據
1.鼓輪的扭矩T(N/m):460
2.鼓輪的直徑D(mm):380
3.運輸帶速度V(m/s):0.8
4.帶速允許偏差(%):±5
5.使用年限(年):8年,大修期3年
6.工作制度(班/日):2
7.捲筒效率:∩=0.96
四.設計內容
1. 電動機的選擇與運動參數計算;
2. 斜齒輪傳動設計計算
3. 軸的設計
4. 滾動軸承的選擇
5. 鍵和連軸器的選擇與校核;
6. 裝配圖、零件圖的繪制
7. 設計計算說明書的編寫
五. 設計任務
1. 減速器總裝配圖一張
2. 齒輪、軸零件圖各一張
3. 設計說明書一份
六. 設計進度
第一階段:機械繫統方案設計,(選擇傳動裝置的類型)
第二階段:機械繫統運動,動力參數計算,(電動機的 選擇,傳動裝置運動動力參數計算)。
第三階段:傳動零件的設計計算,(傳動系統中齒輪傳動等的設計計算)。、 第四階段:減速器裝配圖的設計。(軸系結構設計————初定軸頸,軸承型號,校核減速器中間軸及其鍵的強度,軸承壽命,減速器箱體及其附件結構設計)。
第五階段:減速器裝配圖,零件圖設計,(在繪圖紙上繪制減器正式裝配圖,減速器中間軸及其中間軸上大齒輪的零件圖)。
第六階段:編寫設計說明書。

第二節 傳動方案的擬定及說明
一、 初擬三種方案如右圖(圖1—2、圖1—3、圖1—4)

圖1—1

圖1—1

圖1—3

二、 分析各種傳動方案的優缺點
方案a傳動比小,齒輪及齒輪箱的尺寸小,製造成本低,工作可靠,傳動效率高,維護方便,帶的 壽命短,不宜在惡劣環境中工作。
方案b 傳動比大,齒輪及齒輪箱的尺寸大,製造成本大,工作可靠,傳動效率高,維護方便,環境適應性好。
方案c傳動比小,齒輪及齒輪箱的尺寸小,製造成本高,工作可靠,傳動效率高,維護方便,帶的壽命短,不宜在惡劣環境中工作。

第三節 電動機的選擇

一. 電動機類型和結構的選擇
因為本傳動的工作狀況是:連續、載荷近於平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。
二. 電動機容量的選擇
1. 工作機所需功率Pw 。

由已知條件運輸帶速度(0.8m/s),鼓輪直徑(380㎜) 得:

2. 電動機的輸出功率

傳動裝置中的總效率 式中 , ………為從電動機至捲筒軸之間的各傳動機構和軸承的效率。由表2—4(參考文獻2)查得:閉式斜齒圓柱齒輪傳動效率 ;滾動軸承(一對)的傳動效率為 ;彈性聯軸器的傳動效率 ;捲筒效率 ;V帶傳動效率 ;捲筒滑動軸承的效率 。

3. 確定電動機的額定功率
根據計算出的電動機的功率 可選定電動機的額定功率
4. 電動機轉速的選擇及型號的確定

為了便於選擇電動機的轉速,先推算電動機的轉速的可選范圍。由表2—1(參考文獻2 P4)查得V帶傳動常用的傳動比范圍 ;單級圓柱齒輪常用的傳動比范圍 。則電動機的轉速可選范圍為

可見同步轉速為750r/min,1000r/min,和1500r/min的電動機均符合,這里初選同步轉速為1000r/min 和1500r/min的兩種電動機進行比較,如下 (表1)
方案 電動機型號 額定功率(KW) 電動機轉速 電動機質量(kg) 傳動裝置的傳動比 參考比價
同步 滿載 總傳動比 V帶 高速級 低速級
1 Y100L2—4 3 1500 1420 38 35.3 3 3.678 3.2 1.87
2 Y132 5—6 3 .1000 960 63 23.88 3 3 2.65 3.09

由表中的數據可知兩個方案均可行,但方案1參考比較較低,質量小,較方案2經濟,可採用方案1,選定電動機型號為Y100L2—4,轉速1500r/min..

