A. 全超導托卡馬克核聚變實驗裝置的基本原理
核能是能源家族的新成員,包括裂變能和聚變能兩種主要形式。裂變能是重金屬元素的核子通過裂變而釋放的巨大能量。受控核裂變技術的發展已使裂變能的應用實現了商用化,如核(裂變)電站。裂變需要的鈾等重金屬元素在地球上含量稀少,而且常規裂變反應堆會產生放射性較強的核廢料,這些因素限制了裂變能的發展。聚變能是兩個較輕的原子核聚合為一個較重的原子核並釋放出的能量。目前開展的受控核聚變研究正是致力於實現聚變能的和平利用。其實,人類已經實現了氘氚核聚變--氫彈爆炸,但那是不可控制的瞬間能量釋放,人類更需要受控核聚變。維系聚變的燃料是氫的同位素氘和氚,氘在地球的海水中有極其豐富的蘊藏量。經測算,l升海水所含氘產生的聚變能等同於300升汽油所釋放的能量。海水中氘的儲量可使人類使用幾十億年。特別的,聚變產生的廢料為氦氣,是清潔和安全的。因此,聚變能是一種無限的、清潔的、安全的新能源。這就是世界各國尤其是發達國家不遺餘力競相研究、開發聚變能的根本原因。
受控熱核聚變能的研究主要有兩種--慣性約束核聚變和磁約束核聚變。前者利用超高強度的激光在極短的時間內輻照氘氚靶來實現聚變,後者則利用強磁場可很好地約束帶電粒子的特性,將氘氚氣體約束在一個特殊的磁容器中並加熱至數億攝氏度高溫,實現聚變反應。
托卡馬克(Tokamak)是前蘇聯科學家於20世紀50年代發明的環形磁約束受控核聚變實驗裝置。經過近半個世紀的努力,在托卡馬克上產生聚變能的科學可行性已被證實,但相關結果都是以短脈沖形式產生的,與實際反應堆的連續運行有較大距離。超導技術成功地應用於產生托卡馬克強磁場的線圈上,是受控熱核聚變能研究的一個重大突破。超導托卡馬克使磁約束位形能連續穩態運行,是公認的探索和解決未來聚變反應堆工程及物理問題的最有效的途徑。目前建造超導裝置開展聚變研究已成為國際熱潮。
托克馬克從本質上說是一種脈沖裝置,因為等離子體電流是通過感應方式驅動的。但是,存在所謂的「先進托克馬克」運行的可能性,即它們可以利用非感應外部驅動和發生在等離子體內的自然的壓強驅動電流相結合而實現運行。它們需要仔細地調節壓強和約束使之最佳化。在理論和實驗上正在研究這種先進托克馬克,因為連續運行對聚變功率的產生是最有希望的,其相對小的尺寸導致比類ITER設計更經濟的電站。先進超導托克馬克實驗裝置是指裝置的環向磁場和極向磁場線圈都是超導材料繞制而成的,它可以大大節省供電功率,長時間維持磁體工作,並且可以得到較高的磁場。
等離子體物理研究所主要從事高溫等離子體物理、受控熱核聚變技術的研究以及相關高技術的開發研究工作,擔負著國家核聚變大科學工程的建設和研究任務,先後建成HT-6B、HT-6M等托卡馬克實驗裝置。1994年底,等離子體所成功地建成我國第一台大型超導托卡馬克裝置HT-7,使我國進入超導托卡馬克研究階段,研究成果引起了國際聚變界的廣泛關注。「九五」國家重大科學工程--大型非圓截面全超導托卡馬克核聚變實驗裝置EAST計劃的實施,標志著我國進入國際大型聚變裝置(近堆芯參數條件)的實驗研究階段,表明中國核聚變研究在國際上已佔有重要地位。
B. 全超導托卡馬克核聚變實驗裝置的研究成果
HT-7裝置1995年投入運行,經過多方面的改進和完善,裝置運行的整體性能和水平有了很大的提高。13年來,物理實驗不斷取得重大進展和突破,獲得了一系列國際先進或獨具特色的成果。
