導航:首頁 > 裝置知識 > 液力傳動裝置結構

液力傳動裝置結構

發布時間:2022-11-21 19:33:26

1. 液力傳動的液力傳動裝置

液力傳動裝置是以液體為工作介質以液體的動能來實現能量傳遞的裝置,常見的有液力耦合器、液力變矩器和液力機械元件。
目前,液力傳動元件主要有液力元件和液力機械兩大類。液力元件有液力耦合器和液力變矩器;液力機械裝置是液力傳動裝置與機械傳動裝置組合而成的,因此,它既具有液力傳動變矩性能好的特點,又具有機械傳動效率高的特徵。
液力傳動裝置主要由三個關鍵部件組成,即泵輪、渦輪、導輪。
泵輪:能量輸入部件,它能接受原動機傳來的機械能並將其轉換為液體的動能;
渦輪:能量輸出部分,它將液體的動能轉換為機械能而輸出;
導輪:液體導流部件,它對流動的液體導向,使其根據一定的要求,按照一定的方向沖擊泵輪的葉片。 下圖a是液力變矩器的實物模型圖,圖b是其結構原理簡圖。它主要由泵輪、渦輪、導輪等構成。泵輪、渦輪分別與主動軸、從動軸連接,導輪則與殼體固定在一起不能轉動。當液力變矩器工作時,因導輪D對液體的作用,而使液力變矩器輸入力矩與輸出力矩不相等。當傳動比小時,輸出力矩大,輸出轉速低;反之,輸出力矩小而轉速高。它可以隨著負載的變化自動增大或減小輸出力矩與轉速。因此,液力變矩器是一個無級力矩變換器。
下面以目前廣泛使用的三元件綜合式液力變矩器來具體說明其工作原理。
如圖4所示,泵輪與變矩器外殼連為一體,是主動元件;渦輪通過花鍵與輸出軸相連,是從動元件;導輪置於泵輪和渦輪之間,通過單向離合器及導輪軸套固定在變速器外殼上。
發動機啟動後,曲軸通過飛輪帶動泵輪旋轉,因旋轉產生的離心力使泵輪葉片間的工作液沿葉片從內緣向外緣甩出;這部分工作液既具有隨泵輪一起轉動的園周向的分速度,又有沖向渦輪的軸向分速度。這些工作液沖擊渦輪葉片,推動渦輪與泵輪同方向轉動。
從渦輪流出工作液的速度可以看為工作液相對於渦輪葉片表面流出的切向速度與隨渦輪一起轉動的圓周速度的合成。當渦輪轉速比較小時,從渦輪流出的工作液是向後的,工作液沖擊導輪葉片的前面。因為導輪被單向離合器限定不能向後轉動,所以導輪葉片將向後流動的工作液導向向前推動泵輪葉片,促進泵輪旋轉,從而使作用於渦輪的轉矩增大。
隨著渦輪轉速的增加,圓周速度變大,當切向速度與圓周速度的合速度開始指向導輪葉片的背面時,變矩器到達臨界點。當渦輪轉速進一步增加時,工作液將沖擊導輪葉片的背面。因為單向離合器允許導輪與泵輪一同向前旋轉,所以在工作液的帶動下,導輪沿泵輪轉動方向自由旋轉,工作液順利地迴流到泵輪。當從渦輪流出的工作液正好與導輪葉片出口方向一致時,變矩器不產生增扭作用(這時液力變矩器的工況稱為液力偶合工況)。
液力耦合器其實是一種非剛性聯軸器,液力變矩器實質上是一種力矩變換器。它們所傳遞的功率大小與輸入軸轉速的3次方、與葉輪尺寸的5次方成正比。傳動效率在額定工況附近較高:耦合器約為96~98.5%,變矩器約為85~92%。偏離額定工況時效率有較大的下降。根據使用場合的要求,液力傳動可以是單獨使用的液力變矩器或液力耦合器;也可以與齒輪變速器聯合使用,或與具有功率分流的行星齒輪差速器(見行星齒輪傳動)聯合使用。與行星齒輪差速器聯合組成的常稱為液力-機械傳動。
液力傳動裝置的整體性能跟它與原動機的匹配情況有關。若匹配不當便不能獲得良好的傳動性能。因此,應對總體動力性能和經濟性能進行分析計算,在此基礎上設計整個液力傳動裝置。為了構成一個完整的液力傳動裝置,還需要配備相應的供油、冷卻和操作控制系統。