三、電動機的技術數據和外形及安裝尺寸
由表20—1表20—2查出Y100L1—4型電動機的主要技術數據和外形安裝尺寸,並列表記錄如下:(參考文獻2 P197)
(表2)
電動機型號 H A B C D E F×GD G K AB AD AC HD AA BB HA L
4極 4極 4極 4極 4極
Y100L 100 160 140 63 28 60 8×7 24 12 205 180 105 245 40 176 14 380

第四節 計算傳動裝置的運動和動力參數
一、 傳動裝置的總傳動比及其分配各級傳動比
1.計算總傳動比
由電動機的滿載轉速( )和工作機主動軸轉速 可確定傳動裝置應有的總傳動比為:

2.合理分配各級傳動比
先試選皮帶輪傳動比 ,減速箱是展開式布置,為使兩級大齒輪有相近的浸油深度,告訴級傳動比 和低速級傳動比 可按下列方法分配。
有 ,可取 , , 。
二.計算傳動裝置的運動和動力參數
如圖各軸編號分別為軸Ⅰ、軸Ⅱ、軸Ⅲ。如圖1—5

圖1—5
1. 計算各軸轉速
圖1—5,所示傳動裝置中各軸的轉速為

2. 計算各軸輸入功率
各軸的輸入功率為

式中: ——電動機與Ⅰ軸之間V帶傳動效率。
——高速級傳動效率,包括高速級齒輪副和Ⅰ軸上一對軸承的效率。
——低速級傳動效率,包括低速級齒輪副和Ⅱ軸上的一對軸承的效率。
3. 計算各軸輸入轉矩
圖1—5所示傳動系統中各軸轉矩為

4. 將以上結果整理後列表如下
(| (表3)
項目 電動機軸 高速軸Ⅰ 中間軸Ⅱ 低速軸Ⅲ 滾筒滑動軸Ⅳ
轉速(r/min) 1420 473.330 128.693 40.220 40.220
功率(k0w) 3 2.880 2.7660 2.656 2.603
轉矩(n/m) 2.3 58.108 205.258 630.706 630.706
傳動比 i01=3 I12=3.678 I23=3.2 I34=1
效率 ∩01=0.96 ∩12=0.963 ∩23=0.9603 ∩34=0.9801

第五節 傳動件設計計算
一.V帶傳動的設計計算(參考文獻1)
由已知條件電動機功率P=3KW ,轉速n1=1420r/min ,傳動比 i=3 ,每天工作8小時,兩班制,要求壽命8年。
試設計該V帶傳動。
1. 計算功率 。
由表8----7工況系數 ,故:

2. 選擇V帶的帶型。
根據 , .由圖8----11選用A型。
3. 確定帶輪的基準直徑 ,並驗算帶速v。
(1)初選小帶輪基準直徑,查表8-6和表8-8,取小帶輪的基準直徑 .
(2)驗算帶速V, 因為3<v<5m/s,故合適。
(3)計算大帶輪大基準直徑。
根據式8-15a,
根據表8-8,圓整為280mm。
4. 確定V帶的中心距a和基準長度 。
(1) 根據式8-20,初定中心距
(2) 由式8-22,計算基準直徑。

