『壹』 波浪能發電的發展
大規模波浪能發電的成本還難與常規能源發電競爭,但特殊用途的小功率波浪能發電,已在導航燈浮標、燈樁、燈塔等上獲得推廣應用。在邊遠海島,小型波浪能發電已可與柴油發電機組發電競爭。今後應進一步研究新型裝置,以提高波浪能轉換效率;研究聚波技術,以提高波浪能密度,縮小裝置尺寸,降低造價;研究在離大陸較遠、波浪能豐富的海域利用工廠船就地發電、就地生產能量密集的產品,如電解海水制氫、氨及電解制鋁、提鈾等,以提高波浪能發電的經濟性。預計隨著化石能源資源的日趨枯竭, 技術的進步, 波浪能發電將在波浪能豐富的國家逐步佔有一定的地位。
我國技術成果
記者從中科院廣州能源研究所獲悉,由該所研製的「鷹式一號」漂浮式波浪能發電裝置,在位於珠江口的珠海市萬山群島海域正式投放,並成功發電,這標志著我國海洋能發電技術取得了新突破。
隨著新能源成為人們關注的熱點,海洋能發電技術以其獨特優勢和戰略地位吸引了人們的注意,世界各主要海洋國家普遍重視對海洋的開發利用。作為海洋波浪能利用技術的一種,「鷹式一號」漂浮式波浪能發電裝置由中科院廣州能源研究所究所課題組歷經一年半研製完成。課題組不斷優化和改進裝置模型,共製作了5套裝置模型,分別在二維水槽和三維水槽內進行大量試驗,最終將實海況裝置的設計方案定型為輕質波浪能吸波體與半潛船的結合。
該新型發電裝置採用外形經過特殊設計的輕質波浪能吸收浮體,使得浮體的運動軌跡能與波浪運動軌跡相匹配,可最大程度吸收入射波而最小程度減少透射和興波。日前首次投放的該發電裝置安裝有兩套不同的能量轉換系統,總裝機20kW,其中液壓發電系統裝機10kW,直驅電機系統裝機10kW,兩套系統均成功發電。試驗表明,該新型設備實現了快捷、安全和低成本研發海洋波浪能發電裝置的目標,為規模化開發利用海洋波浪能打下堅實基礎。據介紹,該發電裝置由國家海洋可再生能源專項資金項目——「10kW水母式波浪能發電裝置研究」專項資助完成。
『貳』 波浪發電是一種什麼樣的產品
波浪能發電是以波浪的能量為動力生產電能。海洋波浪蘊藏著巨大的能量,正弦波浪每米波峰寬度的功率P≈HT kW/m。式中,H為波高,m;T為波周期,s。通過某種裝置可將波浪的能量轉換為機械的、氣壓的或液壓的能量,然後通過傳動機構、氣輪機、水輪機或油壓馬達驅動發電機發電。全球有經濟價值的波浪能開采量估計為1~10億kW。中國波浪能的理論儲量為7000萬kW左右。
波浪能發電方式數以千計,按能量中間轉換環節主要分為機械式、氣動式和液壓式三大類。通過某種傳動機構實現波浪能從往復運動到單向旋轉運動的傳遞來驅動發電機發電的方式。採用齒條、齒輪和棘輪機構的機械式裝置。隨著波浪的起伏,齒條跟浮子一起升降,驅動與之嚙合的左右兩只齒輪作往復旋轉。齒輪各自以棘輪機構與軸相連。齒條上升,左齒輪驅動其軸逆時針旋轉,右齒輪則順時針空轉。通過後面一級齒輪的傳動,驅動發電機順時針旋轉發電。機械式裝置多是早期的設計,往往結構笨重,可靠性差,未獲實用。
『叄』 波浪能與海流發電嗎
即使在晴朗無風的日子裡,海面仍是動盪不定的,波浪起伏不停地拍打著海岸。波浪是由風吹海水而引起的。波浪能主要是由風的作用引起的海水沿水平方向周期性運動而產生的能量。波浪能是巨大的,一個巨浪就可以把13噸重的岩石拋出20米高。一個波高5米、波長100米的海浪,在一米長的波峰片上就具有3120千瓦的能量,由此可以想像整個海洋的波浪所具有的能量該是多麼驚人。波浪能發電是利用波浪的推動力,使波浪轉化為推動空氣流動的壓力來推動空氣渦輪機葉片旋轉而帶動發電機發電。波浪發電設計方案最多,但是因為波浪能源分散,本身破壞力大,開發技術到現在為止還不成熟。據計算,全球海洋的波浪能達700億千瓦,可供開發利用的為20億~30億千瓦,每年發電量可達9萬億度。
