❶ 氫化反應是什麼
氫化是有機化合物與氫分子的反應,在醫葯化工領域,氫化一般有如下兩種類型:不飽和鍵的氫化、脫去某些保護基團(又稱氫解)。
在氫化中,高壓可以可增加氫在溶劑中的溶解度,氫壓對反應速度的影響可以是線性的,也可以是二次方的,甚至更強烈的影響。
催化劑在氫化反應中起著重要的作用,大部分氫化都是在催化劑的催化下才得以完成的。催化劑有過渡金屬、過渡金屬鹽類、過渡金屬和配體生成的絡合物。
氫化反應常用催化劑:
鈀-碳一般不需要高溫高壓操作,常用於硝基、腈、肟等的還原。在酸性介質,80℃,4個大氣壓下也能將芳環氫化。
雷尼鎳雷尼鎳在氫化中的應用范圍十分廣泛,可對硝基、羰基進行還原,雙鍵進行加氫等。
鈷鈷只在高溫高壓下才能呈現加氫催化活性,主要用於腈加氫還原為相應的胺。
鉑氧化鉑常用於硝基物、醛的還原,也用於將酚環加氫成相應的環己醇。
❷ 加氫裝置相對其他工藝裝置有何不同,自身特點有哪些
(1)加氫精製的目的主要是為了脫除硫、氮等雜質,提高汽油、柴油產品的質量;
(2)加內氫裂化容裝置是加工重油的主要手段,在催化劑和氫氣作用下,大分子裂化成小分子,常壓渣油就能大部分轉化成汽油、柴油餾分、液化氣等,同時可以脫除硫、氮等雜質,特點汽油、柴油產品質量比催化裂化高,幾乎不含烯烴,生產的油品性質穩定。
❸ 加氫還原
1、簡介:
氫與其他化合物相互作用的反應過程,通常是在催化劑存在下進行的。加氫反應屬還原的范疇。
2、反應類型:
①氫與一氧化碳或有機化合物直接加氫,例如一氧化碳加氫合成甲醇: CO+2H
加氫反應釜
2─→CH3OH ;己二腈加氫制己二胺:NC(CH2)4CN+4H2─→H2N(CH2)6NH2
②氫與有機化合物反應的同時,伴隨著化學鍵的斷裂,這類加氫反應又稱氫解反應,包括加氫脫烷基、加氫裂化、加氫脫硫等。例如烷烴加氫裂化,甲苯加氫脫烷基制苯,硝基苯加氫還原制苯胺,油品加氫精製中非烴類的氫解:RSH+H2─→RH+H2S 非烴類含氮化合物最難氫解;在同類非烴中分子結構越復雜越難氫解。
3、催化劑:
主要有四類:①金屬催化劑,常用的是第八族過渡元素,如
加氫反應釜
骨架鎳、鎳-硅藻土、鉑-氧化鋁、鈀-氧化鋁等。這類催化劑活性高,幾乎可用於所有官能團的加氫。②金屬氧化物催化劑,如氧化銅-亞鉻酸銅、氧化銅-氧化鋅、氧化銅-氧化鋅-氧化鉻、氧化銅-氧化鋅-氧化鋁等,主要用於醛、酮、酯、酸以及一氧化碳等化合物的加氫。③金屬硫化物催化劑,如鎳-鉬硫化物、鈷-鉬硫化物、硫化鎢、硫化鉬等,通常以γ-氧化鋁為載體,主要用於含硫、含氮化合物的氫解反應,部分硫化的氧化鈷-氧化鉬-氧化鋁催化劑常用於油品的加氫精製。④絡合催化劑,如RhCl[P(C6H5)3]3,主要用於均相液相加氫。
4、過程條件
加氫反應是可逆、放熱和分子數減少的反應,根據呂·查德里原理,低溫、高壓有利於化學平衡向加氫反應方向移動。加氫過程所需的溫度決定於所用催化劑的活性,活性高者溫度可較低。對於在反應溫度條件下平衡常數較小的加氫反應(如由一氧化碳加氫合成甲醇),為了提高平衡轉化率,反應過程需要在高壓下進行,並且也有利於提高反應速度。採用過量的氫,不僅可加快反應速度和提高被加氫物質的轉化率,而且有利於導出反應熱。過量的氫可循環使用。
