導航:首頁 > 裝置知識 > 分解反應平衡常數的測定實驗裝置圖

分解反應平衡常數的測定實驗裝置圖

發布時間:2022-12-06 07:27:38

❶ 急求 氨基甲酸銨的分解反應 實驗報告

一、實驗目的和要求

1、熟悉用等壓法測定固體分解反應的平衡壓力。
2、掌握真空實驗技術。
3、測定氨基甲酸銨分解壓力,計算分解反應平衡常數及有關熱力學函數。

二、實驗內容和原理

氨基甲酸銨是是合成尿素的中間產物,白色固體,不穩定,加熱易發生如下的分界反應:

該反應是可逆的多相反應。若將氣體看成理想氣體,並不將分解產物從系統中移走,則很容易達到平衡,標准平衡常數 可表示為:

系統的總壓等於NH3和CO2的分壓之和,從化學反應計量方程式可知:CO2分壓占總壓的1/3,代入上式可得:

根據克勞修斯-克拉培龍方程的積分式可得:

(在此溫度范圍內 視為常數)
反應的標准摩爾吉布斯函數變化與標准平衡常數的關系為:

用標准摩爾熱效應和標准摩爾吉布斯函數變可近似地計算該溫度下的標准熵變:

因此,由實驗測出一定溫度范圍內不同溫度T時氨基甲酸銨的分解壓力(即平衡總壓),可分別求出標准平衡常數 及熱力學函數:標准摩爾熱效應、標准摩爾吉布斯函數變化及標准摩爾熵變。

三、主要儀器設備

儀器:等壓法測分壓裝置;數字式低真空測壓儀
試劑:氨基甲酸銨;硅油

如圖:

四、操作方法和實驗步驟
1、讀出大氣壓和室溫。
2、打開恆溫水浴開關,設定溫度為25℃。
3、抽空:
打開平衡閥與進氣閥,旋轉玻璃活塞,使兩個活塞為全通。打開氨基甲酸銨分解反應平衡常數測定儀,使單位調為Kpa,按置零鍵置零。打開真空泵,待泵運轉正常後,關閉玻璃放空活塞,觀察氨基甲酸銨分解反應平衡常數測定儀上的讀數,待壓力計讀數與大氣壓相近時,關閉玻璃活塞,打開玻璃放空活塞後,關閉真空泵,關閉進氣閥。
4、測量:
關閉平衡閥,緩慢打開平衡調節閥1放入空氣,觀察U型管兩端液面相等(1分鍾不變,因為是化學反應調平後還會動,直到不動為止)時,關閉平衡閥,記錄下溫度和氨基甲酸銨分解反應平衡常數測定儀上的讀數。25℃下的做兩次,要求每次測定的氣壓相差在5%以內,否則要從新做。
打開恆溫槽上的加熱開關,打開攪拌開關,設置溫度比上一個溫度高5℃。測定方法同上,共做4組。
當4組數測完後,打開平衡閥1,打開平衡閥2,打開進氣閥,打開玻璃活塞,關閉恆溫槽及氨基甲酸銨分解反應平衡常數測定儀電源,實驗結束。

五、實驗數據記錄和處理

實驗溫度:13.4℃,大氣壓:102.64Kpa 169418.125

溫度
(℃) 低真空測壓儀示數(Kpa) 分界反應總壓(Kpa) 平衡常數
G(J/mol) S(J•mol-1•K-1)
25 91.85 10.79 0.000186106 21293.1381 496.81364
30 86.84 15.80 0.000584343 18766.5538 496.95389
35 79.74 22.90 0.00177911 16224.2762 497.14051
40 70.60 32.04 0.00487275 13862.8561 496.74363

以1/T對lnK作圖得到如下結果:

根據上圖中直線斜率可得 =20375×8.315=169418.125 J/mol,氨基甲酸銨分解反應的ΔG和ΔS見數據處理中表格
查閱資料知25℃氨基甲酸銨分解的 =159.32kJ/mol。
相對誤差 Er=|159.32-169.42|/159.32=6.34%

七、實驗心得與討論

1、恆溫槽不必正是25.0℃,只要控制一個接近25.0℃的溫度即可,但一定要保證溫度波動較小。因為體系的溫度變化會較大程度地改變氨基甲酸銨的分解壓。
2、試驗過程中放進空氣的操作要緩慢,以避免空氣穿過等壓管汞柱進入平衡體系中,這也是保證試驗順利進行的重要操作之一。
3、為檢查25.0℃時是否真正達到平衡,也為了檢查小球內空氣是否置換完全,要求第一次做好後,放入空氣,再次抽氣並調節至平衡,重復測定一次,兩次測定允許誤差在5%以內,若不一致還要抽氣五分鍾,直到兩次結果一致為止。
【思考題】:
1、如何檢查系統是否漏氣?
答:關閉真空泵,關閉閥門,觀察平衡常數測定儀的示數是否變化,若變化則說明系統漏氣,若變化過快,則需要檢查裝置重新抽氣。

