1. 數控機床中位置檢測裝置的作用是什麼,
位置檢測裝置是數控系統的重要組成部分,在閉環或半閉環控制的數控機內床中,必須利用位容置檢測裝置把機床運動部件的實際位移量隨時檢測出來,與給定的控制值(指令信號)進行比較,從而控制驅動元件正確運轉,使工作台(或刀具)按規定的軌跡和坐標移動。
位置檢測裝置在數控機床控制中直接決定機床精度的好壞,主要由數控系統和伺服系統決定。位置檢測方式只測量位移增量,並用數字脈沖的個數來表示單位位移(即最小設定單位)的數量,每移動一個測量單位就發出一個測量信號。
其優點是檢測裝置比較簡單,任何一個對中點都可以作為測量起點。但在此系統中,移距是靠對測量信號累積後讀出的,一旦累計有誤,此後的測量結果將全錯。另外在發生故障時(如斷電)不能再找到事故前的正確位置,事故排除後,必須將工作台移至起點重新計數才能找到事故前的正確位置。脈沖編碼器,旋轉變壓器,感應同步器,光柵,磁柵,激光干涉儀等都是增量檢測裝置。
2. 數控機床按數控系統的控制方式分為幾種
1.開環控制: 這類控制的數控是其控制系統沒有位置檢測元件,伺服驅動部件通常為反應式步進電動機或混合式伺服步進電動機。數控系統每發出一個進給指令,經驅動電路功率放大後,驅動步進電機旋轉一個角度,再經過齒輪減速裝置帶動絲杠旋轉,通過絲杠螺母機構轉換為移動部件的直線位移。移動部件的移動速度與位移量是由輸入脈沖的頻率與脈沖數所決定的。此類數控機床的信息流是單向的,即進給脈沖發出去後,實際移動值不再反饋回來,所以稱為開環控制數控機床。 開環控制系統的數控機床結構簡單,成本較低。但是,系統對移動部件的實際位移量不進行監測,也不能進行誤差校正。因此,步進電動機的失步、步距角誤差、齒輪與絲杠等傳動誤差都將影響被加工零件的精度。開環控制系統僅適用於加工精度要求不很高的中小型數控機床,特別是簡易經濟型數控機床。
2.半閉環控制: 半閉環控制數控是在伺服電動機的軸或數控機床的傳動絲杠上裝有角位移電流檢測裝置(如光電編碼器等),通過檢測絲杠的轉角間接地檢測移動部件的實際位移,然後反饋到數控裝置中去,並對誤差進行修正。通過測速元件和光電編碼盤可間接檢測出伺服電動機的轉速,從而推算出工作台的實際位移量,將此值與指令值進行比較,用差值來實現控制。由於工作台沒有包括在控制迴路中,因而稱為半閉環控制數控機床。 半閉環控制數控系統的調試比較方便,並且具有很好的穩定性。目前大多將角度檢測裝置和伺服電動機設計成一體,這樣,使結構更加緊湊。
3.閉環控制: 閉環控制數控是在機床移動部件上直接安裝直線位移檢測裝置,直接對工作台的實際位移進行檢測,將測量的實際位移值反饋到數控裝置中,與輸入的指令位移值進行比較,用差值對機床進行控制,使移動部件按照實際需要的位移量運動,最終實現移動部件的精確運動和定位。從理論上講,閉環系統的運動精度主要取決於檢測裝置的檢測精度,也與傳動鏈的誤差無關,因此其控制精度高。當位移指令值發送到位置比較電路時,若工作台沒有移動,則沒有反饋量,指令值使得伺服電動機轉動,通過速度感測器將速度反饋信號送到速度控制電路,通過直線位移感測器將工作台實際位移量反饋回去,在位置比較電路中與位移指令值相比較,用比較後得到的差值進行位置控制,直至差值為零時為止。這類控制的數控機床,因把機床工作台納入了控制環節,故稱為閉環控制數控機床。 閉環控制數控機床的定位精度高,但調試和維修都較困難,系統復雜,成本高。
3. 數控機床常用的位置檢測裝置有哪些類型有何特點