在中心等離子體密度大於2.2×1019/m3條件下,最高電子溫度超過5 000萬度;獲得可重復大於60秒(最長達到63.95秒)、中心電子溫度接近500萬度、中心密度大於0.8×1019/m3的非感應全波驅動的高溫等離子體;成功地實現了306秒的穩態等離子體放電,等離子體電流60kA,中心電子密度0.8×1019/m3,中心電子溫度約1 000萬度;2008年春季,HT-7超導托卡馬克物理實驗再次創下新紀錄:連續重復實現了長達400秒的等離子體放電,電子溫度1 200萬度,中心密度0.5×1019/m3。這是目前國際同類裝置中時間最長的高溫等離子體放電。
同時,還在HT-7上開展了石墨限制器條件下的運行模式、等離子體物理特性和波加熱、波驅動高參數等離子體物理特性以及高參數、長脈沖運行模式等世界核聚變前沿課題的研究,出色完成了國家「863」計劃和中科院重大課題研究任務。HT-7實驗的成功使中國磁約束聚變研究進入世界先進行列,也使HT-7成為世界上(EAST建成之前的)第二個全面開放的、可進行高參數穩態條件下等離子體物理研究的公共實驗平台。
EAST在2007年1-2月的第二輪等離子體放電實驗中,獲得了穩定、可控具有大拉長比的偏濾器位形等離子體放電,最大等離子體電流達0.5MA,在0.2MA等離子體電流下最長放電達9秒,並成功完成了磁體、低溫、總控和保護、等離子體控制等多項重要工程測試和物理實驗。
2016年2月,中國EAST物理實驗獲重大突破,成功實現電子溫度超過5000萬度、持續時間達102秒的超高溫長脈沖等離子體放電。這也是截至2016年2月國際托卡馬克實驗裝置上電子溫度達到5000萬度持續時間最長的等離子體放電。標志著中國在穩態磁約束聚變研究方面繼續走在國際前列。 發展目標:通過15年(2006-2020)的努力,使EAST成為我國磁約束聚變能研究發展戰略體系中最重要的知識源頭,使我國核聚變能開發技術水平進入世界先進行列。同時,積極參與國際合作,消化、吸收、掌握聚變堆關鍵科學與技術,鍛煉隊伍,培養人才,儲備技術,使得我國有能力獨立設計和建設(或參與國際合作)聚變能示範堆。
HT-7裝置是國際上正在運行的(EAST投入正式運行之前)第二大超導托卡馬克裝置,配合EAST的科學目標開展高溫等離子體的穩態運行技術和相關物理問題的研究,其穩態高參數等離子體物理實驗結果和工程技術發展對EAST最終科學目標的實現和國際聚變研究都具有重要的直接意義。
EAST的科學研究分三個階段實施:
第一階段(3-5年):長脈沖實驗平台的建設;第二階段(約5年):實現其科學目標,為ITER先進運行模式奠定基礎;第三階段(約5年):長脈沖近堆芯下的實驗研究。
EAST將對國內外聚變同行全面開放,結合國內外聚變的科學、技術和人才優勢,開展磁約束聚變的科學和技術研究,培養國內磁約束聚變人才,為中國聚變能的發展奠定基礎。
C. 受控核聚變實驗裝置是什麼裝置
如同某些重原子能發生裂變,同時釋放出巨大的能量一樣,某些輕核也能聚變成較重的核,並釋放出比裂變時大幾倍甚至幾十倍的能量。因此,輕核聚變將是人類獲得核能的另一條更有遠大前景的途徑。人們開展了很多這方面的研究,力求在人為可控的條件下將輕原子核(主要為氘、氚等)聚合成較重的原子核,同時釋放出巨大能量——這就是所謂的受控核聚變。由於氘在地球的海水中藏量豐富,多達40萬億噸,且反應產物是無放射性污染的氦,因此它具有釋放能量密度高、燃料豐富、成本低廉、與環境兼容性強、安全性好等優點。
