⑴ 審核誤差的可能來源有哪些
誤差主要有四個方面的來源: 一.裝置誤差,即由於計量裝置本身不完善和不穩定所引起的計量誤差。它包括: ⑴標准器誤差。標准器的量值(標稱值)與其自身體現出來的客觀量值之間有差異,從而使標准器自身帶有誤差; ⑵儀器儀表誤差,儀器儀表因受到設計原理、製造與安裝、調整與使用等方面問題的影響而引起的誤差; ⑶輔助設備誤差,各種輔助器具引起的誤差。 二.環境誤差,即由於各種環境因素與測量所要求的條件不一致及其隨時間和空間位置的變化引起的測量裝置和被測量本身的變化而造成的誤差,這些因素包括溫度、大氣壓、濕度、震動、電磁場、風效應、空氣含塵量等。 三.人員誤差。測量人員由於受分辨能力、反應速度、固有習慣和操作熟練程度的限制以及疲勞或一時疏忽等生理、心理上的原因所造成的誤差,如視差、觀察誤差、估讀誤差等。 四.方法誤差。採用近似的或不合理的測量方法和計算方法而引起的誤差,如在計算中取π≈3.1416以近似代替圓周率所造成的計算結果的誤差。
⑵ 什麼是測量裝置誤差
屬於系統誤差的一種,由裝置本來的誤差決定。這是由於儀器本身的缺陷或沒有按規定條件使用儀器而造成的。如儀器的零點不準,儀器未調整好,外界環境(光線、溫度、濕度、電磁場等)對測量儀器的影響等所產生的誤差。
http://ke..com/view/53641.htm
⑶ 求電子秤允許誤差計算方法
電子秤的誤差用檢定分度值e表示,電子秤屬於三級衡器III.最小稱量是20e 新電子秤的允許誤差: 1、必須使用標准砝碼進行檢測, 2、0-最小稱量誤差為0, 3、1/3最大稱量的允許誤差為1e, 4、最大稱量的允許誤差為2e, 使用中的電子秤的允許誤差是新的2倍。 舉例:最大稱量150公斤, 分度值50克。 1、0-最小稱量[1000克]為0誤差, 2、1/3最大稱量[50公斤]的允許誤差為50克, 3、最大稱量[150公斤]的允許誤差為100克 經過以上檢測誤差合格的電子秤,在計量性能方面是基本合格的。 當然,還有許多檢測項目,比如,零點穩定性;最小鑒別力;偏載誤差;去皮特性;過載特性,抗電磁能力;產品標識等。 希望能夠給你一點幫助,不足之處請指正。
⑷ 流量計誤差如何計算
一般的流量計的誤差為示值相對誤差。其中示值可以為直接顯示值,也可以為間接顯示值。示值相對誤差:(流量計示值-標准裝置的標准值)/標准裝置的標准值*100%。作為某一流量下的流量計的示值誤差。相對於流量計誤差需要做幾組不同的流量點,作為判定。
⑸ 機床的誤差包括哪些方面
1.1 機床的原始製造誤差
是指由組成機床各部件工作表面的幾何形狀、表面質量、相互之間的位置誤差所引起的機床運動誤差,是數控機床幾何誤差產生的主要原因。
1.2 機床的控制系統誤差
包括機床軸系的伺服誤差(輪廓跟隨誤差),數控插補演算法誤差。
1.3 熱變形誤差
由於機床的內部熱源和環境熱擾動導致機床的結構熱變形而產生的誤差。
1.4切削負荷造成工藝系統變形所導致的誤差
包括機床、刀具、工件和夾具變形所導致的誤差。這種誤差又稱為「讓刀」,它造成加工零件的形狀畸變,尤其當加工薄壁工件或使用細長刀具時,這一誤差更為嚴重。
1.5 機床的振動誤差
在切削加工時,數控機床由於工藝的柔性和工序的多變,其運行狀態有更大的可能性落入不穩定區域,從而激起強烈的顫振。導致加工工件的表面質量惡化和幾何形狀誤差。
1.6 檢測系統的測試誤差
包括以下幾個方面:
(1)由於測量感測器的製造誤差及其在機床上的安裝誤差引起的測量感測器反饋系統本身的誤差;
(2)由於機床零件和機構誤差以及在使用中的變形導致測量感測器出現的誤差。
1.7 外界干擾誤差
由於環境和運行工況的變化所引起的隨機誤差。
1.8 其它誤差
如編程和操作錯誤帶來的誤差。
上面的誤差可按照誤差的特點和性質,歸為兩大類:即系統誤差和隨機誤差。
數控機床的系統誤差是機床本身固有的誤差,具有可重復性。數控機床的幾何誤差是其主要組成部分,也具有可重復性。利用該特性,可對其進行「離線測量」,可採用「離線檢測——開環補償」的技術來加以修正和補償,使其減小,達到機床精度強化的目的。