2、什麼叫分解壓?
答:固體或液體化合物發生分解反應,在指定的溫度下達到平衡時,所生成的氣體的總壓力,稱為分解壓。

3、怎樣測定氨基甲酸銨的分解壓力?
答:在真空中使氨基甲酸銨的分解達到平衡,,這是系統的總壓即為氨基甲酸銨的分解壓。

4、為什麼要抽凈小球泡中的空氣?若系統中有少量空氣,對實驗結果有何影響?
答:需要測定的只是的反應產生的氣體的壓力,即氨氣和二氧化碳的總壓,所以空氣排除得越干凈,得到的數據結果就越准確。如果系統中有少量空氣,得到的蒸氣壓數據就會偏大,平衡常數就會偏大。
5、如何判斷氨基甲酸銨分解已達平衡?
答:U型等壓計兩臂的液面無論是否等高,在1min內,液面不再變化即可認為反應體系已達平衡。

6、根據哪些原則選用等壓計中的密封液?
答:應選用蒸氣壓很小且不與系統中物質發生化學作用的液體。

7、當使空氣通入系統時,若通得過多有何現象出現?如何克服?
答:反應體系將漏入空氣。因此通氣速率一定要慢,如將氣泡引入,重新抽完全重新做。

❷ 某研究小組在實驗室探究氨基甲酸銨(NH2COONH4)分解反應平衡常數和水解反應速率的測定.將一定量純凈的

(1)A.2v(NH3)═v(CO2),不能說明正逆反應速率相等,不一定是平衡狀態,故A錯誤;
B.反應是一個前後系數和變化的反應,密閉容器中總壓強不變,證明達到了平衡狀態,故B正確;
C.密閉容器中混合氣體的密度ρ=

m
V
,質量不守恆,分子變化,V不變,容器中總密度不變,證明達到了平衡狀態,故C正確;
D.密閉容器中氨氣的體積分數不變,不能證明達到平恆狀態,故D錯誤.
故選BC;
(2)反應NH2COONH4(s)?2NH3(g)+CO2(g)的K=c2(NH3)?c(CO2),設二氧化碳濃度的變化量x,
NH2COONH4(s)?2NH3(g)+CO2(g)
初始濃度:0 0
變化濃度:2x x
平衡濃度:2x x
則3x=4.8×10-3mol/L,即x=1.6×10-3mol/L,K=1.6×10-3mol/L×(3.2×10-32≈1.6×10-8(mol?L-13,故答案為:c2(NH3)?c(CO2),;1.6×10-8(mol?L-13
(3)若在恆溫下壓縮容器體積,則會將壓強增大,平衡向左移動,固體質量增大,故答案為:增加;
(4)根據表中的數據分析:溫度越高,則平衡氣體的總濃度越大,所以升高溫度,平衡正向移動,反應是吸熱的,反應物是固體,產物是氣體,該反應是熵增加的過程,即△H>0,△S>0,故答案為:>;>.

❸ 分解平衡常數的測定實驗裝置中安裝緩沖瓶的作用是什麼

為了更好地控制參加反應的物質的濃度!(或者是物質的數量)

❹ 氨基甲酸銨分解反應平衡常數的測定為什麼要抽凈小球泡中的空氣

需要測定的是反應產生的氣體的壓力,即NH3和CO2的總壓。如果系統中有少量空氣,得到的蒸氣壓數據就會偏大,平衡常數就會偏大。

白色正方晶系,柱狀、板狀或片狀結晶性粉末。在乾燥空氣中穩定,但在濕空氣中則放出氨而變成碳酸氫銨。在室溫下略有揮發,59℃時分解為氨及二氧化碳。在密封管中加熱至120~140℃時,則失去水變為尿素。

溶解度:在100g水中為66.6g。能溶於乙醇。市售商品碳酸銨(ammoniumcarbonate)實際就是本品與碳酸氫銨的復鹽。

(4)分解反應平衡常數的測定實驗裝置圖擴展閱讀:

制備:

在1L未鍍銀的硬質玻璃杜瓦瓶中,放入約400mL無水液態氨。塞上帶一根彎曲毛細管的塞子,以防止水蒸氣在液氨表面上凝聚,毛細管用作氨蒸氣的凝氣裝置。 將乾冰(固體二氧化碳)打成碎末,慢慢加至液態氨中。

繼續加入乾冰至混合物呈半融的雪漿狀。蒸去過量的氨,氨基甲酸銨即留存為塊狀物。將其轉移至真空乾燥器中,在略為減壓條件下保存24h,待殘留的氨逸散和少量氨基甲酸銨分解後,即轉變為粉末狀固體。用400mL液氨可製得200~300g氨基甲酸銨。

