導航:首頁 > 裝置知識 > 設計絞車傳動裝置含展開式二級斜齒圓柱齒輪減速器14ms

設計絞車傳動裝置含展開式二級斜齒圓柱齒輪減速器14ms

發布時間:2022-12-23 06:47:54

㈠ 設計提升機的傳動裝置(含單級斜齒圓柱齒輪)

傳動方案擬定
為了估計傳動裝置的總的傳動比范圍,以便選擇合
適的傳動機構和擬定傳動方案,可先由已知條件計算其驅動捲筒的轉速nw,即:
∵ V=π*D*nw/(60*1000)
∴ n筒=60*1000*V/(π*D)=71 r/min
選用同步轉速為1000r/min或1500r/min的電動機作為傳動方案的原動機,因此傳動裝置的傳動比約為i=14~21,根據傳動比值可初步擬定以二級傳動為主的多種傳動方案。
根據所給的帶式傳動機構,可將減速器設計為二級展開式減速器。
希望這篇文章對你有幫助:
http://wenku..com/link?url=-AD_2AMNPGChYGrlodl2Pz3LX06-xI2nm3_1spSQMC06Yf9bASz5AZoK1fxLu

㈡ 帶式輸送機傳動裝置設計

一、帶式輸送機傳動裝置,可伸縮膠帶輸送機與普通膠帶輸送機的工作原理一樣,是以膠帶作為牽引承載機的連續運輸設備,不過增加了儲帶裝置和收放膠帶裝置等,當游動小車向機尾一端移動時,膠帶進入儲帶裝置內,機尾回縮;反之則機尾延伸,因而使輸送機具有可伸縮的性能。
二、設計安裝調試:

1.輸送機的各支腿、立柱或平台用化學錨栓牢固地固定於地面上。
2.機架上各個部件的安裝螺栓應全部緊固。各托輥應轉動靈活。托輥軸心線、傳動滾筒、改向滾筒的軸心線與機架縱向的中心線應垂直。
3.螺旋張緊行程為機長的1%~1.5%。
4.拉繩開關安裝於輸送機一側,兩開關間用覆塑鋼絲繩連接,松緊適度。
5.跑偏開關安裝於輸送機頭尾部兩側,成對安裝。開關的立輥與輸送帶帶邊垂直,且保證帶邊位於立輥高度的1/3處。立輥與輸送帶邊緣距離為50~70mm。
6.各清掃器、導料槽的橡膠刮板應與輸送帶完全接觸,否則,調節清掃器和導料槽的安裝螺栓使刮板與輸送帶接觸。
7.安裝無誤後空載試運行。試運行的時間不少於2小時。並進行如下檢查:
(1)各托輥應與輸送帶接觸,轉動靈活。
(2)各潤滑處無漏油現象。
(3)各緊固件無松動。
(4)軸承溫升不大於40°C,且最高溫度不超過80°C。
(5)正常運行時,輸送機應運行平穩,無跑偏,無異常噪音。