然而由於聚變反應能夠自持進行的條件十分苛刻,要首先使燃料處於等離子體狀態,並使等離子體的溫度達到幾千萬度甚至幾億度並持續足夠長的熱能約束時間,原子核才可以克服斥力聚合在一起,所以受控核聚變的實現極其艱難。目前這方面的研究分慣性約束和磁約束兩種途徑。慣性約束是利用超高強度的激光在極短的時間內輻照靶板來產生聚變;磁約束是利用強磁場可以很好的約束帶電粒子的特性,構造一個特殊的磁容器,建成聚變反應堆。20世紀下半葉,聚變能的研究取得了重大進展,利用一種環行磁約束裝置——托卡馬克研究領先於其他途徑。
中國一直很重視這方面的研究。中國核工業西南物理學院於1986年自行研製成功托卡馬克研究裝置——「中國環流器一號」。1994年他們又研製成「中國環流器新一號裝置」,更在2002年12月研製成功「中國環流器二號A裝置」。位於中國安徽省合肥市的中國科學院等離子體物理研究所承擔的HT一7超導托卡馬克實驗在2002年至2003年冬季取得了重大進展,該裝置是將超導技術成功應用於產生托卡馬克磁場的線圈上,使得磁約束的連續穩態運行成為現實。這是受控核聚變研究的一次重大突破。中科院等離子體所的HT-7托卡馬克實驗裝置成功的實現了在低雜波驅動下電子溫度超過500萬度、中心密度大於1.0×1019/m3、長達20秒可重復的高溫等離子體放電;實現了電子溫度超過1000萬度、中心密度大於1.2×1.0 x 1019/m3、超導10秒的等離子體放電。在離子伯恩斯波和低雜波協同作用下,實現放電脈沖長度大於100倍能量約束時間、電子溫度2000萬度的高約束穩態運行;最高電子溫度超過3000萬度。
等離子所取得的重大進展表明,HT-7超導托卡馬克裝置已經成為世界上第二個放電長度達到1000倍熱能約束時間。溫度為1000萬度以上,能對穩態先進運行模式展開深入的物理和相關工程技術研究的超導裝置,在穩態高約束運行長度上已達到世界領先水平。
D. 微管反應器原理
微化工系統是以帶有微結構元件的化工裝備為核心的化工系統,它的突出特點是在微時空尺度上控制流動、傳遞和反應過程,為實現高效、安全的物質轉化提供了基礎。微化工系統相關研究起源於20世紀90年代[1],多年來的研究結果表明:微化工設備內流動狀態高度可控,液滴和氣泡的分散尺度一般在數微米至數百微米之間;具有豐富的多相流型,一些流型中的液滴和氣泡結構與尺寸高度均一;由於微尺度下傳遞距離短、濃度/溫度梯度高以及體系巨大的比表面積,微反應器內傳熱/傳質系數較傳統化工設備大1-3個數量級[2]。
國內開展微反應器研究已經有十餘年時間,在微反應器的設計製造、微混合原理的探索、氣相反應、液相反應、納米顆粒制備等領域得到迅速發展,取得了顯著成果[3]。目前從事微反應器相關研究的主要有中國科學院大連物理化學研究所、清華大學、華東理工大學和山東豪邁化工技術有限公司等科研院校和科研單位。
聚合反應對反應器的傳熱和混合有很高的要求,傳統的釜式反應器在這方面的缺陷成為獲得高性能聚合產物的瓶頸之一。近年來,微反應器已能夠成功應用於多種機理的聚合反應並表現出對傳統釜式反應器的顯著優勢。從當前的發展趨勢來看,微反應器在聚合反應中的應用將成為化工和高分子領域的研究熱點之一。本文綜述了微反應器在不同的聚合反應體系中的應用。