我國對波浪能的研究始於20世紀70年代,在1975年曾研製成一台1千瓦的波力發電浮標。80年代以來獲得較快發展,我國成功研製航標燈用波能發電裝置,並根據不同航標燈的要求,開發了一系列產品,與日本合作研製的後彎管型浮標發電裝置,已向國外出口,該技術屬國際領先水平。1989年,我國第一座波力電站在南海大萬山島建成,裝機容量3千瓦。2000年,我國首座岸式波力發電工業示範電站——廣東汕尾100千瓦岸式波力發電站建成,標志著我國海洋波力發電技術已達到實用化水平和推廣應用條件。
我國波力發電雖起步較晚,但發展很快。微型波力發電技術已成熟,小型岸式波力發電技術進入世界先進行列,但我國波浪能開發的規模遠小於挪威和英國。
大洋中的海水從來都不是靜止不動的,它像陸地上的河流那樣,長年累月沿著比較固定的路線流動著,這就是「海流」。不過,河流兩岸是陸地,而海流兩岸仍是海水。在一般情況下,用肉眼是很難看出來的。世界上最大的海流,有幾百公里寬、上千公里長、數百米深。大洋中的海流規模非常大。由於海流遍布大洋,縱橫交錯,川流不息,所以它們蘊藏的能量也是可觀的。例如世界上最大的暖流——墨西哥洋流,在流經北歐時為1厘米長海岸線上提供的熱量大約相當於燃燒600噸煤的熱量。據估算世界上可利用的海流能約為0.5億千瓦,而且利用海流發電並不復雜。海流發電也受到許多國家的重視。
1973年,美國試驗了一種名為「科里奧利斯」的巨型海流發電裝置。該裝置為管道式水輪發電機,機組長110米,管道口直徑170米,安裝在海面下30米處。在海流流速為2.3米/秒條件下,該裝置獲得8.3萬千瓦的功率。日本、加拿大也在大力研究試驗海流發電技術。我國的海流發電研究也有樣機進入中間試驗階段。
世紀90年代以來,我國開始計劃建造海流能示範應用電站,在「八五」、「九五」科技攻關中均對海流能進行連續支持。目前,哈爾濱工程大學正在研建75千瓦的潮流電站。義大利與中國合作在舟山地區開展了聯合海流能資源調查,計劃開發140千瓦的示範電站。因此要海流做出貢獻還是有利可圖的事業,當然也是冒險的事業。
『肆』 波浪能的案例
大約15年前,美國俄勒岡州就著手開發利用波浪能,但由於當時技術限制,波浪能發展計劃未能順利進行;然而據《紐約時報》報道,隨著技術進步,美國首個獲得商業許可的並網波浪能發電裝置日前已經進入了最後的測試階段,計劃於2012年10月在俄勒岡州正式下水。該裝置由海洋電力技術公司設計,8月獲得了美國聯邦政府的批准,並網之後足以為1000戶家庭提供電力。
『伍』 如何利用海浪進行發電
要利用海浪發電,關鍵是要探索海浪運動變化的規律,及時准確地將海浪能「收集」起來,加以利用。這就要求人們設計和試驗的波力發電裝置必須能充分地將大面積的波浪能加以吸收,並集中轉換成機械能,再帶動發電機運轉發出電來。同時要求發電裝置堅固結實,以抗禦海浪的沖擊。為研究這種裝置,許多海洋科學家進行了長期反復的探索和實驗。早在1799年法國人就開始設計研製波能轉換裝置,通過100多年的試驗,終於在1911年建成了世界上第一個波浪發電裝置。1965年,波能發電裝置作為導航及燈塔的工作用電開始在實際中運用。
『陸』 海洋波浪能的開發利用
波浪能量如此巨大,存在如此廣泛,自古吸引著沿海的能工巧匠們,想盡各種辦法,企圖駕馭海浪為人所用。