隨機誤差具有隨機性,必須採用「在線檢測——閉環補償」的方法來消除隨機誤差對機床加工精度的影響,該方法對測量儀器、測量環境要求嚴格,難於推廣。
2幾何誤差補償技術
針對誤差的不同類型,實施誤差補償可分為兩大類。隨機誤差補償要求「在線測量」,把誤差檢測裝置直接安裝在機床上,在機床工作的同時,實時地測出相應位置的誤差值,用此誤差值實時的對加工指令進行修正。隨機誤差補償對機床的誤差性質沒有要求,能夠同時對機床的隨機誤差和系統誤差進行補償。但需要一整套完整的高精度測量裝置和其它相關的設備,成本太高,經濟效益不好。文獻[4] 進行了溫度的在線測量和補償,未能達到實際應用。系統誤差補償是用相應的儀器預先對機床進行檢測,即通過「離線測量」得到機床工作空間指令位置的誤差值,把它們作為機床坐標的函數。機床工作時,根據加工點的坐標,調出相應的誤差值以進行修正。要求機床的穩定性要好,保證機床誤差的確定性,以便於修正,經補償後的機床精度取決於機床的重復性和環境條件變化。數控機床在正常情況下,重復精度遠高於其空間綜合誤差,故系統誤差的補償可有效的提高機床的精度,甚至可以提高機床的精度等級。迄今為止,國內外對系統誤差的補償方法有很多,可分為以下幾種方法:
2.1單項誤差合成補償法
這種補償方法是以誤差合成公式為理論依據,首先通過直接測量法測得機床的各項單項原始誤差值,由誤差合成公式計算補償點的誤差分量,從而實現對機床的誤差補償。對三坐標測量機進行位置誤差測量的當屬Leete, 運用三角幾何關系,推導出了機床各坐標軸誤差的表示方法,沒有考慮轉角的影響。較早進行誤差補償的應是Hocken教授,針對型號Moore 5-Z(1)的三坐標測量機,在16小時內,測量了工作空間內大量的點的誤差,在此過程中考慮了溫度的影響,並用最小二乘法對誤差模型參數進行了辨識。由於機床運動的位置信號直接從激光干涉儀獲得,考慮了角度和直線度誤差的影響,獲得比較滿意的結果。1985年G. Zhang成功的對三坐標測量機進行了誤差補償。測量了工作台平面度誤差,除在工作台邊緣數值稍大,其它不超過1μm,驗證了剛體假設的可靠性。使用激光干涉儀和水平儀測量得的21項誤差,通過線性坐標變換進行誤差合成,並實施了誤差補償。X-Y平面上測量試驗表明,補償前,在所有測量點中誤差值大於20μm的點佔20%,在補償後,不超過20%的點的誤差大於2μm,證明精度提高了近10倍。
除了坐標測量機的誤差補償以外,數控機床誤差補償的研究也取得了一定的成果。在1977年Schultschik教授運用矢量圖的方法,分析了機床各部件誤差及其對幾何精度的影響,奠定了機床幾何誤差進一步研究的基礎。Ferreira和其合作者也對該方法進行了研究,得出了機床幾何誤差的通用模型,對單項誤差合成補償法作出了貢獻。J.Ni et al更進一步將該方法運用於在線的誤差補償,獲得了比較理想的結果。Chen et al建立了32項誤差模型,其中多餘的11項是有關溫度和機床原點誤差參數,對卧式加工中心的補償試驗表明,精度提高10倍。Eung-Suk Lea et al幾乎使用了同G. Zhang一樣的測量方法,對三坐標Bridge port銑床21項誤差進行了測量,運用誤差合成法得出了誤差模型,補償後的結果分別用激光干涉儀和Renishaw的DBB系統進行了檢驗,證明機床精度得以提升。
2.2誤差直接補償法
這種方法要求精確地測出機床空間矢量誤差,補償精度要求越高,測量精度和測量的點數就要求越多,但要詳盡地知道測量空間任意點的誤差是不可能的,利用插值的方法求得補償點的誤差分量,進行誤差修正,該種方法要求建立和補償時一致的絕對測量坐標系。
1981年,Dufour和Groppetti在不同的載荷和溫度條件下,對機床工作空間點的誤差進行了測量,構成誤差矢量矩陣,獲得機床誤差信息。將該誤差矩陣存入計算機進行誤差補償。類似的研究主要有A.C.Okafor et al,通過測量機床工作空間內,標准參考件上多個點的相對誤差,以第一個為基準點,然後換算成絕對坐標誤差,通過插值的方法進行誤差補償,結果表明精度提高了2~4倍。Hooman則運用三維線性(LVTDS)測量裝置,得到機床空間27個點的誤差(解析度0.25μm,重復精度1μm),進行了類似的工作。進一步考慮到溫度的影響,每間隔1.2小時測量一次,共測量8次,對誤差補償結果進行了有關溫度系數的修。這種方法的不足之處是測量工作量大,存儲數據多。目前,還沒有完全合適的儀器,也限制了該方法的進一步運用和發展。