㈢ 卷揚機傳動裝置中的二級圓柱齒輪減速器

B1】1級蝸輪蝸桿減速機-圖【B2】2級蝸輪蝸桿減速機設計-三維圖【B3】變速器設計-圖【B4】帶機傳動機構裝置中的一級斜齒輪減速機設計(F=2.44,V=1.4,D=350)【B5】帶式輸送機傳動裝置減速器設計【B6】帶式輸送機傳動裝置設計【B7】帶式輸送機傳動裝置設計(F=2.3,V=1.1,D=300)-說明書【B8】帶式輸送機傳動裝置中的二級圓柱齒輪減速器設計(F=1.6,V=1.0,D=400)【B9】帶式輸送機傳動裝置中的二級圓柱齒輪減速器設計(F=6,D=320,V=0.4)【B10】帶機傳動裝置中的一級圓柱齒輪減速器(1.7,1.4,220)-1圖1論文【B11】帶式輸送機傳送裝置減速器設計(F=7,V=0.8,D=400)【B12】圓錐-直齒圓柱減速器設計(F=1.77,V=1.392,D= 235)【B13】帶式輸送機減速器設計(F=2.6,V=1.1,D=300)【B14】帶式輸送機減速器設計(F=6,D=280,V=0.35)【B15】帶式輸送機減速器設計(F=10,D=350,V=0.5)【B16】帶式輸送機設計【B17】帶式輸送機設計減速器設計(T=1300,D=300,V=0.65)【B18】帶式運輸機構傳動裝置設計(1.6 1.5 230)-說明書【B19】帶式運輸機構傳動裝置設計(F=2.4,V=1.4,D=300)【B20】帶式運輸機構減速機設計(F=2.2,V=1.0,D=350)【B21】單級蝸輪蝸桿減速器設計(F=6,V=0.5,D=350)【B22】單級斜齒圓柱齒輪傳動設計+絞車傳動設計-1圖1說明書【B23】單級斜齒圓柱齒輪傳動設計+鏈傳動設計(F=2.5,V=2.4,D=350)【B24】單級斜齒圓柱齒輪傳動設計+鏈輪傳動設計(F=1.6, V=1.5, D=230)【B25】單級圓柱齒輪減速器設計(F=2.8,V=1.1,D=350)【B26】二級斜齒圓柱齒輪減速器設計(F=3.6 ,V=1.13 ,D=360)【B27】二級圓柱圓錐齒輪減速器設計-說明書【B28】二級圓柱齒輪減速器設計-圖【B29】二級圓柱直齒齒輪減速器(F=4,V=2.0,D=450)【B30】二級圓錐齒輪減速箱設計(F=5,V=1.6,D=500)【B31】二級展開式圓柱圓錐齒輪減速器設計【B32】二級直齒圓柱齒輪減速器設計【B33】二級直齒圓錐齒輪減速器設計-圖【B34】帶機中的兩級展開式圓柱直齒輪減速器設計(F=3.6,V=1.13,D=360)【B35】減速器CAD,CAM設計-圖【B36】減速器設計(F=2.3 v=1.5 d=320)-圖【B37】卷揚機傳動裝置設計(F=5,V=1.1 ,D=350)【B38】礦用固定式帶式輸送機的設計-說明書【B39】兩級斜齒輪減速機設計(D=320,V=0.75,T=900)【B40】兩級斜齒圓柱齒輪減速機設計(F=1.9,V=1.3,D=300)【B41】兩級斜齒圓柱齒輪減速機設計【B42】帶機傳動裝置中的同軸式二級圓柱齒輪減速器設計(T=850,D=350,V=0.7)【B43】兩級圓柱齒輪減速器設計(F=10,D=320,V=0.5)【B44】兩級直齒斜齒減速機設計-圖【B45】一級錐齒輪減速機設計(F=2.4,V=1.2,D=300)【B46】一級斜齒輪減速機設計-(F=3.5,V=2.05,D=350)【B47】蝸桿減速器的設計(F=2.4,V=1.1,D=420)【B48】蝸輪蝸桿減速機設計-圖【B49】蝸輪蝸桿減速器設計-圖【B50】單級蝸輪蝸桿減速器設計-圖【B51】一級圓錐齒輪減速器設計(F=2.9,V=1.5,D=400)【B52】行星齒輪減速器設計-圖【B53】行星減速器設計-圖(07版CAD)【B54】帶式輸送機傳動裝置設計(F=1.4,V=1.5,D=260)【B55】帶式運輸機構傳動裝置中的一級齒輪減速機設計(F=2.3,V=1.1,D=300)【B56】一級減速器設計(F=2.8,V=1.7,D=300)【B57】一級蝸輪蝸桿減速器設計(F=3,V=1.1,D=275)【B58】一級蝸桿減速機設計(F=2.2,V=0.9,D=350)【B59】一級圓錐齒輪減速器設計(F=2.2,V=0.9,D=300)【B60】一級斜齒輪減速設計(F=2.44,V=1.4,D=300)【B61】帶式輸送機傳動裝置中的一級斜齒輪傳動設計(F=2.05,V=2.05,D=350)【B62】一級斜齒輪減速機設計(F=2.8,V=2.4,D=300)【B63】一級斜齒輪減速機設計(F=2.75,V=2.4,D=300)【B64】一級斜齒輪減速機設計(F=2.75,V=2.4,D=350)【B65】一級斜齒輪減速機設計(F=2.5,V=2.4,D=300)【B66】一級斜齒輪減速機設計(F=2.8,V=2.4,D=350)【B67】一級圓柱齒輪減速器設計(F=2,V=1.6,D=300)【B68】減速器設計-圖【B69】卷揚機行星齒輪減速器的設計-圖【B70】兩級行星齒輪減速器設計-圖【B71】履帶式半煤岩掘進機主減速器及截割部設計【B72】蝸輪減速器設計-圖【B73】自動洗衣機行星齒輪減速器的設計【B74】減速箱的CAD-CAM造型論文【B75】普通帶式輸送機設計-說明書

機械設計題目:帶式運輸機傳動系統中的展開式二級圓柱齒輪減速器

給你一份我以前做的:
摘 要

齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。

關鍵詞: 飛剪機;減速器;間隙;主副齒輪

Abstract

Recer is widely used as a basic facility. It』s performance which is excellent or inferior has an impact on the running state of the mechanical equipment. But many factories don』t have machining equipment for manufacturing high-precision recer at present . On the other hand, even though the part is manufactured by the best equipment, it also has error. And their accumulative errors still affect on the transmission performance of recer after assembled.No lateral gap technology in this article put forward using main-second gear to achieve no lateral gap transmission of the flying shears at the state of having no adequate equipment by a new way.
「No lateral gap ingear」 is processing gear to a particular state(such as temperature, bearing clearance, etc.),considering the working conditions as much as possible. But in fact,it』s impossible that the gears have no lateral gap.The laterl gap of the gear is very small.
Usually there are many ways to eliminate lateral gap,such as improving the processing accuracy,using bevel gear, using four tandem gears and using main-second gear.This design has used the main-second gear. In some flying shears the running performance of the top and bottom selsyn roller usually can be improved by using main-second gear on the gear of the driven shaft.It can make the gear working at no lateral gap and eliminate shock load. The use of the main-second gear can eliminate lateral gap,and it still can achieve no lateral gap transmission when the recer is suddenly braked.