由表8-2選基準長度
(3) 驗算小帶輪的包角 。

6.計算帶的根數Z.
(1) 計算單根v帶的額定功率pr
△P0=0.17kw k =0.942. Kl=0.99,
於是

(2)計算V帶的根數z
Z= 取4根V帶。
7計算單根V帶的拉力最小值
由表8-3得A型V帶的長度質量為0.1kg/m所以

應使帶的實際初拉力》
8計算壓軸力Fp

9.帶輪結構設計
材料HT200,A型,根數Z=4,長度Ld0=1600mm,中心距a=500mm

,
圖1-6
二.高速級斜齒圓柱齒輪的設計計算:
有以上計算得,輸入功率Pi=2.88kw,小齒輪轉速n1=473.33r/min
齒數比u=i12=3.678.
1. 選精度等級、材料及齒數
1) 材料及熱處理;
選擇小齒輪材料為40Cr(調質),硬度為280HBS,大齒輪材料為45鋼(調質),硬度為240HBS,二者材料硬度差為40HBS。
2) 精度等級選用7級精度;
3) 試選小齒輪齒數z1=24,大齒輪齒數z2=z1*u=24*3.678=88.272
取Z282齒輪;
2.按齒面接觸強度設計
因為低速級的載荷大於高速級的載荷,所以通過低速級的數據進行計算
按式(10—21)試算,即
dt
確定公式內的各計算數值
(1) 試選Kt=1.5
(2)計算小齒輪的轉矩。T1=5.81076*104NM.
(3) 由表10-7選取尺寬系數φd=1
(4) 由表10-6查得材料的彈性影響系數ZE=189.8Mpa
(5) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限σHlim1=650MPa;大齒輪的解除疲勞強度極限σHlim2=550MPa;
(6) 由式10-13計算應力循環次數 (8年,每天兩班制,1年按300天計算)
N1=60n1jLh=60×473.33×1×(2×8×300×8)=1.09055×108
N2=N1/u=1.09055×108/3.678=2.965×107
(7) 由圖10-19查得接觸疲勞壽命系數KHN1=0.948;KHN2=0.99
(8) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得
[σH]=1= =0.948×650MPa=616.2MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]+ [σH])/2=(616.2+544.5)/2=580.36Mpa

2) 計算
(1) 試算小齒輪分度圓直徑d1t
d1t≥ = 43.469mm
(2) 計算圓周速度
v= = =1.0733m/s
(3) 計算齒寬b及其模數mnt
b=φd*d1t=1×43.469mm=43.469mm
mnt 1.7574
h=2.25mnt=2.25*1.7574mm=3.9542mm
b/h=43.469/3.9542=10.993
(4)計算重合度。

(5) 計算載荷系數K
已知載荷平穩,所以取KA=1 根據v=1.0773m/s,7級精度,由
10—8查得動載系數KV=1.05; KHα=KHβ=1
查表10-2得 KA=1.0、
查表10-4,用插值法查的7級精度,小齒輪相對支撐為非對稱布置時KHβ=1.418
由b/h=10.993, KHβ=1.418插圖10-13得KFβ=1.38
固載荷系數為:
K=KAKVKHαKHβ=1×1.05×1×1.418=1.6378
(6) 按實際的載荷系數校正所得的分度圓直徑,由式(10—10a)得 (取kt=1.2-1.4)
d1= =44.7613mm
(7) 計算模數mn
mn =
3.按齒根彎曲強度設計
由式m≥
1) 確定計算參數
(1) 由圖10-20c,查得小齒輪的彎曲疲勞輕度極限σFE1=550mpa,大齒輪σFE2=400mpa。
(2) 由圖10-18取疲勞壽命系數KFN1=0.92,KFN2=0.98
(3)查表10-28得螺旋角影響系數 .根據 。
(4)計算當量齒數

(5)計算彎曲疲勞許用應力 取S=1.4
[σF1]= = =361.429Mpa
[σF2]= = =280Mpa
(4) 計算載荷系數
K=KAKVKFαKFβ=1×1.05×1.1×1.38=1.5939
(5) 查取齒型系數
由表10-5查得YFa1=2.6;Yfa2=12.186
(6) 查取應力校正系數
由表10-5查得Ysa1=1.595;Ysa2=1.787
(7) 計算大小齒輪的 並加以比較
= =0.01147
= =0.01395
大齒輪的數值大。
2) 設計計算
mn≥ =1.3005mm
就近圓整為標准值(第一系列)為mn=1.5 分度圓直徑d1=44.7613mm

z1 =d1cos /mn=44.7613*cos140/1.5=28.954,
取z1=28 z2=u*z1=3.678*24=106.662取107齒
4.幾何尺寸計算
(1)計算中心距
a= = =105.123mm
將中心距圓整為105mm
(2)按圓整後的 中心距修正螺旋角。