常用的加氫反應器有兩類:一類用於高沸點液體或固體(固體需先溶於溶劑或加熱熔融)原料的液相加氫過程,如油脂加氫、重質油品的加氫裂解等。液相加氫常在加壓下進行,過程可以是間歇式的,也可以是連續的。間歇液相加氫常採用具有攪拌裝置的壓力釜或鼓泡反應器。連續液相加氫可採用涓流床反應器或氣、液、固三相同向連續流動的管式反應器。另一類反應器用於氣相連續加氫過程,如苯常壓氣相加氫制環己烷、一氧化碳高壓氣相加氫合成甲醇等,反應器的類型可以是列管式或塔式。
在高溫、高壓下,氫與鋼材中的碳原子能化合生成甲烷,使鋼材變脆,稱為氫蝕。故高壓加氫的反應器,必須採用合金鋼材。氫是易燃、易爆物質,加氫過程必須考慮安全措施。
❹ 加氫裂化裝置的防範措施
⒈開工時的危險因素及其防範措施
⑴加氫反應系統乾燥、烘爐
加氫裝置反應系統乾燥、烘爐的目的是除去反應系統內的水分,脫除加熱爐耐火材料中的自然水和結晶水,燒結耐火材料,增加耐火材料的強度和使用壽命。加熱爐煤爐時,裝置需引進燃料氣,在引燃料氣前應認真做好瓦斯的氣密及隔離工作,一般要求燃料氣中氧含量要小於1.0%。防止瓦斯泄漏及竄至其他系統。加熱爐點火要徹底用蒸汽吹掃爐膛,其中不能殘余易燃氣體。加熱爐烘爐時應嚴格按烘爐曲線升溫、降溫,避免升溫過快,耐火材料中的水分迅速蒸發而導致爐牆倒塌。
⑵加氫反應器催化劑裝填
催化劑裝填應嚴格按催化劑裝填方案進行,催化劑裝填的好壞對加氫裝置的運行情況及運行周期有重要影響。催化劑裝填前應認真檢查反應器及其內構件,檢查催化劑的粉塵情況,決定催化劑是否需要過篩。催化劑裝填最好選擇在乾燥晴朗的天氣進行,保證催化劑裝填均勻,否則在開工時反應器內會出現偏流或「熱點」,影響裝置正常運行。催化劑裝填時工作人員須要進入反應器工作,因此,要特別注意工作人員勞動保護及安全問題,需要穿勞動保護服裝,帶能供氧氣或空氣的呼吸面罩,進反應器工作人員不能帶其他雜物,以防止異物落入反應器內(一般催化劑裝填由專業公司專業人員進行)。
⑶加氫反應系統置換
加氫反應系統置換分為兩個階段,即空氣環境置換為氮氣環境、氮氣環境置換為氫氣環境。在空氣環境置換為氮氣環境時需要注意,置換完成後系統氧含量應<1%,否則系統引入氫氣時易發生危險;在氮氣環境置換為氫氣環境時應注意,使系統內氣體有一個適宜的平均分子量,以保證循環氫壓縮機在較適宜的工況下運行,一般氫氣純度為85%較為適宜。
⑷加氫反應系統氣密
加氫反應系統氣密是加氫裝置開工階段一項非常重要的工作,氣密工作的主要目的是查找漏點,消除裝置隱患,保證裝置安全運行。加氫反應系統的氣密工作分為不同壓力等級進行,低壓氣密階段所用的介質為氮氣,氮氣氣密合格後用氫氣作低壓氣密。由於加氫反應器材質具有冷脆性,一般要求系統壓力大於2.0MPa時,反應器器壁溫度不小於100℃,所以,氫氣2.0MPa氣密通過以後,首先開啟循環氫壓縮機,反應加熱爐點火,系統升溫,當反應器器壁溫度大於100℃後,系統升壓,作高壓階段氣密。
⑸分餾系統冷油運