波浪所蘊涵的能量主要是是指海洋表面波浪所具有的動能和勢能。波浪的能量與波高的平方、波浪的運動周期以及迎波面的寬度成正比。波浪能是海洋能源中能量最不穩定的一種能源。台風導致的巨浪,其功率密度可達每米迎波面數千kW,而波浪能豐富的歐洲北海地區,其年平均波浪功率也僅為20~40kW/m中國海岸大部分的年平均波浪功率密度為2~7kW/m。
全世界波浪能的理論估算值也為109kW量級。利用中國沿海海洋觀測台站資料估算得到,中國沿海理論波浪年平均功率約為1.3X107kW。但由於不少海洋台站的觀測地點處於內灣或風浪較小位置,故實際的沿海波浪功率要大於此值。其中浙江、福建、廣東和台灣沿海為波能豐富的地區。
將波浪能收集起來並轉換成電能或其他形式能量的波能裝置有設置在岸上的和漂浮在海里的兩種。
按能量傳遞形式分類有直接機械傳動、低壓水力傳動、高壓液壓傳動、氣動傳動4種。
其中氣動傳動方式採用空氣渦輪波力發電機,把波浪運動壓縮空氣產生的往復氣流能量轉換成電能,旋轉件不與海水接觸,能作高速旋轉,因而發展較快。
波力發電裝置五花八門,不拘一格,有點頭鴨式、波面筏式、波力發電船式、環礁式、整流器式、海蚌式、軟袋式、振盪水柱式、多共振盪水柱式、波流式、擺式、結合防波堤的振盪水柱式、收縮水道式等十餘種。
全世界波浪利用的機械設計數以千計,獲得專利證書的也達數百件,因此波浪能利用被稱為「發明家的樂園」。
最早的波浪能利用機械發明專利是1799年法國人吉拉德父子獲得的,他們嘗試為一種可以附在漂浮船隻上的巨大杠桿申請專利,它可以隨海浪一起波動來驅動岸邊的水泵和發電機。1854-1973年的119年間,英國登記了波浪能發明專利340項,美國為61項。在法國,則可查到有關波浪能利用技術的600種說明書。
早期海洋波浪能發電付諸實用的是氣動式波力裝置。道理很簡單,就是利用波浪上下起伏的力量,通過壓縮空氣,推動汲筒中的活塞往復運動而做功。1910年,法國人布索.白拉塞克在其海濱住宅附近建了一座氣動式波浪發電站,供應其住宅l000瓦的電力。這個電站裝置的原理是:與海水相通的密閉豎管中的空氣因波浪起伏而被壓縮或抽空稀薄,驅動活塞做往復運動,再轉換成發電機的旋轉運動而發出電力。
1960年代,日本研製成功用於航標燈浮體上的氣動式波力發電裝置。此種裝置已經投入批量生產,產品額定功率從60瓦到500瓦不等。產品除日本自用外,還出口,成為僅有的少數商品化波能裝備之一。該產品發電的原理就像一個倒置的打氣筒,靠波浪上下往復運動的力量吸、壓空氣,推動渦輪機發電。
有關專家估計,用於海上航標和孤島供電的波浪發電設備有數十億美元的市場需求。這一估計大大促進了一些國家波力發電的研究。
1970年代以來,英國、日本、挪威等國為波力發電研究投入大量人力物力,成績也最顯著。英國曾計劃在蘇格蘭外海波浪場,大規模布設「點頭鴨」式波浪發電裝置,供應當時全英所需電力。這個雄心勃勃的計劃,後因裝置結構過於龐大復雜成本過高而暫時擱置。
1980年代,日本「海明」波浪發電試驗船取得年發電19萬度的良好成績,實現了海上浮體波浪電站向陸地小規模送電。日本已將「海明」波浪發電船列為「離島電源」的首選方案,繼續研究改進。
中國波力發電研究成績也很顯著。1970年代以來,上海、青島、廣州和北京的五六家研究單位開展了此項研究。用於航標燈的波力發電裝置也已投入批量生產。向海島供電的岸式波力電站也在試驗之中。
『柒』 波浪能發電裝置
波浪發電裝置主要是將波力轉換為壓縮空氣來驅動空氣透平發電機發電。當波浪上升時將空氣室中的。
海洋能與潮汐能、海洋溫差能、鹽梯度能、洋流能等能源一樣,是海洋能源中最豐富、最普遍、較難利用的資源之一。波浪能又是海洋能中所佔比重較大的海洋能源。海水的波浪運動產生十分巨大的能量。