1)從檢測信號的類型來分可分為數字式或模擬式。同一檢測原件既可以做專成數字式,也可以做成模擬屬式,主要取決於使用方式和測量線路。2)從測量方式可分為增量式與絕對式。增量式檢測的是相對位移量,增量檢測元件是反映相對機床固定參考點的增量值。增量式裝置比較簡單,應用較廣。絕對式檢測是位移的絕對位置,檢測沒有積累誤差,一旦切斷電源後位置信息也不丟失,但結構復雜。3)就檢測元件本身來說,可分為旋轉型和直線型。旋轉型可以採用檢測電動機的旋轉角度來間接測量得工作台的移動量,使用方便可靠,測量精度略低些。直線型就是對機床工作台的直線移動採用的直線檢測,直觀地反映其位移量,所構成的位置檢測系統是全閉環控制系統,其檢測裝置要與行程等長,常用於精度要求較高的中小型數控機床上。
4. 數控系統的分類
數控系統的分類:
⑴開環控制數控系統
這類數控系統不帶檢測裝置,也無反饋電路,以步進電動機為驅動元件。CNC裝置輸出的進給指令(多為脈沖介面)經驅動電路進行功率放大,轉換為控制步進電動機各定子繞組依此通電/斷電的電流脈沖信號,驅動步進電動機轉動,再經機床傳動機構(齒輪箱,絲杠等)帶動工作台移動。這種方式控制簡單,價格比較低廉,從70年代開始,被廣泛應用於經濟型數控機床中。
⑵半閉環控制數控系統
位置檢測元件被安裝在電動機軸端或絲杠軸端,通過角位移的測量間接計算出機床工作台的實際運行位置(直線位移),由於閉環的環路內不包括絲杠、螺母副及機床工作台這些大慣性環節,由這些環節造成的誤差不能由環路所矯正,其控制精度不如全閉環控制數控系統,但其調試方便,成本適中,可以獲得比較穩定的控制特性,因此在實際應用中,這種方式被廣泛採用。
⑶全閉環控制數控系統
位置檢測裝置安裝在機床工作台上,用以檢測機床工作台的實際運行位置(直線位移),並將其與CNC裝置計算出的指令位置(或位移)相比較,用差值進行調節控制。這類控制方式的位置控制精度很高,但由於它將絲杠、螺母副及機床工作台這些連接環節放在閉環內,導致整個系統連接剛度變差,因此調試時,其系統較難達到高增益,即容易產生振盪。
(4)數控系統中的檢測裝置分為擴展閱讀:
數控系統的功能適用性對於數控機床的設計選型無疑是重要的限制性因索。以下因素是在選擇數控系統中必須考慮的重要因素。
⑴驅動能力
不同的數控供應商的解決方案中伺服的功率范圍和配套電機范圍也是不同的。首先應該從可匹配的電機類型,功率范圍來初步篩選。特別是要注意數控機床方案中是否包括力矩電機、直線電機、電主軸屬於同步電主軸還是非同步電主軸,上述電機的額定電流需求和過載電流需求,電主軸的最高轉速需求等。
⑵全閉環需求與雙驅需求
數控機床,特別是大型、重型數控機床大多數都有全閉環和雙驅需求。在全閉環控制方案中,要在距離編碼光柵、絕對值式光柵、普通增量光柵間進行選擇,同時數控系統也要支持相應的反饋信號接入。
⑶五軸控制需求
五軸機床需要明確是否五軸聯動還是僅要求五面加工,相應選擇數控系統功能也不同。比如針對五面箱體類加工,通常不需要RTCP,選擇餘地就比較大。同時針對五軸功能可能涉及數控系統供貨商在出口許可證、售後服務、技術支持等也必須認真考慮。
⑷生產系統需求
數控系統網路化支持成為生產系統集成的必要條件。對於要納入自動化程度很高的生產系統的數控機床,必須明確數控系統具有相應的接入解決方案,包括低級的依靠PLC輸入輸出點直接接入到高級的數控系統內置OPC伺服器,依照OPC標准向用戶開放數控系統內部數據。此外面向生產系統,自動化的在線工件檢測和刀具檢測也是必須支持的功能。
5. 數控機床對檢測裝置有何要求檢測裝置分為哪幾類
有 光柵尺,光電脈沖編碼器,感應同步器,旋轉變壓器, 磁柵 ,旋轉編碼器等。
要求 工作可靠, 精度高,解析度高,抗干擾性強.,能滿足速度和精度的要求.,便於安裝調試維修. 成本低.壽命長.
