⑴ 電廠的同步向量採集屏是干什的(電廠電氣)
電廠並網時使發電機和電網相序同步的裝置
⑵ 電力系統時間同步裝置為什麼兩套
電力系統時間同步裝置要分為兩條,簡稱A裝置,B裝置.
1、如果發生太多裝置需要時間同步的時候,A裝置數據緩沖不過來的時候,就用B裝置的。
2、當A裝置壞的時候,B裝置仍然可以繼續同步對時。
這樣可以更好的,精準的記錄故障發生時間,方便核查。
⑶ 水利水電工程樞紐布置及各組成部分的內容及作用
水電站一般主要由擋水建築物(壩)、泄洪建築物(溢洪道或閘)、引水建築物(引水渠或隧洞,包括調壓井)及電站廠房(包括尾水渠、升壓站)四大部分組成。
1、建築物 通常用壩攔蓄水流、抬高水位形成水庫,並修建溢流壩、溢洪道、泄水孔、泄洪洞(見水工隧洞)等泄水建築物宣洩多餘洪水。水電站引水建築物可採用渠道、隧洞或壓力鋼管,其首部建築物稱進水口。水電站廠房分為主廠房和副廠房,主廠房包括安裝水輪發電機組或抽水蓄能機組和各種輔助設備的主機室,以及組裝、檢修設備的裝配場。副廠房包括水電站的運行、控制、試驗、管理和操作人員工作、生活的用房。引水建築物將水流導入水輪機,經水輪機和尾水道至下游。當有壓引水道或有壓尾水道較長時,為減小水擊壓力常修建調壓室。而在無壓引水道末端與發電壓力水管進口的連接處常修建前池。為了將電廠生產的電能輸入電網還要修建升壓開關站。此外,尚需興建輔助性生產建築設施及管理和生活用建築。
2、機電設備 將水能轉變為電能的機電設備稱水電站動力設備。其在常規水電站和潮汐電站為水輪機和水輪發電機組成的水輪發電機組,及附屬的調速器、油壓裝置、勵磁設備等。抽水蓄能電站的動力設備為由水泵水輪機和水輪發電電動機組成的抽水蓄能機組及其附屬的電氣、機械設備。水電站的電氣裝置除水輪發電機及其附屬設備外,還包括發電機電壓配電設備、升壓變壓器、高壓配電裝置和監視、控制、測量、信號和保護性電氣設備等。
⑷ 電氣中的同期裝置什麼作用
同期裝置是並網時使用的一種設備,通過這種設備可以微調整待並機組與系統的電壓、頻率盡可能達到一致(同步表中顯示為偏差夾角不能大於15度),即我們通常所說的同步,英文為synchronization,同步、同一時刻的意思,如果並網時電壓、頻率不達到一致,會發生非同期並列,會嚴重損壞發電機或變壓器,對系統造成相當大沖擊,嚴重時會燒毀設備,因此,同期裝置至關重要。
⑸ 水電站調速系統、壓油裝置的原理及作用是什麼
原理 :通過液壓操作改變接力器行程 進而改變導葉開度,達到主動力矩(水流沖擊水輪機產生的旋轉機械能)和阻力力矩(電磁力產生的電功率、機械損耗)的平衡。機組未並網前,穩定轉速:n=60f/p (f=50hz) 、並網後實現機組有功功率的調節。
作用:一、實現手動、自動啟停機組
調速器應具備手動、自動兩種控制操作方式,並實現二者之間的無擾動切換。現在調速器為了更可靠的操作機組,具有多種容錯控制方式,即一種控制不可靠後可以迅速無擾動切換到另一種方式。
二、單機運行時,穩定機組轉速
單機運行包括:機組空轉、空載、單機帶廠用電、單機帶近區用電等工作狀態。
三、機組並網以後的功率調節
按功率給定使機組平穩地帶上負荷。 功率調整迴路使機組出力盡快跟蹤功率設定值,功率設定值可來自操作人員現地手動輸入、中控室輸入或中調遠方輸入。
按照預先整定的靜態轉差率 ,以有差調節方式調整機組出力,自動承擔電網的變動負荷,使系統頻率盡量維持在規定范圍內。
四、實現事故緊急停機
機組在事故情況下,需要從運行態盡快停下來,機組採用最快的關閉速度關閉導葉。
五、實現雙調節機組的高效協聯
對軸流轉槳式水輪機,讓導葉的開度和輪葉的開度實現最佳的配合
六、與電廠的其它自動裝置配合使用,提高整個電廠的自動化水平
不懂Q我 而且沒分。。。。
⑹ 同步器的作用及部件組成是什麼
同步器的作用是使接合套與待咬合的齒圈迅速同步,縮短換擋時間,且防止結合套與待咬合的齒圈在同步前咬合而產生接合齒之間的沖擊。
同步器都有同步裝置,鎖止裝置和接合裝置三部門分組成。希望可以幫到你,望採納!