Key words:Flying shears; Recer; Lateral gap; Main-second gear

目 錄
1 前言 1
2 研究內容 2
3 傳動方案的分析與擬定 2
4 電動機的選擇 2
5 傳動裝置的運動及動力參數的選擇和計算 2
5.1 傳動裝備的總效率為 2
5.2 傳動比的分配 2
5.3 傳動裝置的運動和動力參數計算 2
5.3.1 各軸的轉速計算: 2
5.3.2 各軸的輸入功率計算: 3
5.3.3 各軸輸入轉矩的計算: 3
6 齒輪的計算 3
6.1 第一對斜齒輪的計算 3
6.1.1 材料選擇 3
6.1.2 初選齒輪齒數 3
6.1.3 按齒面接觸強度設計 3
6.1.4 按齒根彎曲疲勞強度設計 5
6.1.5 幾何尺寸計算 7
6.1.6 齒輪的尺寸計算 7
6.1.7 傳動驗算 8
6.2 第二對斜齒輪的計算 8
6.2.1 材料選擇 8
6.2.2 初選齒數 8
6.2.3 按齒面接觸強度設計 9
6.2.4 按齒根彎曲疲勞強度設計 10
6.2.5 幾何尺寸計算 12
6.3 按標准修正齒輪 12
6.3.1 修正中心距 12
6.3.2 對第二對齒輪修正螺旋角: 13
6.3.3 第二對齒輪的分度圓和中心距: 13
6.3.4 計算齒寬: 13
6.3.5 齒輪的尺寸計算 13
6.3.6 傳動驗算 14
7 軸的設計 15
7.1 高速軸的設計 15
7.1.1 初步確定軸的最小直徑: 15
7.1.2 根據軸向定位要求確定軸各段的直徑和長度 15
7.2 中速軸的設計 16
7.2.1 初步確定軸的最小直徑: 17
7.2.2 初步選擇滾動軸承 17
7.2.4 軸承端蓋 18
7.2.5 鍵的選擇 18
7.3 低速軸的計算 18
7.3.1 初步確定軸的最小直徑 18
7.3.2 根據軸向定位要求確定軸各段的直徑和長度 19
8 軸的校核 19
8.1 高速軸的校核 20
8.1.1 各支點間的距離 20
8.1.2 求軸上的載荷: 20
8.2 中速軸的校核 21
8.2.1 各支點間的距離 22
8.2.2 求軸上的載荷: 22
8.3 低速軸的校核 24
8.3.1 各軸段的距離 24
8.3.2 求軸上的載荷: 24
9 軸承的壽命計算 26
9.1 高速軸上軸承的壽命計算 26
9.1.1 求兩軸承受到的徑向載荷 和 26
9.1.2 求兩軸承的軸向力 和 27
9.1.3 求軸承當量重載荷P1和P2 27
9.2 中速軸上軸承的壽命計算 27
9.2.1 求兩軸承的軸向力 和 28
9.2.2 求軸承當量重載荷P1和P2 28
9.3 低速軸上軸承的壽命計算 28
9.3.1 求兩軸承受到的徑向載荷 和 28
9.3.2 求兩軸承的軸向力 和 29
9.3.3 求軸承當量重載荷P1和P2 29
10 鍵的校核 30
10.1 高速軸上和聯軸器相配處的鍵: 30
10.2 中速軸上和齒輪相配處的鍵: 30
10.3 低速軸上和齒輪相配處的鍵: 30
11 主副齒輪的設計 31
11.1 第一對主副齒輪的設計 31
11.2 第二對主副齒輪的設計 32
12 減速器箱體的設計 33
12.1 箱蓋各鋼板的尺寸: 34
12.1.1 箱蓋左側鋼板的尺寸如圖: 34
12.1.2 箱蓋軸承座的尺寸如圖: 34
12.1.3 箱蓋吊耳環下鋼板尺寸 34
12.1.4 吊耳環的尺寸 35
12.1.5 高速上肋板的尺寸 35
12.1.6 中速軸上的肋板的尺寸 35
12.1.7 視孔蓋的尺寸 36
12.1.9 箱蓋頂鋼板的尺寸 37
12.1.10 箱蓋凸緣鋼板尺寸 37
12.1.11 箱蓋前後側面的尺寸 38
12.2 箱座上各鋼板的尺寸 38
12.2.1 箱座底座的尺寸 38
12.2.2 箱座左側面的尺寸 39
12.2.3 軸承座的尺寸 39
12.2.4 吊鉤的尺寸 39
12.2.5 箱座凸緣的尺寸 39
12.2.6 低速端肋板鋼板尺寸 40
12.2.7 高速軸端肋板的尺寸 40
12.2.8 中速端肋板的尺寸 41
12.2.9 箱座右側面鋼板的尺寸 41
12.2.10 箱座前後端面的尺寸 42
12.2.11 箱座底板 42
13 結束語 42
參考文獻: 43
致謝: 43