6. 數控機床對檢測裝置有何要求檢測裝置分為哪幾類
數控機床檢測裝置有 旋轉編碼器, 光柵尺,感應同步器,旋轉變壓器, 磁柵 ,等。要求工作可靠, 壽命長,精度高,解析度高,抗干擾性強.,能滿足速度和精度的要求.,便於安裝調試維修.
7. 數控機床按控制方式分可分為哪些
最簡單的說法就是:開環,閉環,半閉環三種
開環,這類數控系統不帶檢測裝置,也無反饋電路,以步進電動機為驅動元件,如圖3所示。CNC裝置輸出的指令進給脈沖經驅動電路進行功率放大,轉換為控制步進電動機各定子繞組依此通電/斷電的電流脈沖信號,驅動步進電動機轉動,再經機床傳動機構(齒輪箱,絲杠等)帶動工作台移動。這種方式控制簡單,價格比較低廉,被廣泛應用於經濟型數控系統中。
半閉環,位置檢測元件被安裝在電動機軸端或絲杠軸端,通過角位移的測量間接計算出機床工作台的實際運行位置(直線位移),並將其與CNC裝置計算出的指令位置(或位移)相比較,用差值進行控制,其控制框圖如圖4所示。由於閉環的環路內不包括絲杠、螺母副及機床工作台這些大慣性環節,由這些環節造成的誤差不能由環路所矯正,其控制精度不如閉環控制數控系統,但其調試方便,可以獲得比較穩定的控制特性,因此在實際應用中,這種方式被廣泛採用。
閉環,位置檢測裝置安裝在機床工作台上,用以檢測機床工作台的實際運行位置(直線位移),並將其與CNC裝置計算出的指令位置(或位移)相比較,用差值進行控制,其控制框圖如圖1-12所示。這類控制方式的位置控制精度很高,但由於它將絲杠、螺母副及機床工作台這些大慣性環節放在閉環內,調試時,其系統穩定狀態很難達到。
8. 數控機床中位置檢測裝置的作用是什麼,
檢測平衡交響的作用
在磨削加工過程中,砂輪的振動是產生工件已加工表面振紋、影響加工質量的重要因素。引起這種振動的原因有工件和刀具傳動系統的擾動以及砂輪不平衡引起的主軸振動兩個方面。前者一般可以通過磨床的減振設備有效地消除,而後者則主要通過對砂輪進行平衡校正來解決。砂輪的平衡技術按自動化程度可分為人工平衡、半自動平衡和自動平衡3類。目前人們在研究半自動平衡的同時正致力於自動平衡的研究。日本開發的一種Balanceeye/norilake半自動平衡裝置,通過振動測試分析,指出平衡塊的安放位置,停機後人工穩定平衡配重塊,再開車進行平衡測定。它基本代表了半自動平衡的水平。在自動平衡中,機械式增重平衡器是發展最早、應用最廣的一類。自動平衡目前在國外已發展為液體平衡(日本)和利用氟里昂作為平衡介質的液汽平衡(美國)。本文研究的是一種利用增重平衡原理,根據振幅大小的變化規律,通過調整配重相對位置實現砂輪動態平衡校正的方法和裝置。
2 平衡原理和平衡頭結構
平衡原理
平衡裝置簡圖如圖1所示,磨床砂輪屬於剛性轉子。剛性轉子由於其質心與回轉中心不重合所引起的振動響應即旋轉失衡是磨床主軸振動的重要因素。若磨床主軸部件總質量為M,不平衡質量為m,等效不平衡質點與回轉中心的距離(偏心距)為e,則由此引起的穩態受迫振動的振幅為 (1)
可見在一定的轉速和阻尼條件下,由於偏心所引起的主軸振幅與偏心質量的質徑積me成正比。
砂輪的偏心質量可以用給定質徑積的偏心質量來進行平衡補償。若砂輪及給定質徑積的補償偏心質量(偏重齒圈)的軸向寬度b與其直徑D之比b/D<1/5,則可以認為偏心質量和偏重齒圈的補償質量形成的慣性力構成以轉子回轉軸為匯交點的平面匯交力系,如圖2所示,其中Fm,F1,F2分別為砂輪偏心質量及補償質量形成的慣性力。
由平面匯交力系的平衡條件可知,轉子平衡時有,即 (2)
若e1=e2=eb,m1=m2=mb則F1=F2=Fba1=..More↓↓↓