分餾系統冷油運的目的是檢查分餾系統機泵、儀表等設備情況,分餾系統冷油運應注意工藝流程改動正確,做到不跑油、不竄油。
⑹分餾系統熱油運
分餾系統熱油運的目的是檢查分餾系統設備熱態運行狀況,為接收反應生成油作好准備。分餾系統升溫到100~C左右時應注意系統切水,防止泵抽空。升溫到250℃左右時應進行熱緊。
⑺加氫反應系統升溫、升壓
加氫反應系統升溫、升壓時應按要求的升溫、升壓速度進行,一般要求系統升溫速度為20℃幾左右,系統升壓速度不大於1.5MPa/h。如升溫、升壓速度過快易造成系統泄漏。
⑻加氫催化劑的硫化、鈍化
加氫反應催化劑在開工前為氧化態,氧化態催化劑沒有加氫活性,因此,催化劑需要進行硫化。催化劑硫化的方法有濕法硫化、干法硫化兩種方法,常用的硫化劑有二硫化碳、DMDS,催化劑進行硫化時系統的H2S濃度很高,有時高達1%以上,因此,要特別注意硫化氫中毒問題。
新硫化的加氫裂化催化劑具有很高的加氫裂化活性,為抑制這種活性,需要對加氫裂化催化劑進行鈍化。鈍化劑為無水液氨。加氫裂化催化劑進行鈍化時應注意維持系統中硫化氫濃度不小於0.05%。
⑼加氫反應系統逐步切換成原料油
加氫催化劑的硫化、鈍化過程完成後,加氫反應系統的低氮油需要逐步切換成原料油,切換步驟應按開工方案要求的步驟進行。切換過程中應密切注意加氫反應器床層溫升的變化情況。
⑽裝置操作調整
加氫反應系統原料切換步驟完成之後,應進一步調整裝置的工藝操作,使產品質量合格,從而完成開工過程。
2.停工時的危險因素及其防範措施
⑴反應系統降溫、降量
加氫裝置停工首先反應系統降溫、降量。在此過程中應遵循先降溫後降量的原則。反應系統進料量降低,空速減小,加氫反應器溫升增加,易出現反應「飛溫」現象。所謂「飛溫」就是反應器溫度迅速上升,以致不可控制的現象。
⑵用低疑點原料置換整個系統
加氫裝置的原料油一般較重,凝點較高,在停工時易凝結在催化劑、管線及設備當中。為避免上述情況出現,在停工前應用低疑點油置換系統,所用的低凝點油一般為常二線油。
⑶停反應原料泵
切斷反應進料時,應注意反應器溫度應適宜,使裂化反應器無明顯溫升。
⑷反應系統循環帶油及熱氫氣提
切斷反應進料後,反應加熱爐升溫,用熱循環氫帶出催化劑中的存油,熱氫氣提的溫度應根據催化劑的要求確定,一般為枷℃左右,熱氫氣提的溫度不能過高,以避免催化劑被熱氫還原。
⑸反應系統降溫、降壓
加氫反應系統按要求的速度降溫、降壓。
⑹反應系統N:置換
反應系統用N,置換成N:環境,使系統的氫烴濃度<1%。
⑺卸催化劑
使用過的含碳催化劑在空氣中易發生自燃,反應器是在N2氣環境下進行卸催化劑作業,必須由專業的卸劑公司人員進反應器進行卸劑,因此,在卸催化劑裝桶應使用N:或乾冰保護催化劑,避免催化劑自燃。
⑻加氫設備的清洗及防腐
加氫裝置高壓部分的設備及部件,在停工後應用鹼液進行清洗,以避免在接觸空氣後發生腐蝕,損壞設備。另外,高硫系統的設備主要是後處理部分在打開前應用水進行沖洗,以避免硫化鐵在空氣中自燃。
⑼裝置退油及吹掃
加氫裝置停工,應將裝置內的存油退出並吹掃干凈,保證不留死角。
⑽輔助系統的處理
加氫裝置停工後將裝置的火炬系統、地下污水系統等輔助系統處理干凈,並加盲板使裝置與系統防腐以使裝置達到檢修條件。