1 前言
齒輪箱作為一種基礎設備,被廣泛應用,其性能優劣直接影響著機械設備的運行狀況。而目前許多工廠尚不具備製造高精度齒輪箱的加工設備。另一方面,再好的設備加工出的零件也存在誤差,其累積誤差仍會影響齒輪箱裝配後的傳動性能。本文提出的無側隙傳動技術,從新的角度提出了在設備條件不足的情況下,利用主副齒輪來實現飛剪機的無側隙傳動。
「零側間隙嚙合」是:在盡量周到地考慮飛剪機工作條件下,將齒輪加工成在某一特定狀態(例如溫度,軸承游隙等)為「零側間隙嚙合」,事實上並非沒有側隙,只能說齒輪嚙合的齒側間隙是很小的。
常消除齒隙有很多方法,如提高加工精度,利用圓錐齒輪,四個齒輪串聯布置機構,利用主副齒輪。本設計就是採用主副齒輪(圖1)。在某些飛剪機上,為了改善上下滾筒同步齒輪的工作性能,被動軸上的齒輪往往採用主副齒輪結構,以便齒輪在無側隙情況下工作,減少和消除沖擊負荷。利用主副齒輪則能有效消除齒側間隙,並且在減速器突然制動時,仍然能實現無間隙傳動。

圖1.1 飛剪機同步齒輪傳動的主副齒輪結構 a)結構簡圖 b)嚙合關系
1—從動軸的主齒輪 2—從動軸的副齒輪 3—主動軸上的齒輪 4—彈簧 5,6—銷釘
從動軸上的主齒輪1與軸用鍵固定,而副齒輪2則與主齒輪1的輪轂滑動配合(亦可直接空套在從動軸上)。主副齒輪通過壓裝在主齒輪輪轂上的銷釘5及裝在副齒輪上的銷釘6與彈簧4相聯,主副齒輪1和2同時與裝在主動軸上的齒輪3嚙合。在彈簧4的作用下,副齒輪始終越前主齒輪一個角度,這就保證了上下滾筒的同步齒輪在無側隙下工作。彈簧4的設計應能克服飛剪機制動時所產生的慣性力。這種齒輪側隙消除裝通常用在低速大載荷飛剪機上,例如在設計FL—60型曲柄連桿飛剪機的同步齒輪時就採用了這種結構。

2 研究內容
本設計對象為飛剪齒輪減速器,總傳動比i=16,實際輸入功率N=120KW;輸入轉速n1=1500rpm,輸出轉速n2≈85rpm,技術要求為滿足上述功率及速比要求,減速器啟動頻繁,工作時一般不逆轉,設計一台能消除傳動時的齒輪側間隙的減速器,要求減速器箱體為焊接結構件。合理公配速比,設計計算齒輪,軸及各零部件的強度,剛度。分析無側間隙傳動的基本理論及保證措施。

3 傳動方案的分析與擬定
減速器採用雙級圓柱展開式齒輪減速器。

4 電動機的選擇

5 傳動裝置的運動及動力參數的選擇和計算
5.1 傳動裝備的總效率為
η=η12η22η33η4=0.992 0.972 0.993 0.96=0.872 (5.1)
η1為聯軸器的效率,取0.99,
η2為齒輪傳動的效率,取0.97,
η3為滾動軸承的效率,取0.99,
η4為滾筒的效率,取0.96。
5.2 傳動比的分配
i1= (5.2)
取系數1.35 i=16 則,
i1=4.6476
i2=i/i1=16/4.6476=3.4426 (5.3)
5.3 傳動裝置的運動和動力參數計算
5.3.1 各軸的轉速計算:
n1=1500r/min
n2=n1/i1=1500/4.6476r/min=322.747r/min (5.4)
n3=n2/i2=322.747/3.4426r/min=93.751r/min (5.5)
n4=n3=93.751r/min (5.6)
5.3.2 各軸的輸入功率計算:
P1=N η1=120 0.99kW=118.8kW (5.7)
P2=P1 η2 η3=118.8 0.97 0.99kW=114.0836kW (5.8)
P3=P2 η2 η3=114.0836 0.97 0.99kW=109.5545kW (5.9)
P4=P3 η3 η1=109.5545 0.99 0.99kW=106.3744kW (5.10)
5.3.3 各軸輸入轉矩的計算:
T1=9550P1/n1=9550 118.8 1500N m=756.36 N m (5.11)
T2=9550P2/n2=9550 114.0836 322.7472 N m =3375.702N m (5.12)
T3=9550P3/n3=9550 109.5545 93.751 N m =11159.8327N m (5.13)
T4=9550P4/n4=9550 106.3744 93.751 N m=10937.7555 N m (5.14)
各軸的運動及動力參數:
軸號 轉速n r/min 功率P kw 轉矩T N m 傳動比
1 1500 118.8 756.36 4.6476
2 322.75 114.08 3375.7 3.4426
3 93.75 109.55 11159.83 1
4 93.75 106.37 10937.76