據估算,世界海洋中的波浪能達700億千瓦,佔全部海洋能量的94%,是各種海洋能中的「首戶」。
現狀及前景
雖然波浪能開發的技術復雜、成本高、投資回收期長。但是近200年來,世界各國還投入了很大的力量進行了不懈的探索和研究。除了實驗室研究外,挪威、日本、英國、美國、法國、西班牙和中國等國家已建成多個數十瓦至數百千瓦的試驗波浪發電裝置。
主要的形式有活動點頭鴨、波面筏、海蚌型;浮體式振盪水拄型;固定式(岸式)振盪水拄型;水流型;壓力柔性袋型等裝置。
『捌』 各個國家發明了哪些裝置進行海浪發電
1964年,日本製成了世界上第一個供航標燈照明用電的海浪發電裝置,發電量很小,僅夠一盞燈使用,但它開創了海浪發電的先河。
挪威的科技人員克服重重困難,在1985年建成了兩座海浪電站,地點在這個國家的南部大西洋沿岸的卑爾根市附近。
挪威的海浪發電技術已經出口國外。他們首先在印度尼西亞的巴厘島承建了一項海浪發電工程,電站的裝機容量為1000千瓦。接著又在湯加王國建造一座2000千瓦的海浪電站,1990年竣工。
不僅可以利用海浪上下垂直運動的力量來發電,也可以利用海浪的左右橫向運動把海浪能轉換成機械旋轉或擺動運動的能量。
英國人索爾特研製了一種「點頭鴨」式的海浪發電裝置,它的外形像個大凸輪,凸輪尖的一頭繞凸輪軸轉動,另一頭是個中空的圓筒,圓筒上有向內向外的葉片。「點頭鴨」連成一串,浮在海面上,海浪一來,它們就繞著凸輪軸左右搖擺,而圓筒上的葉片也跟著來回轉動,把水趕進渦輪機,轉動渦輪發電機發電。
瑞典人與英國人異曲同工,開發出一種海浪葉輪發電裝置。這種發電裝置由一串葉輪組成,當海浪迎面湧向葉輪時,海水進入葉輪,轉動葉輪上的葉片,最後通過變速機構帶動發電機旋轉發電。
新型的海浪發電裝置還有一種叫環礁式海浪電站,是由美國人開發設計的。這種電站是模仿海上圓環形礁石的產物,從海面上只能看到一個直徑10米的圓圈,可水下的人工環礁卻是個龐然大物,底部直徑76米,有一個足球場那麼大。人工環礁的圓形壁是個導流罩,用來引導海浪向環礁中心流動。當海浪沖向環礁式電站時,海水將沿著環礁壁從四面八方按螺旋形路線湧向環礁中心,並在那裡形成旋渦,轉動水輪機發出電來。
『玖』 淺談波浪能發電裝置發電機優化設計
淺談波浪能發電裝置發電機優化設計
引言:發電機的三相輸出接到風光互補控制器上,通過控制器可以得到48V的穩定電壓,可將穩定的電能存儲在蓄電池中。以下是我來淺談波浪能發電裝置發電機優化設計,希望對你們有幫助。
【論文摘要】 本文在上海海洋大學研製的“浪流一體化發電裝置”的基礎上,對其發電機進行了優化設計,去掉了發電機和水輪機的中間轉換裝置,滿足了海洋能直驅發電的形式,通過電機實驗室性能測試驗證了其可行性,提高了發電效率和可靠率,降低了維護成本,可以應用於實際生產中。
【關鍵詞】浪流一體化;發電裝置;發電機;優化設計;直驅發電
0 前言
上海海洋大學研製的“浪流一體化發電裝置”同時可以捕獲波浪和海流的向前的推力,在接受到海洋能量之後產生慣性而發生連續轉動;通過主軸帶動發電機旋轉而產生電能。為海洋觀測、島礁生活、海洋養殖、海水淡化等提供穩定的電能,並用於解決邊遠海域的國防設施、部分電網未覆蓋的有居民海島、偏遠無居民海島生態建設中的供電需求。本文以此發電裝置為研究對象,對其水輪機匹配的發電機進行了優化設計,克服了傳統的海洋能需要經過三個部分轉換的缺點,沒有齒輪箱,減少了傳動損耗,採用發電機輸出電壓穩定控制器,實現了浪輪機的輸出轉速穩定,提高了發電效率,降低了運行維護成本。尤其是在低轉速環境下,效果更加顯著。