2.3相對誤差分解、合成補償法
大多數誤差測量方法只是得到了相對的綜合誤差,據此可以從中分解得到機床的單項誤差。進一步利用誤差合成的辦法,對機床誤差補償是可行的。目前,國內外對這方面的研究也取得一定進展。
2000年美國Michigan大學Jun Ni教授指導的博士生Chen Guiquan做了這樣的嘗試,運用球桿儀(TBB)對三軸數控機床不同溫度下的幾何誤差進行了測量,建立了快速的溫度預報和誤差補償模型,進行了誤差補償。Christopher運用激光球桿儀(LBB),在30分鍾內獲得了機床的誤差信息,建立了誤差模型, 在9個月的時間間隔內,對誤差補償結果進行了5次評價,結果表明,通過軟體誤差補償的方法可
⑹ 感測器遲滯誤差公式
遲滯誤差計算公式:靈敏度s=△x/△y,遲滯誤差γh=△hmax/yfs×100%,非線性誤差γl=+-△lmax/yfs×100%。
感測器從原理上主要分為壓阻式、電容式、電感式、壓電式、光電式等。其中,電容式觸覺感測器因其結構簡單、易於輕量化和小型化、不受溫度影響等優點得到廣泛的研究和應用。
簡介
感測器(英文名稱:transcer/sensor)是一種檢測裝置,能感受到被測量的信息,並能將感受到的信息,按一定規律變換成為電信號或其他所需形式的信息輸出,以滿足信息的傳輸、處理、存儲、顯示、記錄和控制等要求。
感測器的特點包括:微型化、數字化、智能化、多功能化、系統化、網路化。它是實現自動檢測和自動控制的首要環節。感測器的存在和發展,讓物體有了觸覺、味覺和嗅覺等感官,讓物體慢慢變得活了起來。通常根據其基本感知功能分為熱敏元件、光敏元件、氣敏元件、力敏元件、磁敏元件、濕敏元件、聲敏元件、放射線敏感元件、色敏元件和味敏元件等十大類。
⑺ 電能計量裝置的綜合誤差多少為合格
呵呵
看具體的裝置要求。
0.5級的裝置,綜合誤差不得超過0.5,內控0.4。
0.2級的裝置,綜合誤差不得超過0.2,內控0.15。
0.1級的裝置,綜合誤差不得超過0.1,內控0.05。
⑻ 儀器的允許誤差怎麼計算
多量程的儀器,按照各量程的准確度等級分別進行計算,如:
「0~300mv 的精度為 0.025%+2digits 」的允差為300*0.025%+2個讀數(看實際分辨力而定)。
「300mv~3V的精度為 0.025%+4digits」的允差為(3000-300)0.025%+4個讀數mV其它量程的也是這樣進行計算。
各類儀器儀表按不同特徵,例如功能、檢測控制對象、結構、原理等再分為若干小類或子類。工業自動化儀表按功能右分為檢測儀表、顯示儀表、調節儀表和執行器等。
(8)計算檢測裝置誤差擴展閱讀:
溫度計可根據用途和測量精度分為標准溫度計和實用溫度計2類,標准溫度計的精度高,它主要用於校正其它溫度計。實用溫度計是指所供實際測溫用的溫度計,主要有實驗用溫度計、工業溫度計、氣象溫度計、醫用溫度計等。
中學實驗室常用載重100 g(感量為0.1 g)和200 g(感量為0.2 g)2種。載重又叫載物量,是指能稱量的最大限度。感量是指天平誤差(±),例如感量為0.1 g的托盤天平。表示其誤差為±0.1 g,因此它就不能用來稱量質量小於0.1 g的物品。
圓底燒瓶一般用作加熱條件下的反應容器。而平底燒瓶用於不加熱條件下的氣體發生器,也常用來裝配洗瓶等。由於平底燒瓶底部平面較小,其邊緣又有棱,因此應力較大,加熱時容易炸裂。所以它一般不用於加熱條件下的反應容器。
⑼ 如何區別儀表的基本誤差和允許誤差
根據張宏建的《自動檢測技術與裝置》第二版,基本誤差是標准條件下全量程范圍內被測量對應絕對誤差的最大值,是表徵儀表基本性能的重要指標。准確度,又名滿刻度相對誤差,是基本誤差與量程的百分比。而允許誤差是儀表生產廠家設置的誤差限制,稍比基本誤差大,儀表使用時不應該超過這個允許誤差。
強調,以上內容來自教科書。某些人回答的完全是錯的