因值改變不多,故參數 等不必修正。
(3)計算大小齒輪的分度圓直徑。
d1=z1 mn /cos =29*1.5/cos13043』45」=44.781mm
d 2=z2mn/ cos =107*1.5/ cos13043』45」=165.225mm
(4)計算齒寬
1*44.781=44.781mm
圓整後取B2=45mm,B1=50mm.
三.低速級斜齒圓柱齒輪的設計計算:
有以上計算得,輸入功率Pi=2.766kw,小齒輪轉速n1=128.693r/min
齒數比u=i12=3.
2. 選精度等級、材料及齒數
1) 材料及熱處理;
選擇小齒輪材料為40Cr(調質),硬度為280HBS,大齒輪材料為45鋼(調質),硬度為240HBS,二者材料硬度差為40HBS。
2) 精度等級選用7級精度;
3) 試選小齒輪齒數z1=24,大齒輪齒數z2=z1*u=24*3=72
取Z72齒輪;
2.按齒面接觸強度設計
因為低速級的載荷大於高速級的載荷,所以通過低速級的數據進行計算
按式(10—21)試算,即
dt
確定公式內的各計算數值
(1) 試選Kt=1.5
(2)計算小齒輪的轉矩。T1=2.0526*105NM.
(3) 由表10-7選取尺寬系數φd=1
(4) 由表10-6查得材料的彈性影響系數ZE=189.8Mpa
(5) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限σHlim1=650MPa;大齒輪的解除疲勞強度極限σHlim2=550MPa;
(6) 由式10-13計算應力循環次數 (8年,每天兩班制,1年按300天計算)
N1=60n1jLh=60×128.69×1×(2×8×300×8)=2.965×108
N2=N1/u=2.965×108/3=9.883×107
(7) 由圖10-19查得接觸疲勞壽命系數KHN1=0.972;KHN2=0.99
(8) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得
[σH]=1= =0.972×650MPa=631.8MPa
[σH]2= =0.99×550MPa=544.5MPa
= ([σH]1+ [σH]2)/2=(631.8+544.5)/2=587.75Mpa

2) 計算
(1) 試算小齒輪分度圓直徑d1t
d1t≥ = 55.974mm
(2) 計算圓周速度
v= = =0.3772m/s
(3) 計算齒寬b及其模數mnt
b=φd*d1t=1×55.974mm=43.469mm
mnt 2.263
h=2.25mnt=2.25*2.263mm=5.0917mm
b/h=55.974/5.0917=10.993
(4)計算重合度。

(5) 計算載荷系數K
已知載荷平穩,所以取KA=1
根據v=0.3772m/s,7級精度,由圖10—8查得動載系數KV=1.03; KHα=KHβ=1.1
查表10-4,用插值法查的7級精度,小齒輪相對支撐為非對稱布置時由b/h=10.993, KHβ=1.4206插圖10-13得KFβ=1.399
固載荷系數為:
K=KAKVKHαKHβ=1×1.03×1.1×1.42.6=1.6095
(6) 按實際的載荷系數校正所得的分度圓直徑,由式(10—10a)得 (取kt=1.2-1.4)
d1= =57.303mm
(7) 計算模數mn
mn =
3.按齒根彎曲強度設計
由式m≥
1) 確定計算參數
1.由圖10-20c,查得小齒輪的彎曲疲勞輕度極限σFE1=550mpa,大齒輪σFE2=400mpa。
2.由圖10-18取疲勞壽命系數KFN1=0.969,KFN2=1
3.查表10-28得螺旋角影響系數 .根據 。
4 計算當量齒數