❺ 高中化學選修4知識點總結

第1章、化學反應與能量轉化
化學反應的實質是反應物化學鍵的斷裂和生成物化學鍵的形成,化學反應過程中伴隨著能量的釋放或吸收。一、化學反應的熱效應
1、化學反應的反應熱
(1)反應熱的概念:
當化學反應在一定的溫度下進行時,反應所釋放或吸收的熱量稱為該反應在此溫度下的熱效應,簡稱反應熱。用符號Q表示。
(2)反應熱與吸熱反應、放熱反應的關系。
Q>0時,反應為吸熱反應;Q<0時,反應為放熱反應。
(3)反應熱的測定
測定反應熱的儀器為量熱計,可測出反應前後溶液溫度的變化,根據體系的熱容可計算出反應熱,計算公式如下:
Q=-C(T2-T1)
式中C表示體系的熱容,T1、T2分別表示反應前和反應後體系的溫度。實驗室經常測定中和反應的反應熱。 2、化學反應的焓變
(1)反應焓變
物質所具有的能量是物質固有的性質,可以用稱為「焓」的物理量來描述,符號為H,單位為kJ·mol-1。
反應產物的總焓與反應物的總焓之差稱為反應焓變,用ΔH表示。
(2)反應焓變ΔH與反應熱Q的關系。
對於等壓條件下進行的化學反應,若反應中物質的能量變化全部轉化為熱能,則該反應的反應熱等於反應焓變,其數學表達式為:Qp=ΔH=H(反應產物)-H(反應物)。
(3)反應焓變與吸熱反應,放熱反應的關系:
ΔH>0,反應吸收能量,為吸熱反應。
ΔH<0,反應釋放能量,為放熱反應。
(4)反應焓變與熱化學方程式:
把一個化學反應中物質的變化和反應焓變同時表示出來的化學方程式稱為熱化學方程式,如:H2(g)+O2(g)=H2O(l);ΔH(298K)=-285.8kJ·mol-1
書寫熱化學方程式應注意以下幾點:
①化學式後面要註明物質的聚集狀態:固態(s)、液態(l)、氣態(g)、溶液(aq)。
②化學方程式後面寫上反應焓變ΔH,ΔH的單位是J·mol-1或 kJ·mol-1,且ΔH後註明反應溫度。
③熱化學方程式中物質的系數加倍,ΔH的數值也相應加倍。 3、反應焓變的計算
(1)蓋斯定律
對於一個化學反應,無論是一步完成,還是分幾步完成,其反應焓變一樣,這一規律稱為蓋斯定律。
(2)利用蓋斯定律進行反應焓變的計算。
常見題型是給出幾個熱化學方程式,合並出題目所求的熱化學方程式,根據蓋斯定律可知,該方程式的ΔH為上述各熱化學方程式的ΔH的代數和。
(3)根據標准摩爾生成焓,ΔfHmθ計算反應焓變ΔH。
對任意反應:aA+bB=cC+dD
ΔH=[cΔfHmθ(C)+dΔfHmθ(D)]-[aΔfHmθ(A)+bΔfHmθ(B)] 二、電能轉化為化學能——電解 1、電解的原理
(1)電解的概念:
在直流電作用下,電解質在兩上電極上分別發生氧化反應和還原反應的過程叫做電解。電能轉化為化學能的裝置叫做電解池。
(2)電極反應:以電解熔融的NaCl為例:
陽極:與電源正極相連的電極稱為陽極,陽極發生氧化反應:2Cl-→Cl2↑+2e-。
陰極:與電源負極相連的電極稱為陰極,陰極發生還原反應:Na++e-→Na。
總方程式:2NaCl(熔)2Na+Cl2↑

2、電解原理的應用
(1)電解食鹽水制備燒鹼、氯氣和氫氣。
陽極:2Cl-→Cl2+2e-
陰極:2H++e-→H2↑
總反應:2NaCl+2H2O2NaOH+H2↑+Cl2↑
(2)銅的電解精煉。
粗銅(含Zn、Ni、Fe、Ag、Au、Pt)為陽極,精銅為陰極,CuSO4溶液為電解質溶液。
陽極反應:Cu→Cu2++2e-,還發生幾個副反應
Zn→Zn2++2e-;Ni→Ni2++2e-
Fe→Fe2++2e-
Au、Ag、Pt等不反應,沉積在電解池底部形成陽極泥。
陰極反應:Cu2++2e-→Cu
(3)電鍍:以鐵表面鍍銅為例
待鍍金屬Fe為陰極,鍍層金屬Cu為陽極,CuSO4溶液為電解質溶液。
陽極反應:Cu→Cu2++2e-
陰極反應: Cu2++2e-→Cu 三、化學能轉化為電能——電池 1、原電池的工作原理
(1)原電池的概念:
把化學能轉變為電能的裝置稱為原電池。
(2)Cu-Zn原電池的工作原理:

如圖為Cu-Zn原電池,其中Zn為負極,Cu為正極,構成閉合迴路後的現象是:Zn片逐漸溶解,Cu片上有氣泡產生,電流計指針發生偏轉。該原電池反應原理為:Zn失電子,負極反應為:Zn→Zn2++2e-;Cu得電子,正極反應為:2H++2e-→H2。電子定向移動形成電流。總反應為:Zn+CuSO4=ZnSO4+Cu。
(3)原電池的電能
若兩種金屬做電極,活潑金屬為負極,不活潑金屬為正極;若一種金屬和一種非金屬做電極,金屬為負極,非金屬為正極。 2、化學電源
(1)鋅錳干電池
負極反應:Zn→Zn2++2e-;
正極反應:2NH4++2e-→2NH3+H2;
(2)鉛蓄電池
負極反應:Pb+SO42-PbSO4+2e-
正極反應:PbO2+4H++SO42-+2e-PbSO4+2H2O
放電時總反應:Pb+PbO2+2H2SO4=2PbSO4+2H2O。
充電時總反應:2PbSO4+2H2O=Pb+PbO2+2H2SO4。
(3)氫氧燃料電池
負極反應:2H2+4OH-→4H2O+4e-
正極反應:O2+2H2O+4e-→4OH-
電池總反應:2H2+O2=2H2O 3、金屬的腐蝕與防護
(1)金屬腐蝕
金屬表面與周圍物質發生化學反應或因電化學作用而遭到破壞的過程稱為金屬腐蝕。
(2)金屬腐蝕的電化學原理。
生鐵中含有碳,遇有雨水可形成原電池,鐵為負極,電極反應為:Fe→Fe2++2e-。水膜中溶解的氧氣被還原,正極反應為:O2+2H2O+4e-→4OH-,該腐蝕為「吸氧腐蝕」,總反應為:2Fe+O2+2H2O=2Fe(OH)2,Fe(OH)2又立即被氧化:4Fe(OH)2+2H2O+O2=4Fe(OH)3,Fe(OH)3分解轉化為鐵銹。若水膜在酸度較高的環境下,正極反應為:2H++2e-→H2↑,該腐蝕稱為「析氫腐蝕」。
(3)金屬的防護
金屬處於乾燥的環境下,或在金屬表面刷油漆、陶瓷、瀝青、塑料及電鍍一層耐腐蝕性強的金屬防護層,破壞原電池形成的條件。從而達到對金屬的防護;也可以利用原電池原理,採用犧牲陽極保護法。也可以利用電解原理,採用外加電流陰極保護法。 第2章、化學反應的方向、限度與速率(1、2節)
原電池的反應都是自發進行的反應,電解池的反應很多不是自發進行的,如何判定反應是否自發進行呢? 一、化學反應的方向 1、反應焓變與反應方向
放熱反應多數能自發進行,即ΔH<0的反應大多能自發進行。有些吸熱反應也能自發進行。如NH4HCO3與CH3COOH的反應。有些吸熱反應室溫下不能進行,但在較高溫度下能自發進行,如CaCO3高溫下分解生成CaO、CO2。 2、反應熵變與反應方向
熵是描述體系混亂度的概念,熵值越大,體系混亂度越大。反應的熵變ΔS為反應產物總熵與反應物總熵之差。產生氣體的反應為熵增加反應,熵增加有利於反應的自發進行。 3、焓變與熵變對反應方向的共同影響
ΔH-TΔS<0反應能自發進行。
ΔH-TΔS=0反應達到平衡狀態。
ΔH-TΔS>0反應不能自發進行。
在溫度、壓強一定的條件下,自發反應總是向ΔH-TΔS<0的方向進行,直至平衡狀態。 二、化學反應的限度 1、化學平衡常數
(1)對達到平衡的可逆反應,生成物濃度的系數次方的乘積與反應物濃度的系數次方的乘積之比為一常數,該常數稱為化學平衡常數,用符號K表示 。
(2)平衡常數K的大小反映了化學反應可能進行的程度(即反應限度),平衡常數越大,說明反應可以進行得越完全。
(3)平衡常數表達式與化學方程式的書寫方式有關。對於給定的可逆反應,正逆反應的平衡常數互為倒數。
(4)藉助平衡常數,可以判斷反應是否到平衡狀態:當反應的濃度商Qc與平衡常數Kc相等時,說明反應達到平衡狀態。 2、反應的平衡轉化率
(1)平衡轉化率是用轉化的反應物的濃度與該反應物初始濃度的比值來表示。如反應物A的平衡轉化率的表達式為:
α(A)=
(2)平衡正向移動不一定使反應物的平衡轉化率提高。提高一種反應物的濃度,可使另一反應物的平衡轉化率提高。
(3)平衡常數與反應物的平衡轉化率之間可以相互計算。 3、反應條件對化學平衡的影響
(1)溫度的影響
升高溫度使化學平衡向吸熱方向移動;降低溫度使化學平衡向放熱方向移動。溫度對化學平衡的影響是通過改變平衡常數實現的。
(2)濃度的影響
增大生成物濃度或減小反應物濃度,平衡向逆反應方向移動;增大反應物濃度或減小生成物濃度,平衡向正反應方向移動。
溫度一定時,改變濃度能引起平衡移動,但平衡常數不變。化工生產中,常通過增加某一價廉易得的反應物濃度,來提高另一昂貴的反應物的轉化率。
(3)壓強的影響
ΔVg=0的反應,改變壓強,化學平衡狀態不變。
ΔVg≠0的反應,增大壓強,化學平衡向氣態物質體積減小的方向移動。
(4)勒夏特列原理
由溫度、濃度、壓強對平衡移動的影響可得出勒夏特列原理:如果改變影響平衡的一個條件(濃度、壓強、溫度等)平衡向能夠減弱這種改變的方向移動。 【例題分析】