⒊正常生產時的危險因素及其防範措施
⑴遵守「先降溫後降量」的原則
加氫裝置正常操作調整時必須遵守「先降溫後降量」、「先提量後提溫」的原則,防止「飛溫」事故的發生。
⑵反應溫度的控制
加氫裝置的反應溫度是最重要的控制參數,必須嚴格按工藝技術指標控制加氫反應溫度及各床層溫升。
⑶高壓分離器液位控制
高壓分離器液位是加氫裝置非常重要的工藝控制參數,如液位過高易循環氫帶液,損壞循環氫壓縮機;如液位過低易出現高壓竄低壓事故,造成低壓部分設備毀壞,油品和可燃氣體泄漏,以至更為嚴重的後果。因此應嚴格控制高壓分離器液位,經常校驗液位儀表的准確性。
⑷反應系統壓力控制
加氫裝置反應系統壓力是重要的工藝控制參數,反應壓力影響氫分壓,對加氫反應有直接的影響,影響加氫裝置反應系統壓力的因素很多,應選擇經濟、合理、方便的控制方案對反應系統的壓力進行控制。
⑸循環氫純度的控制
循環氫純度影響氫分壓,對加氫反應有直接的影響,是加氫裝置重要的工藝控制參數,影響循環氫純度的因素很多,催化劑的性質、原料油的性質、反應溫度、壓力、新氫純度、尾氫排放量等因素都影響循環氫純度,其中可操作條件為尾氫排放量。加大尾氫排放,循環氫純度增加;減小尾氫排放循環氫純度降低。
循環氫純度高,氫分壓就會較高,有利於加氫反應進行,但是,高循環氫純度是以大量排放尾氫、增加物耗為代價的;循環氫純度低,氫分壓就會較低,不利於加氫反應進行,而且,循環氫純度低時,循環氫平均分子量大,在循環氫壓縮機轉速不變的情況下,系統壓差就會增加,循環氫壓縮機的動力消耗也會增加。因此,循環氫純度要控制適當。
⑹加熱爐的控制
加熱爐是加氫裝置的重要設備,加熱爐的使用應引起重視。加熱爐各路流量應保持均勻,並且不低於規定的值,防止爐管結焦;保持加熱爐各火嘴燃燒均勻,盡量使爐堂內各點溫度均勻;控制加熱爐各點溫度不超溫;保持加熱爐燃燒狀態良好。
⑺閉燈檢查
加氫裝置系統壓力高,而且介質為氫氣,容易發生泄漏,高壓氫氣發生泄漏時容易著火,氫氣火焰一般為淡藍色,白天不易發現,在夜間閉上燈後,很容易發現這種氫氣漏點。因此,定期進行這種夜間閉燈檢查,對發現漏點,將事故消滅在萌芽狀態,保證裝置安全穩定運行具有重要意義。
⑻裝置防凍凝問題
加氫裝置的原料一般較重,凝點較高,通常在20—30℃,容易發生凍凝。如發生凍凝事故,不但影響裝置穩定生產,還容易引發安全生產事故,因此,加氫裝置的防凍凝問題應引起足夠重視。
⑼循環氫壓縮防喘振問題
加氫裝置的循環氫壓縮機多為離心式壓縮機,離心式壓縮機存在喘振問題,因此,在操作中應保持壓縮機在正常工況下運行,避免壓縮機出現喘振。
⑽原料質量的控制
加氫裝置的原料性質,對加氫裝置的操作有重要影響,必須嚴格控制。一般控制原料的干點在規定的范圍內,Pe不大於1X10(-6,如鐵含量高,反應器壓差增加過快,裝置不能長周期運行。C1不大於1X10(-6,N低於規定的值,原料沒有明水。
⑾防硫化氫中毒
加氫裝置的原料中含有硫,這些硫在加氫後變為硫化氫,並在脫丁烷塔塔頂及脫硫部分富集,形成高濃度的硫化氫。硫化氫的毒性很強,允許最高濃度為10mg/m3。因此,加氫車間必須注重防硫化氫中毒問題,在高硫區域內進行切液、采樣等操作時尤其注意,要求帶防毒面具並有人監護。