(5)計算彎曲疲勞許用應力 取S=1.4
[σF1]= = =380.679Mpa
[σF2]= = =285.714Mpa
5 計算載荷系數
K=KAKVKFαKFβ=1×1.03×1.1×1.399=1.585
(6) 查取齒型系數
由表10-5查得YFa1=2.6;Yfa2=2.236
(7) 查取應力校正系數
由表10-5查得Ysa1=1.595;Ysa2=1.734
(8) 計算大小齒輪的 並加以比較
= =0.01089
= =0.01357
大齒輪的數值大。
2) 設計計算
mn≥ =1.982mm
就近圓整為標准值(第一系列)為mn=2 分度圓直徑d1=57.303mm

z1 =d1cos /mn=57.303*cos140/2=27.8,
取z1=31 z2=u*z1=3*31=93取93齒
4.幾何尺寸計算
(1)計算中心距
a= = =127.8mm
將中心距圓整為128mm
(2)按圓整後的 中心距修正螺旋角。

因值改變不多,故參數 等不必修正。
(3)計算大小齒輪的分度圓直徑。
d1=z1 mn /cos =31*2/cos14021』41」=64mm
d 2=z2mn/ cos =93*2/ cos14021』41」=192.010mm
(4)計算齒寬
1*64=64mm
圓整後取B2=65mm,B1=70mm.
四齒輪設計計算結果列表:.表1--4
齒輪
參數 齒輪1 齒輪2 齒輪3 齒輪4
mn(mm) 1 1 2 2
d(mm) 44.781 165.225 192.01
b(mm) 45 50 65 70
z 29 107 31 93
a(mm)圓整 105 128
材料 45Gr 45 45Gr 45
精度等級 IT7