例1、已知下列熱化學方程式:
(1)Fe2O3(s)+3CO(g)=2Fe(s)+3CO2(g) ΔH=-25kJ/mol
(2)3Fe2O3(s)+CO(g)=2Fe3O4(s)+CO2(g) ΔH=-47kJ/mol
(3)Fe3O4(s)+CO(g)=3FeO(s)+CO2(g) ΔH=+19kJ/mol
寫出FeO(s)被CO還原成Fe和CO2的熱化學方程式 。
解析:依據蓋斯定律:化學反應不管是一步完成還是分幾步完成,其反應熱是相同的。我們可從題目中所給的有關方程式進行分析:從方程式(3)與方程式(1)可以看出有我們需要的有關物質,但方程式(3)必須通過方程式(2)有關物質才能和方程式(1)結合在一起。
將方程式(3)×2+方程式(2);可表示為(3)×2+(2)
得:2Fe3O4(s)+2CO(g)+3Fe2O3(s)+CO(g)=6FeO(s)+2CO2(g)+2Fe3O4(s)+CO2(g);ΔH=+19kJ/mol×2+(-47kJ/mol)
整理得方程式(4):Fe2O3(s)+CO(g)=2FeO(s)+CO2(g);ΔH=-3kJ/mol
將(1)-(4)得2CO(g)=2Fe(s)+3CO2(g)-2FeO(s)-CO2(g);ΔH=-25kJ/mol-(-3kJ/mol)
整理得:FeO(s)+CO(s)=Fe(s)+CO2(g);ΔH=-11kJ/mol
答案:FeO(s)+CO(s)=Fe(s)+CO2(g);ΔH=-11kJ/mol 例2、熔融鹽燃料電池具有高的發電效率,因而得到重視,可用Li2CO3和Na2CO3的熔融鹽混合物作用電解質,CO為陽極燃氣,空氣與CO2的混合氣體為陰極助燃氣,製得在650℃下工作的燃料電池,完成有關的電池反應式:
陽極反應式:2CO+2CO32-→4CO2+4e-
陰極反應式:;
總電池反應式:。
解析: 作為燃料電池,總的效果就是把燃料進行燃燒。本題中CO為還原劑,空氣中O2為氧化劑,電池總反應式為:2CO+O2=2CO2。用總反應式減去電池負極(即題目指的陽極)反應式,就可得到電池正極(即題目指的陰極)反應式:O2+2CO2+4e-=2CO32- 。
答案:O2+2CO2+4e-=2CO32-;2CO+O2=2CO2例3、下列有關反應的方向說法中正確的是( )
A、放熱的自發過程都是熵值減小的過程。
B、吸熱的自發過程常常是熵值增加的過程。
C、水自發地從高處流向低處,是趨向能量最低狀態的傾向。
D、只根據焓變來判斷化學反應的方向是可以的。
解析:放熱的自發過程可能使熵值減小、增加或無明顯變化,故A錯誤。只根據焓變來判斷反應進行的方向是片面的,要用能量判據、熵判據組成的復合判據來判斷,D錯誤。水自發地從高處流向低處,是趨向能量最低狀態的傾向是正確的。有些吸熱反應也可以自發進行。如在25℃和1.01×105Pa時,2N2O5(g)=4NO2(g)+O2(g);ΔH=56.7kJ/mol,(NH4)2CO3(s)=NH4HCO3(s)+NH3(g);ΔH=74.9kJ/mol,上述兩個反應都是吸熱反應,又都是熵增的反應,所以B也正確。
答案:BC。 化學反應原理復習(二)