1 研究對象與方法
本項目設計的發電機是滿足海洋能直驅發電形式的。然而,齒輪箱的存在卻成為制約海洋能發電機組發展的因素之一:機組運行過程中齒輪箱一直處於高速旋轉,增加了系統損耗,降低了能量利用率;海洋能發電機組往往安裝在海平面或海水之中,經受嚴寒酷暑,海水腐蝕、溫度變化大,環境條件惡劣,導致升速齒輪箱的工況嚴峻,維護保養工作量大;為了能適應惡劣的運行環境,齒輪箱畢竟造價昂貴,更由於海洋能能量多變,往往會造成過載,這樣就更容易損壞齒輪箱,使得系統運行成本增大。
因此,本設計取掉了中間轉換環節,水輪機主軸右端通過聯軸器和電機連接在一起,直接帶動電機發電,中間不經過任何環節,這就實現了絕對的直驅。本文研製海洋能直驅發電方式有以下幾個方面優點:
(1)提高了發電效率高。直驅式發電沒有齒輪箱,減少了傳動損耗,提高了發電效率,尤其是在低轉速環境下,效果更加顯著。
(2)提高了可靠性。直驅技術省去了齒輪箱及其附件,簡化了傳動結構,提高了機組的可靠性。同時,機組在低轉速下運行,旋轉部件少,可靠性更高。
(3)運行及維護成本低。採用無齒輪直驅技術可減少發電機組裝置零部件數量,避免齒輪箱油的定期更換,降低了運行維護成本。
然而,這樣的海洋能直驅發電方式就需要發電機具有低速運行的'特性,並且有較高的效率,更者要求發電機要能在海水中運行。
2 直驅發電機設計
2.1 直驅發電機結構設計
發電機採用盤式結構:波浪能單位體積所攜帶的能量有限,要能高效的收集這些能源,發電機則成為本裝置中能源轉換的關鍵設備之一。波浪能發電機,最多每分鍾幾百轉,因此發電機的技術指標、經濟性等決定本裝置在市場中的競爭力。常用發電機分為盤式和圓柱式兩種:圓柱式發電機的氣隙磁場延軸向分布,要想獲得較高的發電效率,圓柱式發電機必須運行在高速下,而盤式發電機的定轉子為平行結構,克服了圓柱式發電機定子包容轉子的結構缺點,軸向尺寸小,沒有疊片和鉚壓工序,工藝好,因此盤式發電機可以運行在低速條件下。因此發電機選用盤式發電機結構,能夠在低轉速下達到額定功率,從而滿足了波浪能發電系統對發電機的技術要求,提高了效率。
2.2 發電機輸出電壓穩定控制器設計
發電機的三相輸出接到風光互補控制器上,通過控制器可以得到48V的穩定電壓,可將穩定的電能存儲在蓄電池中。控制器的原理是將輸入的交流電流通過三相橋式全控整流電路轉化成直流電流,直流電流通過升降壓斬波電路將電壓輸出控制在48V。值得注意的是發電機轉速達到54r/min控制器輸出端才會有電流輸出。控制器如圖2所示,經過控制器流出的電流為直流,將控制器後面的電池組“+”“-”接到蓄電池的介面即可,反面細節如圖3所示。
2.3 直驅電機工作原理
2.3.1 三相橋式全控整流電路
在三相橋式全控整流電路中,如圖4所示,晶閘管KP1和KP4接a相,晶閘管KP3和KP6接b相,晶管KP5和KP2接c相。晶閘管KP1、KP3、KP5組成共陰極組,而晶閘管KP2、KP4、KP6組成共陽極組。
2.3.2 升降壓斬波電路原理
如圖5所示為升降壓斬波電路原理,V通時,電源E經V向L供電使其貯能,此時電流為i1。同時,C維持輸出電壓恆定並向負載R供電。V斷時,L的能量向負載釋放,電流為i2。負載電壓極性為上負下正,與電源電壓極性相反,該電路也稱作反極性斬波電路。
3 實驗分析