六 軸的設計計算
一.中間軸的設計:
1.初選軸的材料為45號鋼。查表15-3可知A0=112,最小直徑為:
mm
由於此軸上要安裝兩個齒輪,且直徑都較大,固按強度准則需加大軸的直徑為0.7%/鍵。則最小直徑d=31.140 由於最小直徑地方是安裝軸承的,而為了使安裝齒輪的地方強度足夠,應適當的加大開鍵槽段的軸徑。固取安裝軸承的地方為35mm,需根據軸承的標准系列選用。
2.軸的結構設計
(1)擬定軸上的裝配方案
圖四
(1) 如上圖,軸上的零件分別為軸承,封油盤,小齒輪,大齒輪,封油盤。
① 徑向尺寸的確定
左端1-2段選用的角接觸球軸承為7307c,軸徑為35mm,2-3段安裝齒輪,為達到強度取42mm(也是軸承的安裝定位尺寸),3-4段為一軸肩為達到齒輪定位齒輪的強度,取52mm,4-5段為了便於加工取同樣直徑段42mm,5-6段安裝軸承同右邊,按標准為35mm。
② 軸向尺寸的確定
由於齒輪2和齒輪一是要嚙合的,且齒輪一的寬度比齒輪二寬5mm,平均分配到兩邊,又由於所有安裝的軸承的內圈必須在同一直線上,所以二軸的1-2段的距離減去軸承的寬度應等於一小齒輪輪轂寬減去2-3段長度加封油盤的 寬度。3-4段為一軸肩,距離取12.5mm;4-5d段為齒輪3的寬度-2.5mm=41mm;5-6段的距離等於支撐的距離加封油盤的距離14+12=49mm。軸二的軸向尺寸確定後,軸一的部分尺寸也可以確定了。
③ 軸上零件的周向定位
齒輪2和3用兩個鍵槽固定,根據軸的直徑,查表14-1取標准,鍵槽為 ,鍵槽寬為12mm長為50mm,32mm。軸承不需考慮。
④ 軸上零件的軸向固定
左端軸承右端用封油盤固定,左端用端蓋固定;齒輪2右端由封油盤固定,左端由軸肩固定;齒輪3左端用軸肩固定,右端用封油盤固定;右端軸承左端用封油盤固定,右端用端蓋固定。
二. 高速級軸:
1.經過計算高速級的小齒輪,其x 2.5m;也就是說從鍵槽的頂端到齒根圓直徑的距離小於2.5倍的模數,根據 要求將其做成齒輪軸。具體計算如下:
初選軸的材料為40Cr,調質處理。查表15-3可知,A0=112.最小直徑為:
mm
由於安裝帶輪的地方需要開一鍵槽,固最小直徑必須加大0.7%得d=20.447 (1+0.7%)=21.795mm為了和帶輪相配合,取最小處直徑為22mmm。
2.軸的結構設計
(1)擬定軸上的裝配方案
圖三
如上圖,軸上共裝有三個零件,一個帶輪,兩個軸承。
①徑向尺寸的確定
為了滿足帶輪的安裝要求,7-8段右端必須制出一軸肩,所以6-7段的直徑d2-2=28mm,在軸的3-3段需安裝一個軸承,根據計算,該處的軸承圓錐滾子軸承為30306,其內徑為30mm,右端有一 當油盤並與一軸肩配合,更具軸承的安裝定位尺寸可知為37mm,所以當油盤右端的軸肩為37mm,3-4段為小齒輪,其寬度為50mm,2-3段五任何零件安裝,,便於加工取37mm,1-2段也需一軸承支撐,因為軸承一般配對使用,也用30306軸承,內徑為35mm。
②軸向尺寸的確定
7-8段為了安裝帶輪,帶輪的寬度是60mm固取60mm,6-7段五嚴格要求初取50mm,5-6段要安裝一軸承寬度為20.75mm,在加上一當油盤,寬度為14mm,總長為34.75mm,2-3段單獨不可確定,必須與另外亮根軸相配合後才能定其長度,5-5段是加工齒輪的寬度為50mm, 1-2段和5-6段情況一樣,尺寸也一樣為30mm。
③軸上零件的周向定位
帶輪出用一鍵槽,根據軸的直徑和長度查表14-1,取標准,鍵槽為c6*6,鍵槽寬為6mm長為100mm。軸承不需考慮。
④軸上零件的軸向固定
7-8-段為一帶輪,左端需用一軸肩固定,6-7段安裝軸承,其右端軸肩固定,但是由於軸承的是用潤滑脂潤滑的,為了防止軸承中的潤滑脂被箱內齒輪嚙合時擠出的油沖刷,稀釋而流失,需在軸承內側設置封油盤。於是軸承便由封油盤固定內圈,由端蓋固定外圈。1-1段和5-6段一樣處理。
三 低速級軸的設計
三軸的材料為45號鋼,A0=112,最小直徑為:

其上要開鍵槽,固需加大軸的直徑。d=45.270 (1+0.7%)=49.637mm。
具體尺寸設計計算省略。
四 軸的強度校核
通過對以上三根軸的強度進行計算和分析,均達到了強度要求。
具體計算省略。
第七節 滾動軸承的選擇
一 滾動軸承的選擇:
通過以上計算出了三根軸的最小直徑分別為d1min20.447mm=,d2min=31.140mm,d3min=45.270mm.前面計算出了每根軸所受到的力矩分別為T1=57.42N,T2=189.90N,T3=551.78.
由於減速箱使用的是兩級齒輪傳動,總傳動比為35.4,但是外面用了一V帶傳動,分取了3個傳動比,固減速其內部就只有35.4/3=11.8.再將11.8分給兩級齒輪,則每一級的傳動比就減小了許多,因此三根軸所受到了軸向力就不大,但齒輪較大,軸上零件安裝的較多,徑向力就較大,根據軸承的類型和各自的特性,本減速器選用了既可以承受較大徑向力又可承受較大軸向力的角接觸球軸承和圓錐滾子軸承。