⑿時刻保持冷氫線暢通
加氫裝置的急冷氫是控制加氫反應器床層溫度的重要手段,它對抑制反應溫升具有重要作用。高凝點油有時倒竄人冷氫線內凝結,堵塞冷氫線,如有這種情況發生將十分危險,因此,操作過程中要時刻保持冷氫線暢通。
⒀密切注意熱油泵及輕烴泵的運行狀況
加氫裝置的一些熱油泵運行溫度較高,高於油品的自燃點,若有泄漏,易發生火災事故。因此,在操作時要注意熱油泵的運行狀態,注意泵體、密封等處有無泄漏,如有泄漏應立即處理。
加氫裝置內存有大量的輕烴,如發生泄漏,會引發重大事故。因此,對輕烴泵的運行狀況也要引起足夠重視。
設備腐蝕
加氫裝置高溫、高壓、臨氫、系統內存在U2S、NH3,因此,加氫裝置的腐蝕問題也應引起重視,解決加氫裝置腐蝕問題的主要方法是合理選材,在使用時加強監視與檢測。
1.高溫氫腐蝕
氫氣在常溫下對普通碳鋼沒有腐蝕,但是在高溫、高壓下則會產生腐蝕,使材料的機械強度和塑性降低。
高溫氫腐蝕的機理為氫氣與材料中的碳反應生成甲烷,使材料的機械強度和塑性降低,形成的甲烷在鋼材的晶間積聚,使材料產生很大的內應力或產生鼓泡、裂紋。至於在什麼條件下產生腐蝕,則根據Nels。n曲線確定。
為避免高溫氫腐蝕,加氫裝置高溫、高壓、臨氫部分的設備、管線多採用合金鋼或不銹鋼。
2.氫脆
氫原子滲入鋼材後,使鋼材晶粒中原子結合力降低,造成材料的延展性、韌性下降,這種現象稱為氫脆。這種氫脆是可逆的,當氫氣從材料中溢出後,材料的力學性能就能恢復。
氫脆的危害主要出現在加氫裝置的停工階段,裝置停工階段,系統溫度、壓力下降,氫氣在材料中的溶解度下降,由於氫氣溢出的速度很慢,這時材料中的氫氣處於過飽和狀態,當溫度冷卻到150℃時,大量的過飽和氫氣會聚積到材料的缺陷處,如裂紋的前端,引起裂紋擴展。
所以加氫裝置停工時降溫、降壓的速度應進行適當的控制,進行脫氫處理。
3.高溫n2S腐蝕
高溫U2S腐蝕主要發生在反應系統高溫部分,高溫H2S腐蝕表現為與H2共同作用,氫氣的存在加強了H2S的腐蝕作用,同時,U2S的存在也加強了氫氣的腐蝕作用。該種腐蝕的防治方法是選擇抗H2S腐蝕材質。
4.濕H2S的腐蝕
濕H2S的腐蝕是指溫度較低並且含水部位的U2S腐蝕,包括高壓空冷、高壓分離器、脫丁烷塔塔頂系統、脫硫系統等部分。
濕H2S的腐蝕形態主要有:電化學腐蝕引起的表面腐蝕;H2S腐蝕過程中,產生氫原子引起的氫脆、氫裂;硫化氫引起的應力腐蝕破裂。
該種腐蝕的防止方法為:H2S濃度不高時,使用普通碳素鋼,適當加大腐蝕裕度,在設備製造及施工中進行消除應力處理;當H2S濃度較高時,選用抗H2S腐蝕材料,或對設備內壁進行內噴塗處理。
加氫裝置的安全設施
1.設備平面布置
加氫裝置火災危險性屬於甲類,設備平面布置按《石油化工企業設計防火規范》(GB 50160---92)中的要求進行布置。同類設備集中布置。
2.消防設施
加氫裝置內設有環行消防道路,以利於發生事故時消防車進出。裝置內設有環行消防水管網,裝置內設有多處消防蒸汽服務站,裝置內設置有一定數量的乾粉式滅火器。