1
自由基聚合
聚合溫度對自由基聚合所得產物的分子量和分子量分布有很大影響。因此,對反應體系溫度的控制是控制產品質量的關鍵因素。大部分自由基聚合是較強的放熱反應,且反應速度較快。在傳統的釜式反應器中,反應器傳熱和傳質能力的不足往往導致反應體系內溫度分布不均,從而影響產物的分子量分布。在放熱較強的自由基聚合中,使用傳熱能力強的微反應器可以顯著改善反應結果。
Iwasaki等[4]用T形微混合器和內徑分別為250μm和500μm的微管式反應器組成微反應器系統(圖一),進行了一系列丙烯酸酯單體的自由基聚合。釜式反應器中丙烯酸丁酯的聚合反應產物分子量分布指數(PDI)高達10以上,而相同的反應時間和產率下微混合器中反應產物的PDI可控制在3.5以下,證明微反應器可以有效地控制自由基聚合產物的分子量分布。
圖一 丙烯酸酯自由基聚合微反應器裝置圖
Okubo等[5]在微反應器中進行了苯乙烯的懸浮聚合,反應物和水通過K-M型微混合器形成懸浮液,再經過管式反應器進行聚合[圖2(a)]。經過降溫可直接在管內得到聚合物顆粒,通過改變流量可以調節聚合物顆粒大小。
微通道中的液滴聚合是一種新興的聚合方式,其基本原理為在管內利用不良溶劑將反應體系分隔成小液滴,每個小液滴均可看做一個微型反應器。在較小的微通道尺寸下,液滴聚合的混沌混合特性進一步強化了傳質效果。Okubo等利用液滴聚合合成了聚苯乙烯和聚甲基丙烯酸甲酯,反應裝置見圖二(b)。通過調節停留時問和控制兩相間溶劑擴散的方法可以實現對聚合產物分子量的控制;與釜式反應器相比,得到的聚苯乙烯和聚甲基丙烯酸甲酯的分子量分布較窄,經過微反應器沉澱得到的聚合物粒子分布也較均一。
圖二 苯乙烯自由基聚合實驗裝置示意圖
Wu等[6}在自製的雙輸入微通道(500μm*600μm)反應器中進行了甲基丙烯酸羥丙酯(HPMA)的ATRP聚合。單體和催化劑從一個通道進入,引發劑從另一入口通入,通過對流量調節可以實現對產物分子量和分子量分布的調控。Wu等[7}隨後又設計了結構相似的三輸入微反應器,實現了環氧乙烷與HPMA的ATRP共聚合。通過調節反應時間和引發劑相對濃度兩種方法均可實現對聚合產物中HPMA含量的調節。Chastek等[8]在微反應器中進行了苯乙烯和一系列丙烯酸酯的ATRP共聚合,通過特定溶劑使產物膠束化,並用動態光散射法對膠束進行了測定,反應裝置見圖三。
圖三 ATRP共聚、膠束化和DLS檢測集成裝置示意圖
2
陰離子聚合
Honda等[9}在由微混合器和微管反應器(內徑250μm)組成的微反應器裝置中進行了氨基酸-N-羧基-環內酸酐的陰離子聚合。所得產物的分子量分布窄於釜式反應器的聚合產物,並可以通過調節流速來控制產物分子量和分子量分布。如圖四所示,流速降低時,反應物停留時問增長,反應程度提高,產物的分子量變大,分子量分布變窄。
圖四 不同流速下的GPC流出曲線
3
陽離子聚合
Nagaki等[10]將微反應器與「陽離子池」引發技術結合,進行了一系列乙烯基醚單體的陽離子聚合(圖五)。陽離子池的高效引發結合微反應器的快速混合使反應在0.5 s內即可完成,並能很好地控制產物的分子量分布,產物的PDI從釜式反應器的2.25降至1.14。