【知識講解】 第2章、第3、4節

一、化學反應的速率 1、化學反應是怎樣進行的
(1)基元反應:能夠一步完成的反應稱為基元反應,大多數化學反應都是分幾步完成的。
(2)反應歷程:平時寫的化學方程式是由幾個基元反應組成的總反應。總反應中用基元反應構成的反應序列稱為反應歷程,又稱反應機理。
(3)不同反應的反應歷程不同。同一反應在不同條件下的反應歷程也可能不同,反應歷程的差別又造成了反應速率的不同。 2、化學反應速率
(1)概念:
單位時間內反應物的減小量或生成物的增加量可以表示反應的快慢,即反應的速率,用符號v表示。
(2)表達式:

(3)特點
對某一具體反應,用不同物質表示化學反應速率時所得的數值可能不同,但各物質表示的化學反應速率之比等於化學方程式中各物質的系數之比。 3、濃度對反應速率的影響
(1)反應速率常數(K)
反應速率常數(K)表示單位濃度下的化學反應速率,通常,反應速率常數越大,反應進行得越快。反應速率常數與濃度無關,受溫度、催化劑、固體表面性質等因素的影響。
(2)濃度對反應速率的影響
增大反應物濃度,正反應速率增大,減小反應物濃度,正反應速率減小。
增大生成物濃度,逆反應速率增大,減小生成物濃度,逆反應速率減小。
(3)壓強對反應速率的影響
壓強隻影響氣體,對只涉及固體、液體的反應,壓強的改變對反應速率幾乎無影響。
壓強對反應速率的影響,實際上是濃度對反應速率的影響,因為壓強的改變是通過改變容器容積引起的。壓縮容器容積,氣體壓強增大,氣體物質的濃度都增大,正、逆反應速率都增加;增大容器容積,氣體壓強減小;氣體物質的濃度都減小,正、逆反應速率都減小。 4、溫度對化學反應速率的影響
(1)經驗公式
阿倫尼烏斯總結出了反應速率常數與溫度之間關系的經驗公式:

式中A為比例系數,e為自然對數的底,R為摩爾氣體常數量,Ea為活化能。
由公式知,當Ea>0時,升高溫度,反應速率常數增大,化學反應速率也隨之增大。可知,溫度對化學反應速率的影響與活化能有關。
(2)活化能Ea。
活化能Ea是活化分子的平均能量與反應物分子平均能量之差。不同反應的活化能不同,有的相差很大。活化能 Ea值越大,改變溫度對反應速率的影響越大。 5、催化劑對化學反應速率的影響
(1)催化劑對化學反應速率影響的規律:
催化劑大多能加快反應速率,原因是催化劑能通過參加反應,改變反應歷程,降低反應的活化能來有效提高反應速率。
(2)催化劑的特點:
催化劑能加快反應速率而在反應前後本身的質量和化學性質不變。
催化劑具有選擇性。
催化劑不能改變化學反應的平衡常數,不引起化學平衡的移動,不能改變平衡轉化率。 二、化學反應條件的優化——工業合成氨 1、合成氨反應的限度
合成氨反應是一個放熱反應,同時也是氣體物質的量減小的熵減反應,故降低溫度、增大壓強將有利於化學平衡向生成氨的方向移動。 2、合成氨反應的速率
(1)高壓既有利於平衡向生成氨的方向移動,又使反應速率加快,但高壓對設備的要求也高,故壓強不能特別大。
(2)反應過程中將氨從混合氣中分離出去,能保持較高的反應速率。
(3)溫度越高,反應速率進行得越快,但溫度過高,平衡向氨分解的方向移動,不利於氨的合成。
(4)加入催化劑能大幅度加快反應速率。 3、合成氨的適宜條件
在合成氨生產中,達到高轉化率與高反應速率所需要的條件有時是矛盾的,故應該尋找以較高反應速率並獲得適當平衡轉化率的反應條件:一般用鐵做催化劑 ,控制反應溫度在700K左右,壓強范圍大致在1×107Pa~1×108Pa 之間,並採用N2與H2分壓為1∶2.8的投料比。 第3章、物質在水溶液中的行為 一、水溶液 1、水的電離
H2OH++OH-
水的離子積常數KW=[H+][OH-],25℃時,KW=1.0×10-14mol2·L-2。溫度升高,有利於水的電離, KW增大。2、溶液的酸鹼度
室溫下,中性溶液:[H+]=[OH-]=1.0×10-7mol·L-1,pH=7
酸性溶液:[H+]>[OH-],[ H+]>1.0×10-7mol·L-1,pH<7
鹼性溶液:[H+]<[OH-],[OH-]>1.0×10-7mol·L-1,pH>7 3、電解質在水溶液中的存在形態
(1)強電解質
強電解質是在稀的水溶液中完全電離的電解質,強電解質在溶液中以離子形式存在,主要包括強酸、強鹼和絕大多數鹽,書寫電離方程式時用「=」表示。
(2)弱電解質
在水溶液中部分電離的電解質,在水溶液中主要以分子形態存在,少部分以離子形態存在,存在電離平衡,主要包括弱酸、弱鹼、水及極少數鹽,書寫電離方程式時用「 」表示。 二、弱電解質的電離及鹽類水解 1、弱電解質的電離平衡。
(1)電離平衡常數
在一定條件下達到電離平衡時,弱電解質電離形成的各種離子濃度的乘積與溶液中未電離的分子濃度之比為一常數,叫電離平衡常數。
弱酸的電離平衡常數越大,達到電離平衡時,電離出的H+越多。多元弱酸分步電離,且每步電離都有各自的電離平衡常數,以第一步電離為主。
(2)影響電離平衡的因素,以CH3COOHCH3COO-+H+為例。
加水、加冰醋酸,加鹼、升溫,使CH3COOH的電離平衡正向移動,加入CH3COONa固體,加入濃鹽酸,降溫使CH3COOH電離平衡逆向移動。 2、鹽類水解
(1)水解實質
鹽溶於水後電離出的離子與水電離的H+或OH-結合生成弱酸或弱鹼,從而打破水的電離平衡,使水繼續電離,稱為鹽類水解。
(2)水解類型及規律
①強酸弱鹼鹽水解顯酸性。
NH4Cl+H2ONH3·H2O+HCl
②強鹼弱酸鹽水解顯鹼性。
CH3COONa+H2OCH3COOH+NaOH
③強酸強鹼鹽不水解。
④弱酸弱鹼鹽雙水解。
Al2S3+6H2O=2Al(OH)3↓+3H2S↑
(3)水解平衡的移動
加熱、加水可以促進鹽的水解,加入酸或鹼能抑止鹽的水解,另外,弱酸根陰離子與弱鹼陽離子相混合時相互促進水解。 三、沉澱溶解平衡 1、沉澱溶解平衡與溶度積
(1)概念
當固體溶於水時,固體溶於水的速率和離子結合為固體的速率相等時,固體的溶解與沉澱的生成達到平衡狀態,稱為沉澱溶解平衡。其平衡常數叫做溶度積常數,簡稱溶度積,用Ksp表示。
PbI2(s)Pb2+(aq)+2I-(aq)
Ksp=[Pb2+][I-]2=7.1×10-9mol3·L-3
(2)溶度積Ksp的特點
Ksp只與難溶電解質的性質和溫度有關,與沉澱的量無關,且溶液中離子濃度的變化能引起平衡移動,但並不改變溶度積。
Ksp反映了難溶電解質在水中的溶解能力。 2、沉澱溶解平衡的應用
(1)沉澱的溶解與生成
根據濃度商Qc與溶度積Ksp的大小比較,規則如下:
Qc=Ksp時,處於沉澱溶解平衡狀態。
Qc>Ksp時,溶液中的離子結合為沉澱至平衡。
Qc<Ksp時,體系中若有足量固體,固體溶解至平衡。
(2)沉澱的轉化
根據溶度積的大小,可以將溶度積大的沉澱可轉化為溶度積更小的沉澱,這叫做沉澱的轉化。沉澱轉化實質為沉澱溶解平衡的移動。 四、離子反應 1、離子反應發生的條件
(1)生成沉澱
既有溶液中的離子直接結合為沉澱,又有沉澱的轉化。
(2)生成弱電解質
主要是H+與弱酸根生成弱酸,或OH-與弱鹼陽離子生成弱鹼,或H+與OH-生成H2O。
(3)生成氣體
生成弱酸時,很多弱酸能分解生成氣體。
(4)發生氧化還原反應
強氧化性的離子與強還原性離子易發生氧化還原反應,且大多在酸性條件下發生。 2、離子反應能否進行的理論判據
(1)根據焓變與熵變判據
對ΔH-TΔS<0的離子反應,室溫下都能自發進行。
(2)根據平衡常數判據
離子反應的平衡常數很大時,表明反應的趨勢很大。 3、離子反應的應用
(1)判斷溶液中離子能否大量共存
相互間能發生反應的離子不能大量共存,注意題目中的隱含條件。
(2)用於物質的定性檢驗
根據離子的特性反應,主要是沉澱的顏色或氣體的生成,定性檢驗特徵性離子。
(3)用於離子的定量計算
常見的有酸鹼中和滴定法、氧化還原滴定法。
(4)生活中常見的離子反應。
硬水的形成及軟化涉及到的離子反應較多,主要有:
Ca2+、Mg2+的形成。
CaCO3+CO2+H2O=Ca2++2HCO3-
MgCO3+CO2+H2O=Mg2++2HCO3-
加熱煮沸法降低水的硬度:
Ca2++2HCO3-CaCO3↓+CO2↑+H2O
Mg2++2HCO3-MgCO3↓+CO2↑+H2O
或加入Na2CO3軟化硬水:
Ca2++CO32-=CaCO3↓,Mg2++CO32-=MgCO3↓