3.防火、防爆
加氫裝置內的介質多為易燃、易爆介質,加氫裝置內的電器、儀表設備均選用防爆型設備,管道、設備上安裝防靜電接地設施,要求接地電阻不大於412。
4.加熱爐安全設施
加熱爐周圍設有蒸汽消防汽幕,加熱爐爐堂內設有滅火蒸汽人口。
5.可燃氣體報警器
在可能發生可燃性氣體泄漏的位置,安裝可燃氣體報警器。
6.氣防用品
由於加氫裝置內有H2S等有毒氣體,所以車間配備有防毒面具、正壓式呼吸器等氣防用品。
7.安全閥
按設計要求,凡需要安裝安全閥的部位均安裝有安全閥,而且按有關安全要求為雙安全閥。
緊急放空聯鎖系統
加氫裝置的危險性較大,加氫反應為強放熱反應,如控制不好,反應溫度會迅速上升,反應溫度升高後,會進一步加劇加氫裂化反應,使反應器溫度在很短時間內上升很高,也就是發生「飛溫」,以至燒毀催化劑和反應器。為避免「飛溫」事故發生,加氫裝置設有緊急放空聯鎖系統,系統降壓速度為0.7MPa/min或2.1MPa/min。
1.緊急放空系統的聯鎖條件
①循環氫壓縮機停運聯鎖。②循環氫壓機人口分液罐高液位聯鎖。③由於系統較大泄漏、反應溫度失控等原因,手動聯鎖。
2.緊急放空系統的聯鎖動作
①緊急放空閥打開,反應系統泄壓。②反應進料泵停機。③新氫壓縮機停機。④反應加熱爐滅火。
❺ 加氫裂化裝置的裝置簡介
(一)裝置的發展
加氫技術最早起源於20世紀20年代德國的煤和煤焦油加氫技術,第二次世界大戰以後,隨著對輕質油數量及質量的要求增加和提高,重質餾分油的加氫裂化技術得到了迅速發展。
1959年美國謝夫隆公司開發出了Isocrosking加氫裂化技術,其後不久環球油品公司開發出了Lomax加氫裂化技術,聯合油公司開發出了Uicraking加氫裂化技術。加氫裂化技術在世界范圍內得到了迅速發展。
早在20世紀50年代,中國就已經對加氫技術進行了研究和開發,早期主要進行頁岩油的加氫技術開發,60年代以後,隨著大慶、勝利油田的相繼發現,石油餾分油的加氫技術得到了迅速發展,1966年中國建成了第一套4000kt/a的加氫裂化裝置。
進入20世紀90年代以後,國內開發的中壓加氫裂化及中壓加氫改質技術也得到了應用和發展。
(二)裝置的主要類型
加氫裝置按加工目的可分為:加氫精製、加氫裂化、渣油加氫處理等類型,這里主要介紹加氫裂化裝置。
加氫裂化按操作壓力可分為:高壓加氫裂化和中壓加氫裂化,高壓加氫裂化分離器的操作壓力一般為16MPa左右,中壓加氫裂化分離器的操作壓力一般為9.OMPa左右。
加氫裂化按工藝流程可分為:一段加氫裂化流程、二段加氫裂化流程、串聯加氫裂化流程。
一段加氫裂化流程是指只有一個加氫反應器,原料的加氫精製和加氫裂化在一個反應器內進行。該流程的特點是:工藝流程簡單,但對原料的適應性及產品的分布有一定限制。
二段加氫裂化流程是指有兩個加氫反應器,第一個加氫反應器裝加氫精製催化劑,第二個加氫反應器裝加氫裂化催化劑,兩段加氫形成兩個獨立的加氫體系,該流程的特點是:對原料的適應性強,操作靈活性較大,產品分布可調節性較大,但是,該工藝的流程復雜,投資及操作費用較高。