2. 液力耦合器的基本構造

液力耦合器的基本構造

液力耦合器和液力變矩器的結構與工作原理

現代汽車上所用自動變速器,在結構上雖有差異,但其基本結構組成和工作原理卻較為相似,前面已介紹了自動變速器主要由液力變矩器、變速齒輪機構、供油系統、自動換擋控制系統、自動換擋操縱裝置等部分組成。本章將分別介紹自動變速器中各組成部分的常見結構和工作原理,為自動變速器的拆裝和故障檢修提供必要的基本知識。



汽車上所採用的液力傳動裝置通常有液力耦合器和液力變矩器兩種,二者均屬於液力傳動,即通過液體的循環液動,利用液體動能的變化來傳遞動力。

(液力耦合器的結構與工作原理 1、液力耦合器的結構組成

液力耦合器是一種液力傳動裝置,又稱液力聯軸器。在不考慮機械損失的情況下,輸出力矩與輸入力矩相等。它的主要功能有兩個方面,一是防止發動機過載,二是調節工作機構的轉速。其結構主要由殼體、泵輪、渦輪三個部分組成,如圖1-2所示。



圖1-2 液力耦合器的基本構造

1-輸入軸 2-泵輪葉輪 3-渦輪葉輪 4-輪出軸

3. 液力傳動裝置有哪些類型

=(1)機械傳動
機械傳動是通過齒輪、皮帶、鏈條、鋼絲繩、軸和軸承等機械零件傳遞能量的。它具有傳動准確可靠、製造簡單、設計及工藝都比較成熟、受負荷及溫度變化的影響小等優點,但與其他傳動形式比較,有結構復雜笨重、遠距離操縱困難、安裝位置自由度小等缺點。
(2)電力傳動
電力傳動在有交流電源的場合得到了廣泛的應用,但交流電動機若實現無級調速需要有變頻調速設備,而直流電動機需要直流電源,其無級調速需要有可控硅調速設備,因而應用范圍受到限制。電力傳動在大功率及低速大轉矩的場合普及使用尚有一段距離。在工程機械的應用上,由於電源限制,結構笨重,無法進行頻繁的啟動、制動、換向等原因,很少單獨採用電力傳動。
(3)氣體傳動
氣體傳動是以壓縮空氣為工作介質的,通過調節供氣量,很容易實現無級調速,而且結構簡單、操作方便、高壓空氣流動過程中壓力損失少,同時空氣從大氣中取得,無供應困難,排氣及漏氣全部回到大氣中去,無污染環境的弊病,對環境的適應性強。氣體傳動的致命弱點是由於空氣的可壓縮性致使無法獲得穩定的運動,因此,一般只用於那些對運動均勻性無關緊要的地方,如氣錘、風鎬等。此外為了減少空氣的泄漏及安全原因,氣體傳動系統的工作壓力一般不超過0.7~0.8MPa,因而氣動元件結構尺寸大,不宜用於大功率傳動。在工程機械上氣動元件多用於操縱系統,如制動器、離合器的操縱等。
(4)液體傳動
以液體為工作介質,傳遞能量和進行控制的叫液體傳動,它包括液力傳動、液黏傳動和液壓傳動。
1)液力傳動
它實際上是一組離心泵一渦輪機系統,發動機帶動離心泵旋轉,離心泵從液槽吸入液體並帶動液體旋轉,最後將液體以一定的速度排入導管。這樣,離心泵便把發動機的機械能變成了液體的動能。從泵排出的高速液體經導管噴到渦輪機的葉片上,使渦輪轉動,從而變成渦輪軸的機械能。這種只利用液體動能的傳動叫液力傳動。現代液力傳動裝置可以看成是由上述離心泵一渦輪機組演化而來。
液力傳動多在工程機械中作為機械傳動的一個環節,組成液力機械傳動而被廣泛應用著,它具有自動無級變速的特點,無論機械遇到怎樣大的阻力都不會使發動機熄火,但由於液力機械傳動的效率比較低,一般不作為一個獨立完整的傳動系統被應用。
2)液黏傳動
它是以黏性液體為工作介質,依靠主、從動摩擦片間液體的黏性來傳遞動力並調節轉速與力矩的一種傳動方式。液黏傳動分為兩大類,一類是運行中油膜厚度不變的液黏傳動,如硅油風扇離合器;另一類是運行中油膜厚度可變的液黏傳動,如液黏調速離合器、液黏制動器、液黏測功器、液黏聯軸器、液黏調速裝置等。
3)液壓傳動
它是利用密閉工作容積內液體壓力能的傳動。液壓千斤頂就是一個簡單的液壓傳動的實例。
液壓千斤頂的小油缸l、大油缸2、油箱6以及它們之間的連接通道構成一個密閉的容器,裡面充滿著液壓油。在開關5關閉的情況下,當提起手柄時,小油缸1的柱塞上移使其工作容積增大形成部分真空,油箱6里的油便在大氣壓作用下通過濾網7和單向閥3進入小油缸;壓下手柄時,小油缸的柱塞下移,擠壓其下腔的油液,這部分壓力油便頂開單向閥4進入大油缸2,推動大柱塞從而頂起重物。再提起手柄時,大油缸內的壓力油將力圖倒流入小油缸,此時單向閥4自動關閉,使油不致倒流,這就保證了重物不致自動落下;壓下手柄時,單向閥3自動關閉,使液壓油不致倒流入油箱,而只能進入大油缸頂起重物。這樣,當手柄被反復提起和壓下時,小油缸不斷交替進行著吸油和排油過程,壓力油不斷進入大油缸,將重物一點點地頂起。當需放下重物時,打開開關5,大油缸的柱塞便在重物作用下下移,將大油缸中的油液擠回油箱6。可見,液壓千斤頂工作需有兩個條件:一是處於密閉容器內的液體由於大小油缸工作容積的變化而能夠流動,二是這些液體具有壓力。能流動並具有一定壓力的液體具有壓力能。液壓千斤頂就是利用油液的壓力能將手柄上的力和位移轉變為頂起重物的力和位移。