⑺ 變電站兩個同步相量測量裝置分別什麼作用
目前,同步相量測量技術的應用研究已涉及到狀態估計與動態監視、穩定預測與控制、模型驗證、繼電保護及故障定位等領域。
(1) 狀態估計與動態監視。狀態估計是現代能量管理系統(ems)最重要的功能之一。傳統的狀態估計使用非同步的多種測量(如有功、無功功率,電壓、電流幅值等),通過迭代的方法求出電力系統的狀態,這個過程通常耗時幾秒鍾到幾分鍾,一般只適用於靜態狀態估計。
應用同步相量測量技術,系統各節點正序電壓相量與線路的正序電流相量可以直接測得,系統狀態則可由測量矢量左乘一個常數矩陣獲得,使得動態狀態估計成為可能(引入適當的相角 測量,至少可以提高靜態狀態估計的精度和演算法的收斂性)。將廠站端測量到的相量數據連續地傳送至控制中心,描述系統動態的狀態就可以建立起來。一條4800或9600波特率的普通專用通信線路可以維持每2~5周波一個相量的數據傳輸,而一般的電力系統動態現象的頻率范圍是0~2 hz,因而可在控制中心實時監視動態現象。
(2) 穩定預測與控制。同步相量測量技術可在擾動後的一個觀察窗內實時監視、記錄動態數據,利用這些數據可以預測系統的穩定性,並產生相應的控制決策。基於同步相量測量技術,採用模糊神經元網路進行預測和控制決策,取pmu所提供的發電機轉子角度以及由轉子角度推算出的速度(變化率)等作為神經元網路的輸入,輸出對應穩定、不穩定。在弱節點處安裝pmu,可以觀測電壓穩定性。pss利用pmu所提供的廣域相量作為輸入,構成全局控制環,可以消除區域間振盪。
(3) 模型驗證。電力系統的許多運行極限是在數值模擬的基礎上得到的,而模擬程序是否正確在很大程序上取決於所採用的模型。同步相量測量技術使直接觀察擾動後的系統振盪成為可能,比較觀察所得的數據與模擬的結果是否一致以驗證模型,修正模型直到二者一致。
(4) 繼電保護和故障定位。同步相量測量技術能提高設備保護、系統保護等各類保護的效率,最顯著的例子就是自適應失步保護。對於安裝在佛羅里達—喬治亞聯絡線上的一套自適應失步保護系統,從1993年10月到1995年1月的運行情況分析表明,pmu是可靠和有價值的感測器。另一個重要應用是輸電線路電流差動保護,在相量差動動作判據中,參加差動判別的線路二端電流相量必須是同步得到的,pmu即可提供這種同步相量。
對故障點的准確定位將簡化和加快輸電線路的維護和修復工作,從而提高電力系統供電的連續性和可靠性。傳統的單端型故障定位方法是基於電抗測量原理,這種方法的精度將受故障電阻、系統阻抗、線路對稱情況和負荷情況等多種因素的影響。解決這一問題的根本出路是利用線路兩端同步測量的電壓和電流相量進行故障距離的求解,能獲得高精度和高穩定性的定位結果。
廣域測量系統
電力系統的穩定已是越來越突出問題。以pmu為基本單元的廣域測量系統可以實時地反映全系統動態,是構築電力系統安全防衛系統的基礎
⑻ 同步器的作用是什麼有哪些類型又哪些部分組成
通過同步器使將要嚙合的齒輪達到一致的轉速而順利嚙合,同步器常見結構為回齒套、滑塊、銅環答形式。
舊式變速器的換檔要採用"兩腳離合"的方式,升檔在空檔位置停留片刻(但是離合器需要抬起來,目的是為了讓離合器片也要和飛輪同步,轉速必須一致才可順利掛檔,如果換擋慢了,轉速落到怠速,也是無法掛進去的),減檔要在空檔位置(同時保持離合器抬起)加油門,以減少齒輪的轉速差。但這個操作比較復雜,難以掌握精確。因此設計師創造出同步器。
(8)水電站的同步向量裝置作用擴展閱讀
慣性式同步器與常壓式同步器一樣,都是依靠摩擦作用實現同步。但它可以從結構上保證接合套與待接合的花鍵齒圈在達到同步之前不可能接觸,以避免齒間沖擊和發生雜訊。
慣性式同步器廣泛應用於轎車和輕、中型貨車的變速器中。常用的結構形式有鎖環式慣性同步器和鎖銷式慣性同步器兩種。
⑼ 同步向量是計量還是測量的
測量。同步向量採集裝置是利用全球定位系統秒脈沖作為同步時鍾構成的相量測量單元。同步向量的含義是以標准時間信號作為采樣過程的基準,通過對采樣數據計算而得的相量稱為同步相量。
⑽ 自動准同步裝置的工作原理,及作用,適用場合,優缺點。
1、全同步式變速器上採用的是慣性同步器,它主要由接合套、同步鎖環等組成,它的特點是依靠摩擦作用實現同步。接合套、同步鎖環和待接合齒輪的齒圈上均有倒角(鎖止角),同步鎖環的內錐面與待接合齒輪齒圈外錐面接觸產生摩擦。鎖止角與錐面在設計時已作了適當選擇,錐面摩擦使得待嚙合的齒套與齒圈迅速同步,同時又會產生一種鎖止作用,防止齒輪在同步前進行嚙合。當同步鎖環內錐面與待接合齒輪齒圈外錐面接觸後,在摩擦力矩的作用下齒輪轉速迅速降低(或升高)到與同步鎖環轉速相等,兩者同步旋轉,齒輪相對於同步鎖環的轉速為零,因而慣性力矩也同時消失,這時在作用力的推動下,接合套不受阻礙地與同步鎖環齒圈接合,並進一步與待接合齒輪的齒圈接合而完成換檔過程。
2、同步器,是使在換擋中相互接合的齒輪實現同步的裝置。 在換擋過程中,應當使准備嚙合的那一對齒輪的接合齒圈的圓周速度達到相等 (即同步),才能平順地掛上擋。否則,兩齒輪齒圈間會發出沖擊和噪音,影響齒輪的壽命。為了便於換擋,汽車變速器在常用的各擋間都裝有同步器,使相嚙合的一對齒輪先同步,而後嚙合。汽車同步器齒環採用特種金屬材料,特種鑄造方法,特種精鍛工藝加工而成,並對關鍵工序及特殊工序進行監控,使產品具有高強度(HRB85-100),高耐磨(台架試驗22萬次不失效),高韌性(搞拉強度600MPa,屈服強度210MPa)等特點。