我有word文檔,方便的話我可以發給你

❻ 跪求氨基甲酸銨分解平衡常數測定實驗思考題答案

需要測定的是反應產生的氣體的壓力,即NH3和CO2的總壓。

如果系統中有少量空氣,得到的蒸氣壓數據就會偏大,平衡常數就會偏大。

在一定條件下,某可逆反應的k值越大,說明平衡體系中生成物所佔的比例越大,它的正反應進行的程度越大,即該反應進行得越完全,反應物轉化率越大;反之,就越不完全,轉化率就越小。

當k>10^5或k<-10^5時,該反應就基本進行完全,一般當成非可逆反應;而k在-10~10之間的反應被認為是典型的可逆反應。k值大小隻能預示某可逆反應向某方向進行的最大限度,但不能預示反應達到平衡所需要的時間。

(6)分解反應平衡常數的測定實驗裝置圖擴展閱讀:

將水溶液放置時,乃與水反應生成碳酸氫銨,在酸性溶液中迅速分解。

帶壓操作狀態下溫度較低時,NH3和CO2會反應生成氨基甲酸銨(簡稱甲銨),反應方程式如下:

2NH3+CO2=NH₂COONH₄↓+熱量

該物質是用二氧化碳和氨制脲(尿素)的中間產物

氨基甲酸銨轉化成尿素的反應是不完全的,需要從含有尿素,過量氨和水的混合物溶液中分離出去。氨基甲酸銨是一種強腐蝕性介質,對使用的材料提出了相應的要求。

❼ 某研究小組在實驗室探究氨基甲酸銨(NH2COONH4)分解反應平衡常數和水解反應速率的測定.(1)將一定量純

(1)①A、因未指明速率的方向,無法確定正逆反應速率的關系,故A錯誤;
B、該反應是氣體體積增大的反應,故當容器內壓強不變時,已達到平衡,故B正確;
C、該反應是氣體體積增大的反應,故當密閉容器中混合氣體的密度不變,已達到平衡,故C正確;
D、因反應物(NH2COONH4)是固體物質,所以密閉容器中NH3的體積分數始終不變,為

2
3
.故D錯誤;
故答案為:BC;
②容器內氣體的濃度之比為2:1,故NH3和CO2的濃度分別為3.2×10-3 mol/L、1.6×10-3 mol/L,代入平衡常數表達式:K=(3.2×10-32×1.6×10-3 =1.6×10-8
故答案為:1.6×10-8
③若在恆溫下壓縮容器體積,則壓強增大,平衡逆向移動,所以固體質量會增加,故答案為:增加;
(2)④化學反應速率V=
△c
△t
=
2.2mol/L?1.9mol/L
6min
=0.05mol/(L?min),故答案為:0.05mol/(L?min);
⑤因25℃反應物起始濃度較小,但0~6min的平均反應速率(曲線的斜率)仍比15℃大,
故答案為:25℃反應物起始濃度較小,但0~6min的平均反應速率(曲線的斜率)仍比15℃大.

閱讀全文

與分解反應平衡常數的測定實驗裝置圖相關的資料

熱點內容
東莞市永克五金製品有限公司怎麼樣 瀏覽:586
江玲皮卡車儀表盤左上角是什麼表 瀏覽:485
流體壓強和流速關系的實驗裝置 瀏覽:494
如何抓軸承 瀏覽:471
口罩超聲波機怎麼調 瀏覽:998
導纜裝置的位置與作用 瀏覽:796
閥門的芯體里是什麼材料 瀏覽:216
餐廳紙巾生產設備需要多少錢一套 瀏覽:987
電冰箱製冷系數測量實驗裝置 瀏覽:472
電動車前工具箱怎麼換 瀏覽:431
11年捷達車空調不製冷怎麼回事 瀏覽:878
用cad畫五金製品難嗎 瀏覽:799
廣東直銷美容儀器怎麼樣 瀏覽:95
人防密閉閥門套什麼定額 瀏覽:537
老款思域後輪軸承怎麼拆 瀏覽:40
天然氣閥門井鑰匙創新 瀏覽:702
什麼地方賣吸氧器材 瀏覽:98
實驗室化學反應裝置圖 瀏覽:793
鑄造銀條模具什麼材質 瀏覽:413
軸承加工什麼工藝 瀏覽:494