6 齒輪的計算
6.1 第一對斜齒輪的計算
6.1.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.1.2 初選齒輪齒數
選小齒輪齒數Z1=24,Z2=Z1 =24 4.6476=111.54 取Z2=112
6.1.3 按齒面接觸強度設計
d1t (6.1)
6.1.3.1 確定載荷系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.1.3.2 計算應力循環系數。
N1=60n1jLh=60 1500 1 (2 8 300 15)=6.48 109 (6.2)
N2=N1/i1=6.48 109/4.6476=1.39 109 (6.3)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.88 KHN2=0.95
6.1.3.3 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=968Mp (6.4)
2= = Mp=1045Mp (6.5)
=( 1+ 2)/2=(968+1045)/2Mp=1006.5Mp (6.6)
6.1.3.4 小齒分度圓的直徑
d1t =77.54mm (6.7)
6.1.3.5 計算圓周速度
= = m/s=6.09m/s (6.8)
6.1.3.6 計算齒寬b及模數mnt
b= =0.8 77.54mm=62.032mm (6.9)
mnt= = mm=3.135mm (6.10)
h=2.25mnt=7.053mm
b/h=62.032/7.053=8.795 (6.11)
6.1.3.7 計算縱向重合度
=0.318 =0.318 0.8 24 =1.522 (6.12)
6.1.3.8 計算載荷系數K
根據 =6.09m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.08,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.05+0.31 (1+0.6 ) +0.19 (6.13)
故K =1.05+0.31 (6.14)
考慮到齒輪為6級精度,所以取K =1.43
故 =1 (6.15)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.1.3.9 按實際的載荷系數校正所算得的分度圓直徑
(6.16)
6.1.3.10 計算模數mn
(6.17)
6.1.4 按齒根彎曲疲勞強度設計
(6.18)
6.1.4.1 計算載荷系數
=1 (6.18)
6.1.4.2 計算彎曲疲勞強度極限
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.1.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.1.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.19)
(6.20)
6.1.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數

查取應力校正系數

則 (6.21)
(6.22)
比較可得,小齒輪的數值較大,取小齒輪的值。
6.1.4.6 計算螺旋角影響系數
根據 =1.522,由參考資料《機械設計》(圖10-28)查得 =0.88
6.1.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。
則 (6.23)
則有, (6.24)
對比計算結果,齒面接觸強度得出的模數為mn=3.198mm,由齒根彎曲疲勞強度得出的模數為mn=3.082mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=3.5mm,取分度圓直徑d1=79.11mm。
(6.25)
取Z1=22
則Z2=uZ1=4.6476 22=102.24,取Z2=102 (6.26)
6.1.5 幾何尺寸計算
6.1.5.1 計算中心距
(6.27)
圓整後,取a=224mm
6.1.5.2 按圓整後的中心距修正螺旋角
(6.28)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.1.5.3 計算分度圓直徑
(6.29)
(6.30)
6.1.5.4 計算齒輪寬度
(6.31)
圓整後取B1=75mm,B2=64mm
6.1.6 齒輪的尺寸計算
6.1.6.1 基圓直徑
(6.32)
(6.33)
6.1.6.2 分度圓齒厚
(6.34)