串聯加氫裂化流程也是分為加氫精製和加氫裂化兩個反應器,但兩個反應器串聯連接,為一套加氫系統。串聯加氫裂化流程既具有二段加氫裂化流程比較靈活的特點,又具有一段加氫裂化流程比較簡單的特點,該流程具有明顯優勢,如今新建的加氫裂化裝置多為此種流程,本節所述的流程即為此種流程。
❻ 加氫的過程條件
加氫反應是可逆、放熱和分子數減少的反應,根據呂·查德里原理,低溫、高壓有利於化學平衡向加氫反應方向移動。加氫過程所需的溫度決定於所用催化劑的活性,活性高者溫度可較低。對於在反應溫度條件下平衡常數較小的加氫反應(如由一氧化碳加氫合成甲醇),為了提高平衡轉化率,反應過程需要在高壓下進行,並且也有利於提高反應速度。採用過量的氫,不僅可加快反應速度和提高被加氫物質的轉化率,而且有利於導出反應熱。過量的氫可循環使用。
常用的加氫反應器有兩類:一類用於高沸點液體或固體(固體需先溶於溶劑或加熱熔融)原料的液相加氫過程,如油脂加氫、重質油品的加氫裂解等。液相加氫常在加壓下進行,過程可以是間歇式的,也可以是連續的。間歇液相加氫常採用具有攪拌裝置的壓力釜或鼓泡反應器。連續液相加氫可採用涓流床反應器或氣、液、固三相同向連續流動的管式反應器。另一類反應器用於氣相連續加氫過程,如苯常壓氣相加氫制環己烷、一氧化碳高壓氣相加氫合成甲醇等,反應器的類型可以是列管式或塔式。
在高溫、高壓下,氫與鋼材中的碳原子能化合生成甲烷,使鋼材變脆,稱為氫蝕。故高壓加氫的反應器,必須採用合金鋼材。氫是易燃、易爆物質,加氫過程必須考慮安全措施。
❼ 加氫裝置中高分液位高有何危害
實驗室的小裝置高來分經常滿。自。
就是再放開液位的時候,液位計啪一下放多了,壓力下降,氣空速會變化
液位顯示滿,不表示高分罐滿,液位計的零點和100%都是自調的。至少實驗裝置滿液位只有一點點。。
大裝置我覺得也是一樣吧
油品停留時間長,去分餾的少,對生產平衡總會有影響的
❽ 加氫裂化裝置的介紹
加氫裂化的工業裝置有多種類型按反應器的作用又分為一段法和兩段法。兩段法包括兩版級反應器,權第一級作為加氫精製段,除掉原料油中的氮、硫化物。第二級是加氫裂化反應段。一段法的反應器只有一個或數個並聯使用。一段法固定床加氫裂化裝置的工藝流程是原料油、循環油及氫氣混合後經加熱導入反應器。反應器內裝有粒狀催化劑,反應產物經高壓和低壓分離器,把液體產品與氣體分開,然後液體產品在分餾塔蒸餾獲得產品石油餾分。一段法裂化深度較低,一般以減壓蠟油為原料,生產中間餾分油為主。二段法裂化深度較深,一般以生產汽油為主。
❾ 如何保證加氫精製裝置的安全
加氫精製裝置屬於高溫高壓生產,生產物料屬於甲類危險品,生產過程為化學反應,可能產生有毒氣體硫化氫、氨氣等,所以在煉油廠中易出現事故,設備故障率也較高。
開、停工危險因素分析及其安全預防管理措施
(1)開工時的危險因素及可以採取的安全預防管理措施。開工時,裝置從常溫、常壓逐漸升溫升壓到各項正常操作指標。在這一過程中,物料、水、電、汽逐步引入裝置,所以在開工時,裝置的參數變化較大,可能出現的問題也比較多,容易產生事故。