一軸選用圓錐滾子軸承30306,二軸選用角接觸球軸承7607c,三軸選用圓錐滾子軸承30311.尺寸如下表:
軸承型號 外形尺寸(mm) 安裝尺寸(mm) 額定動載荷(KN) 額定靜載荷(KN)
d D B D1 D2 ra
GB297-84 30306 30 72 19 40 37 1 55.8 38.5
GB292-80 7307C 35 80 21 44 71 1.5 34.2 26.8
GB297-84 30311 55 120 31.5 70 65 2 145 112

第七節 鍵的選擇
本減速器共用鍵連接5個,分別是中間軸兩個,低速軸一個,高速機接帶輪處一個,輸出軸接聯軸器一個。
高速軸 C6×6×45 中間軸 A12×8×32頭)A12*8*50 低速軸 A18×11×45 C14*9*70由於鍵採用靜聯接,沖擊輕微,所以許用擠壓力為 ,所以上述鍵皆安全。
第九節 連軸器的選擇
由於彈性聯軸器的諸多優點,所以考慮選用它。
二、高速軸用聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以考慮選用彈性柱銷聯軸器TL4(GB4323-84)其主要參數如下:
材料HT200
公稱轉矩 1250nm
軸孔直徑48mm ,
軸孔長 112mm,
第八節 減速器附件的選擇
1.通氣器
由於在室內使用,選通氣器(一次過濾),採用M12×1.5
2.油麵指示器
選用游標尺M16
3.起吊裝置
採用箱蓋吊耳、箱座吊耳
4放油螺塞
選用外六角油塞及墊片M14×1.5
潤滑與密封

第九節 齒輪的潤滑

採用浸油潤滑,由於低速級周向速度為,所以浸油高度約為六分之一大齒輪半徑,取為35mm。

第十節 密封方法的選取

選用嵌入式緣式端蓋易於製造安裝,密封圈型號按所裝配軸的直徑確定為
21*32*3.5 54*71*7 摘自(FZ/T92010-91)
軸承蓋結構尺寸按用其定位的軸承的外徑決定。

第十一節 設計小結
由於時間緊迫,所以這次的設計存在許多缺點,比如說箱體結構龐大,重量也很大。齒輪的計算不夠精確等等缺陷,我相信,通過這次的實踐,能使我在以後的設計中避免很多不必要的工作,有能力設計出結構更緊湊,傳動更穩定精確的

第十二節 參考目錄

《機械設計》第八版 濮良貴 高等教育出版社
《機械設計 課程設計》 王昆 高等教育出版社
《機械原理》第七本 孫恆 高等教育出版社
《機械製造技術基礎》 趙雪松 華中科技大學出版社
《機械基礎》 倪森壽 高等教育出版社
《機械制圖》第四版 劉朝儒 高等教育出版社
《機械設計簡明手冊》 楊黎明 國防工業出版社
《AUTOCAD機械制圖習題集》 崔洪斌 清華大學出版社

閱讀全文

與一工程機械傳動裝置中的軸相關的資料

熱點內容
江湖多功能電動工具 瀏覽:995
光碟機如何改裝機械硬碟嗎 瀏覽:480
工具箱漢化smart 瀏覽:133
鑄造除塵器為什麼要做保溫層 瀏覽:617
怎麼看機械表要保養 瀏覽:517
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60
03儀表盤模式怎麼換 瀏覽:284
ktv設備有哪些設備 瀏覽:191
關節軸承怎麼安裝使用 瀏覽:838
生產山楂糕需要哪些設備 瀏覽:91
機械表後面的飛輪是什麼 瀏覽:163
怎麼實現儀表盤ar導航 瀏覽:722
某同學設計了如下裝置來 瀏覽:633
超聲波儀器動態范圍是什麼意思 瀏覽:11
傳動裝置分析 瀏覽:263
風機與閥門連鎖怎麼實現 瀏覽:314
消防管道閥門抽檢比例 瀏覽:313