6.1.6.3 齒高
齒頂高 (6.35)
齒根高 (6.36)
齒全高 (6.37)
6.1.6.4 齒頂圓直徑
(6.38)
(6.39)
6.1.6.5 齒根圓直徑
(6.40)
(6.41)
6.1.6.6 分度圓齒槽寬和齒距
(6.42)
(6.43)
6.1.7 傳動驗算
6.1.6.1 按齒面接觸強度驗算:
其中
6.1.6.2 按齒根彎曲強度驗算
取YFa中較大者YFa1進行計算。
(6.44)
其中
6.2 第二對斜齒輪的計算
6.2.1 材料選擇
選大小齒輪材料均為40Cr,並經調質及表面淬火,齒面硬度為48~55HRC,齒輪精度等級選擇6級,初選螺選角β=14°。
6.2.2 初選齒數
選小齒輪齒數Z1=30,Z2=Z1 =30 3.4426=103.28 取Z2=104
6.2.3 按齒面接觸強度設計
d1t (6.45)
6.2.3.1 各項系數
因大小齒輪均為硬齒面,故宜選取稍小的齒寬系數,取 d=0.8,試選Kt=1.6。由參考文獻《機械設計》(表10-6)查得材料的彈性影響系數 。
6.2.3.2 Hlim值
由參考文獻《機械設計》查得
Hlim1= Hlim2=1100Mp
6.2.3.3 計算應力循環系數。
N1=60n1jLh=60 322.75 1 (2 8 300 15)=1.394 109 (6.46)
N2=N1/i1=1.394 109/3.4426=4.05 108 (6.47)
由參考文獻《機械設計》(圖10-19)查得接觸疲勞強度
KHN1=0.89 KHN2=0.94
6.2.3.4 計算接觸疲勞許用應力
失效率取1%,安全系數S=1。
1= = Mp=979Mp (6.48)
2= = Mp=1034Mp (6.49)
=( 1+ 2)/2=(979+1034)/2Mp=1006.5Mp (6.50)
6.2.3.5 小齒分度圓的直徑
d1t =130.25mm (6.51)
6.2.3.6 計算圓周速度
= = m/s=2.201m/s (6.52)
6.2.3.7 計算齒寬b及模數
b= =0.8 130.25mm=104.2mm
= = mm=4.213mm (6.53)
h=2.25mnt=9.479mm
b/h=104.2/9.479=8.795
6.2.3.8 計算縱向重合度
=0.318 =0.318 0.8 30 =1.903 (6.54)
6.2.3.9 計算載荷系數K
根據 =2.201m/s,6級精度,由參考資料《機械設計》(圖10-8)查得動載系數K =1.04,由參考資料《機械設計》(表10-3)查得
K =1.1,由由參考資料《機械設計》(表10-4)硬齒面齒輪一欄查得小齒輪相對支承非對稱布置,6級精度,K 時
K =1.0+0.31 (1+0.6 ) +0.19
故K =1.0+0.31 (6.55)
考慮到齒輪為6級精度,所以取K =1.35
故 =1 (6.66)
由參考資料《機械設計》(圖10-13)查得 =1.29
6.2.3.10 按實際的載荷系數校正所算得的分度圓直徑
(6.67)
6.2.3.11 計算模數mn
(6.68)
6.2.4 按齒根彎曲疲勞強度設計
(6.69)
6.2.4.1 計算載荷系數
=1 (6.70)
6.2.4.2 值
由參考資料《機械設計》(圖10-20d)查得齒輪的彎曲疲勞強度極限
6.2.4.3 彎曲疲勞壽命系數
由參考資料《機械設計》(圖10-18)查得彎曲疲勞壽命系數 0,
6.2.4.4 計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4
(6.71)
(6.72)
6.2.4.5 計算大小齒輪的 並加以比較
由參考文獻《機械設計》(表10-5)查取齒形系數:

查取應力校正系數:

則 (6.73)
(6.74)
比較可得,大齒輪的數值較大,取大齒輪的值。
6.2.4.6 計算螺旋角影響系數
根據 =1.903,由參考資料《機械設計》(圖10-28)查得 =0.88
6.2.4.7 計算重合度
由參考資料《機械設計》(圖10-26)查得 , 。

則有, (6.75)
對比計算結果,齒面接觸強度得出的模數為mn=4.21mm,由齒根彎曲疲勞強度得出的模數為mn=4.31mm。由於齒輪模數m的大小主要取決於彎曲疲勞強度所決定的承載能力,而齒面接觸疲勞強度所決定的承載能力僅與齒輪直徑有關,所以取標准值mn=4.5mm,取分度圓直徑d1=130.25mm。
,取Z1=28
則Z2=uZ1=3.4426 28=96.39,取Z2=96
6.2.5 幾何尺寸計算
6.2.5.1 計算中心距
(6.76)
圓整後,取a=288mm
6.2.5.2 按圓整後的中心距修正螺旋角
(6.77)
因 值改變不多,故參數 , ,ZH 等不必修正。
6.2.5.3 計算分度圓直徑

6.2.5.4 計算齒輪寬度

圓整後取B1=120mm,B2=103mm
6.3 按標准修正齒輪
6.3.1 修正中心距
中心距之和為 ,查得標准中心距為a=539mm, , 。由於第一個中心距和標准相同,所以只需將第二個中心距修改為 即可。由於模數取的標准值所以不作變化,只更改第二對齒輪的齒數。
由於 所以
而 ,則有 , 。
中心距 ,改變不大,所以仍取 。
6.3.2 對第二對齒輪修正螺旋角:
(6.78)
因為改變不多,故 , , 等不必修正。
6.3.3 第二對齒輪的分度圓和中心距:

6.3.4 計算齒寬:

圓整後取 ,
6.3.5 齒輪的尺寸計算
6.3.5.1 基圓直徑

6.3.5.2 分度圓齒厚

6.3.5.3 齒高
齒頂高
齒根高
齒全高
6.3.5.4 齒頂圓直徑

7.3.5.5 齒根圓直徑

6.3.5.6 分度圓齒槽寬和齒距

6.3.6 傳動驗算
6.3.6.1 按齒面接觸強度驗算:
其中
6.3.6.2 按齒根彎曲強度驗算
取 中較大者 進行計算。
其中
所以滿足。

還是發你郵箱吧

㈤ 設計絞車傳動裝置的單級圓柱齒輪減速器。

由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以考慮選用彈性柱銷聯軸器TL4(GB4323-84) 材料HT200
公稱轉矩
軸孔直徑 ,
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
三、第二個聯軸器的設計計算
由於裝置用於運輸機,原動機為電動機,所以工作情況系數為 ,
計算轉矩為
所以選用彈性柱銷聯軸器TL10(GB4323-84)
其主要參數如下:
材料HT200
公稱轉矩
軸孔直徑
軸孔長 ,
裝配尺寸
半聯軸器厚
([1]P163表17-3)(GB4323-84
減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M16
起吊裝置
採用箱蓋吊耳、箱座吊耳
放油螺塞
選用外六角油塞及墊片M16×1.5
潤滑與密封
一、齒輪的潤滑
採用浸油潤滑,由於低速級周向速度為,所以浸油高度約為六分之一大齒輪半徑,取為35mm。
二、滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
三、潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用L-AN15潤滑油。
四、密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。
密封圈型號按所裝配軸的直徑確定為(F)B25-42-7-ACM,(F)B70-90-10-ACM。
軸承蓋結構尺寸按用其定位的軸承的外徑決定

㈥ 設計卷揚機傳動裝置二級圓柱斜齒輪減速器 如圖 捲筒切向力2200N 捲筒轉速60 轉每分 捲筒直徑350

我也做過這樣的課程設計。

㈦ 展開式二級圓柱齒輪減速器

一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW

3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.

六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm

II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm

(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。

主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠

(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min

(1)已知nII=121.67(r/min)

兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠

二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠

七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。

八、減速器箱體、箱蓋及附件的設計計算~
1、減速器附件的選擇
通氣器
由於在室內使用,選通氣器(一次過濾),採用M18×1.5
油麵指示器
選用游標尺M12
起吊裝置
採用箱蓋吊耳、箱座吊耳.

放油螺塞
選用外六角油塞及墊片M18×1.5
根據《機械設計基礎課程設計》表5.3選擇適當型號:
起蓋螺釘型號:GB/T5780 M18×30,材料Q235
高速軸軸承蓋上的螺釘:GB5783~86 M8X12,材料Q235
低速軸軸承蓋上的螺釘:GB5783~86 M8×20,材料Q235
螺栓:GB5782~86 M14×100,材料Q235
箱體的主要尺寸:

(1)箱座壁厚z=0.025a+1=0.025×122.5+1= 4.0625 取z=8
(2)箱蓋壁厚z1=0.02a+1=0.02×122.5+1= 3.45
取z1=8
(3)箱蓋凸緣厚度b1=1.5z1=1.5×8=12
(4)箱座凸緣厚度b=1.5z=1.5×8=12
(5)箱座底凸緣厚度b2=2.5z=2.5×8=20

(6)地腳螺釘直徑df =0.036a+12=
0.036×122.5+12=16.41(取18)
(7)地腳螺釘數目n=4 (因為a<250)
(8)軸承旁連接螺栓直徑d1= 0.75df =0.75×18= 13.5 (取14)
(9)蓋與座連接螺栓直徑 d2=(0.5-0.6)df =0.55× 18=9.9 (取10)
(10)連接螺栓d2的間距L=150-200
(11)軸承端蓋螺釘直d3=(0.4-0.5)df=0.4×18=7.2(取8)
(12)檢查孔蓋螺釘d4=(0.3-0.4)df=0.3×18=5.4 (取6)
(13)定位銷直徑d=(0.7-0.8)d2=0.8×10=8
(14)df.d1.d2至外箱壁距離C1
(15) Df.d2

(16)凸台高度:根據低速級軸承座外徑確定,以便於扳手操作為准。
(17)外箱壁至軸承座端面的距離C1+C2+(5~10)
(18)齒輪頂圓與內箱壁間的距離:>9.6 mm
(19)齒輪端面與內箱壁間的距離:=12 mm
(20)箱蓋,箱座肋厚:m1=8 mm,m2=8 mm
(21)軸承端蓋外徑∶D+(5~5.5)d3

D~軸承外徑
(22)軸承旁連接螺栓距離:盡可能靠近,以Md1和Md3 互不幹涉為准,一般取S=D2.