在實驗室中模擬不同工況水流下輪機所具有的轉數,並以可控轉數電動機帶動發電機測試其發電性能。為此,我們搭建了發電機測試平台。發電機測試平台如圖7所示,通過機架將發電機固定,通過聯軸器與感測器相連。在發電機測試平台中,右邊是直流電動機,模擬水輪機的作用,作為動力的出入。通過聯軸器與電動機相連的是感測器,這種感測器連接顯示屏後可以看到瞬態的扭矩、轉速、功率。其中功率可是為發電機的輸入功率,這樣我們測出輸出功率後可以得到發電機的效率。電阻箱、整流器與扭矩儀如圖8所示,扭矩儀上的3個顯示屏即為扭矩、轉速、功率。
發電機所發出的是三相交流電,三相交流電輸入電子測試平台,通過電子測試平台,可以得到三相交流電的瞬態電壓、電流、功率、功率因數。流出整流器的電流經過整流變為直流電流,流入功率計,並將滑動變阻箱串聯到整個電路中。
4 電機方案總結與展望
方案採用直驅式發電形式不僅增加了發電效率,而且提高的發電裝置的可靠性,無障礙運行時間滿足了要求。發電機採用盤式發電機結構,其能夠在低轉速下達到額定功率,從而滿足了波浪能發電系統對發電機的技術要求,提高了效率。裝置發出的三相交流電通過控制器後,經實際測量,電壓基本維持在48V左右,且為直流電,這將電能存儲到蓄電池中提供了條件,並最終達到了我們的要求。
但是發電機組安裝在海平面或海水之中,經受嚴寒酷暑,海水腐蝕、溫度變化大,環境條件惡劣,容易遭受海水腐蝕,因此今後可以做的研究方向還有以下幾個方面:
1)發電機本身要具有良好的機械密封設計,評估不同海水深度、壓力下密封系統的可靠性。研究海水環流條件下,涉海材料在淤泥、深海、淺海、浪花飛濺、海霧等不同區域環境下,其腐蝕規律,設計相應的耐腐蝕材料;
2)發電機外部可增設防水箱,使發電機與海水具有了隔離層,不僅達到了防水的效果,也使發電機無需浸泡在海水中。
【參考文獻】
[1]游亞戈.我國海洋波浪能的發展進展[J].中國科技成果,2006(2):17-19.
[2]李允武.海洋能源開發[M].海洋出版社,2008.
[3]盛松偉,游亞戈,馬玉久.一種波浪能實驗裝置水動力學分析與優化設計[J].海洋工程,2006,24(3):107-112.
[4]張峰,游亞戈,吳必軍,李甫傑.中國海洋能專利研究[J].可再生能源,2007,25(2):79-81.
『拾』 怎麼利用海浪發電海浪發電原理是什麼海浪發電裝置內部結構
背景:
風與海面作用產生海浪,海浪能是以動能形式表現的水能資源之一。1977年,有人對世界各大洋平均波高1米、周期1秒的海浪進行推算,認為全球海浪能功率約為700億千瓦,其中可開發利用的約為25億千瓦,與潮汐能相近。海浪中蘊藏有如此豐富的能量,如將海浪的動能轉化為電能,使製造災難的驚濤駭浪為人類服務,是人們多年來夢寐以求的理想。
早在20世紀70年代,英國愛丁堡大學的工程師斯蒂芬•索爾特就發明了利用海浪發電的「愛丁堡鴨」海浪發電裝置。之後,世界上許多國家,如英國、日本、美國、加拿大、芬蘭、丹麥、法國等都在研究和試驗海浪發電,並相繼提出了數百種發電裝置設計方案。但是,由於這樣或那樣的技術問題,海浪發電研究一直沒有什麼大的突破。直到今天,在能源開發方面,海浪能的利用仍然落後於風能和潮汐能的利用。
現狀:
測試海浪發電機的成本很高,而且極其危險,是阻礙海浪發電研究和海浪能利用的重要原因之一。反復無常、變幻莫測的海洋既能產生巨大的能量,也能對機械裝置造成毀滅性的破壞。
在蘇格蘭西海岸的艾斯雷島上,Wavegen公司建造的500千瓦的「帽貝」海浪發電機已經向電網供電,這是目前世界上最成功的海浪發電裝置,然而它是安裝在海岸上的。根據海浪發電專家的意見,效率更高、能產生更多電能的海浪發電機必須是漂浮在海洋上的,而不是安裝在海岸上的。