柴油加氫開工的基本步驟為:臨氫系統乾燥、烘爐→反應器催化劑、保護劑的裝填→壓縮機試車→臨氫系統氣密(氮氣氣密和氫氣氣密兩個階段)→低壓系統蒸氣貫通,建立冷油運→反應系統進油,升溫、硫化→與低壓系統串聯,調整操作。
在開工階段,上述各個環節緊密關聯,因此,在開工過程中必須注意保持系統內的壓力平衡和熱平衡。對開工階段各系統易發生的事故可以作如下分析。
①在反應系統乾燥、烘爐階段,點爐前要作燃料氣的爆炸分析,並徹底用蒸氣吹掃爐膛,不能殘留可燃氣體,以免達到爆炸極限,容易誘發事故。
②在催化劑的裝填階段,應嚴格按照催化劑的裝填方案進行,同時還須保證催化劑的裝填均勻,避免反應器內發生偏流或熱點現象。此外,對進入反應器的人員,還應特別檢查穿戴勞動保護裝置的情況,以便防止異物落入反應器內。
③在壓縮機試車和臨氫系統氣賽階段,首先在開工前必須用氮氣進行貫通;然後在氫氣氣密階段,則應特別注意檢查泄漏點,以避免著火事故的發生。
④在反應系統進油和硫化階段,升溫時,需要注意緩慢而循序漸進地進行,以免反應床層超溫或「飛溫」現象發生;另外,當高分油與低壓系統串聯時,應隨時注意調節系統壓力等參數,以避免高壓竄低壓而引起重大事故的發生。
(2)停工時的危險因素分析及其防範管理。裝置停工是一個由正常操作狀態逐漸降溫、降壓、降量的過程,操作參數變化較大,屬於不穩定操作狀態,也曾發生因操作不當而造成著火、爆炸、中毒的事故。在停工時,主要應注意以下幾點:
①要嚴格按停工方案進行,根據實際情況進行操作。
②降量時,應遵循先降溫後降量的原則,防止反應器床層超溫或「飛溫」。
③臨氫系統循環帶油時,要嚴格控制高壓分離器的液位,避免高壓竄低壓惡性事故的發生;退油時,防止冷熱油互竄,避免發生突沸爆炸事故。
④退油結束後,高硫容器一定要進行冷卻或水溶解、沖洗,避免容器內硫化鐵自燃和人員中毒事件發生;同時在打開設備前,要有防護措施。
⑤處理干凈裝置的輔助流程管線和地下污油罐中的殘油,避免動火可能造成著火或爆炸。
正常生產中危險因素及可以採取的安全預防管理措施
加氫精製裝置在長周期運轉過程中,由於受工藝設備、公用工程條件、加工量調節、人員操作水平、儀表可靠度等諸多因素的影響,對正常生產時較穩定的工藝參數可能產生影響,導致不安全因素的產生。現將各單元的危險因素和可以採取的安全預防管理措施進行簡單分析。
(1)反應系統單元。加氫精製反應過程中總的熱效應為放熱反應。為了保持反應溫度的穩定,必須及時導出反應余熱。可以採取的工藝措施主要為在催化劑床層間注冷氫,從而防止和控制催化劑床層的「超溫」和「飛溫」現象發生。
(2)汽提分餾單元。汽提分餾系統是將反應生成油按沸點范圍分割成柴油、粗汽油和干氣等餾分。在這一過程中必須注意控制影響本單元安全的因素:塔頂壓力、頂迴流、進料溫度和汽提蒸氣等參數。
(3)脫硫單元。該單元的脫硫溶劑一般為乙醇胺,乙醇胺在低溫下呈鹼性,高溫下呈中性,因此必須注意控制乙醇胺的進料溫度。
(4)壓縮機單元。本單元的壓縮機為新氫機和循環氫機,這些都是裝置的重要設備,一旦出故障輕則造成裝置停工,重則可能發生著火甚至爆炸等惡性事故。因此,在日常的生產中首先應重視壓縮機單元的故障,一經發現應及時處理,以盡量避免嚴重事故的發生。