九、潤滑與密封
1.齒輪的潤滑
採用浸油潤滑,由於為單級圓柱齒輪減速器,速度ν<12m/s,當m<20 時,浸油深度h約為1個齒高,但不小於10mm,所以浸油高度約為36mm。
2.滾動軸承的潤滑
由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。
3.潤滑油的選擇
齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用GB443-89全損耗系統用油L-AN15潤滑油。
4.密封方法的選取
選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為GB894.1-86-25軸承蓋結構尺寸按用其定位的軸承的外徑決定。

十、設計小結
課程設計體會
課程設計都需要刻苦耐勞,努力鑽研的精神。對於每一個事物都會有第一次的吧,而沒一個第一次似乎都必須經歷由感覺困難重重,挫折不斷到一步一步克服,可能需要連續幾個小時、十幾個小時不停的工作進行攻關;最後出成果的瞬間是喜悅、是輕松、是舒了口氣!
課程設計過程中出現的問題幾乎都是過去所學的知識不牢固,許多計算方法、公式都忘光了,要不斷的翻資料、看書,和同學們相互探討。雖然過程很辛苦,有時還會有放棄的念頭,但始終堅持下來,完成了設計,而且學到了,應該是補回了許多以前沒學好的知識,同時鞏固了這些知識,提高了運用所學知識的能力。

十一、參考資料目錄
[1]《機械設計基礎課程設計》,高等教育出版社,陳立德主編,2004年7月第2版;
[2] 《機械設計基礎》,機械工業出版社 胡家秀主編 2007年7月第1版
希望對你能有所幫助。

㈧ 展開式二級圓柱齒輪減速器的設計

這個簡單的哦 我幫你
3天最多就可以搞定
你的結構簡圖補充下
再是要直齒輪還是斜齒輪的?
取值有沒有限制?

㈨ 二級圓柱齒輪減速器設計

當傳動比在8以下時,可採用單級圓柱齒輪減速器。大於8時,最好選用二級(i=8—40)和二級以上(i>40)的減速器。單級減速器的傳動比如果過大,則其外廓尺寸將很大。二級和二級以上圓柱齒輪減速器的傳動布置形式有展開式、分流式和同軸式等數種。展開式最簡單,但由於齒輪兩側的軸承不是對稱布置,因而將使載荷沿齒寬分布不均勻,且使兩邊的軸承受力不等。為此,在設計這種減速器時應注意:1)軸的剛度宜取大些;2)轉矩應從離齒輪遠的軸端輸入,以減輕載荷沿齒寬分布的不均勻;3)採用斜齒輪布置,而且受載大的低速級又正好位於兩軸承中間,所以載荷沿齒寬的分布情況顯然比展開好。這種減速器的高速級齒輪常採用斜齒,一側為左旋,另一側為右旋,軸向力能互相抵消。為了使左右兩對斜齒輪能自動調整以便傳遞相等的載荷,其中較輕的齠輪軸在軸向應能作小量游動。同軸式減速器輸入軸和輸出軸位於同一軸線上,故箱體長度較短。但這種減速器的軸向尺寸較大。 圓柱齒輪減速器在所有減速器中應用最廣。它傳遞功率的范圍可從很小至40 000kW,圓周速度也可從很低至60m/s一70m/s,甚至高達150m/s。傳動功率很大的減速器最好採用雙驅動式或中心驅動式。這兩種布置方式可由兩對齒輪副分擔載荷,有利於改善受力狀況和降低傳動尺寸。設計雙驅動式或中心驅動式齒輪傳動時,應設法採取自動平衡裝置使各對齒輪副的載荷能得到均勻分配,例如採用滑動軸承和彈性支承。 圓柱齒輪減速器有漸開線齒形和圓弧齒形兩大類。除齒形不同外,減速器結構基本相同。傳動功率和傳動比相同時,圓弧齒輪減速器在長度方向的尺寸要比漸開線齒輪減速器約30%。

㈩ 帶式輸送機傳動方案 二級圓錐-斜齒圓柱齒輪減速器

參考資料已發送你郵箱

閱讀全文

與設計絞車傳動裝置含展開式二級斜齒圓柱齒輪減速器14ms相關的資料

熱點內容
氧氣閥門檢修安全要求 瀏覽:620
專用設備製造業稅負多少 瀏覽:343
cs6擴展版工具箱 瀏覽:743
北京博世電動工具專賣 瀏覽:617
某學生用圖的實驗裝置測物塊 瀏覽:568
攤鋪軸承壞了怎麼辦 瀏覽:158
硅膠洗油設備哪裡生產 瀏覽:651
金科五金機電城D區商業門面價 瀏覽:343
超聲波什麼時候有霧氣 瀏覽:502
iphone怎麼選擇播放設備 瀏覽:854
兆豐輪轂軸承多少錢 瀏覽:160
江湖多功能電動工具 瀏覽:995
光碟機如何改裝機械硬碟嗎 瀏覽:480
工具箱漢化smart 瀏覽:133
鑄造除塵器為什麼要做保溫層 瀏覽:617
怎麼看機械表要保養 瀏覽:517
小學生雕刻工具箱 瀏覽:417
k5儀表信息怎麼調 瀏覽:936
青島泰科閥門怎麼樣 瀏覽:277
地熱總閥門開關擰不動怎麼辦 瀏覽:60