為解決一直困擾著海浪發電機設計和建造的各種問題,製造更先進的海浪發電機,歐洲海洋能源中心在英國政府的資助下建立了奧克尼海浪發電試驗場。該試驗場中安裝有抗風暴的系泊設備和鎧裝電纜,使得安裝和測試海浪發電機變得方便而廉價。現在,在奧克尼海浪發電試驗場,歐洲海洋能源中心能同時安裝四台海浪發電機,研究人員能夠同時對不同的海浪發電機進行直接比較,這樣就有可能挑選出最好的海浪發電機,從而以很低的成本產生出更多的電能。進一步說,在試驗場里還有與電網相連的接入口,這樣一來,實驗測試用的海浪發電機在開始試驗時就可能為研製者帶來收益,從而降低了研製成本。
在奧克尼海浪發電試驗場中,所有進行測試的海浪發電機都配有「插座」。這些「插座」固定在海底的混凝土墩子上。並由多用途電纜連接岸上設備。多用途電纜包括1條能傳送23兆瓦電能的電纜和2條光纜,其中一條光纜用來將海浪發電設備的數據傳輸到岸上的控制室,另一條光纜將岸上的控制指令傳送給海浪發電設備。海底的水流沖擊力很強,如果電纜不加以特殊的保護,那麼電纜在與岩石不斷摩擦後就會遭到毀壞。為了保護好電纜,研究人員採用了鎧裝電纜,同時用沉重的混凝土護墊將其保護和固定起來。
海浪發電機所產生的電能先被送到岸邊的一對變電站,然後再被送入國家電網。而數據收集中心則在離海岸大約35千米的遠處。每個系泊位(插座)都由各自獨立的控制中心進行控制,各個公司可以在試驗場租用一個系泊位,然後通過互聯網在自己公司的辦公室內進行遙控操作。公司租用一個系泊位,每年要付一筆試驗費用,如果試驗中的發電設備運行良好的話,公司出售電能的收入將可以基本抵銷支付的試驗費用。
通過減少海浪發電機的試驗費用,歐洲海洋能源中心努力幫助開發者將他們美好的設想轉變為現實。眼下,既受到歐洲海洋能源中心試驗場設施的誘惑,又得到英國政府的資助,Wavegen公司開始了新的試驗。該公司計劃開發一種漂浮在海洋上的海浪發電機,並在2004年進行測試,其基本原理與「帽貝」海浪發電機相同,依靠海浪驅動氣動渦輪機發電。
奧克尼海浪發電試驗場的第一個用戶可能是「海蛇」。「海蛇」是英國海洋電力設備公司研製的一款海浪發電機的別稱。該公司正在利用歐洲海洋能源中心建造的750千瓦的「海蛇」海浪發電機的樣機。據說。「海蛇」的設計壽命為 15-20年,能經受住百年一遇的巨浪的沖擊。
海洋發電技術
多虧了名叫George Taylor的企業家,從2007年開始,俄勒岡海邊大面積的,有規律的海浪將為西海岸的家庭和企業供電。Taylor現年72歲,在澳大利亞長大,學過電氣工程,過去四十年裡是美國一家小公司的業主。他最近的一項發明是能將海浪的上下運動轉化為電能的浮標,可以由沿海海底電纜控制,並能接入國家電網。
這種浮標是環保主義者的理想之物-從沙灘上就可以看到,引入了一種豐富的可再生的能源,而對海洋生物的影響微乎其微,也不會釋放出導致全球變暖的氣體。
Taylor計劃在2010年之前做出一個100噸重,37英尺寬的浮標,能發電500千瓦。四十個那樣的浮標連在一起發電的成本比起煤電廠要低得多,更不用說燃燒天然氣等珍貴燃料發電的電廠。如此清潔的電能可以用來淡化海水,電解水,為燃料電池汽車提供氫氣,或者為其它宏偉的,急需能源的項目提供廉價電能。
海浪發點設備:
海浪發電機由英國Checkmate 海洋能源公司設計,是一種類似蟒蛇的大型發電設備,由橡膠製成。寬度將達到7米,長度達到200米,二十五分之一大小的原型已於最近完成測試。投入使用後,可滿足1000個普通家庭的用電需求。據他們透露,「巨蟒」將於2014年左右投入運轉。