4. 氣壓增壓式液力制動傳動裝置的組成

空氣液壓制動傳動裝置(油氣復合式) 一、目的 氣壓制動的長處是小的踏板力和小的踏板行程,能產生大的促動力。液壓制動之長是滯後時間短,摩擦件少,性能穩定,非懸架支承件少,行駛平順性好,適用多種高性能制動器,可用雙輪缸,更合理的布置雙管路系統。 為了兼取氣壓制動和液壓制動兩者的優點,不少重型汽車採用了空氣液壓制動傳動裝置。它和真空加力裝置的原理一樣,只是以壓縮空氣作為動力源。由於壓縮空氣的工作壓力較大,多為(0.45~0.6)mpa,而真空式所具有的最大壓力差,只能略等於大氣壓力。故加力氣室小巧緊湊,安裝位置不受限制,系統布局合理。 二、控制型式 這種制動傳動裝置,由於控制閥的安裝和控制方式的不同,可分為兩種控制型式: (1)直接控制式--利用氣壓控制閥同時直接控制兩個單腔的增壓器或一個雙腔的增壓器(又稱氣頂油式)。 (2)間接控制式--利用一個單腔液壓主缸,同時控制兩個帶有氣壓控制閥的增壓器(又稱油控氣、氣頂油式)。 三、間接控制式的空氣液壓制動傳動裝置 (一)組成和構造特點 圖20-67所示為雙管路油控氣、氣頂油制動系統的組成。它由空氣壓縮機1、調壓器2、貯氣筒3、4組成加力氣源。各管路分別裝有2各自的空氣增壓器,用一個單腔液壓主缸34控制。 圖20-67 間接控制式的空氣液壓制動傳動裝置 1-空氣壓縮機;2-調壓器;3、4-貯氣筒,5、7-輪缸;6、9-空氣增壓器;8-制動主缸;10-氣壓表(二)空氣增壓器 1、空氣增壓器的組成 從圖20-68看出:空氣增壓器是由加力氣室17、輔助缸12和控制閥三部分組成。是氣壓和液壓制動結構的變型體,故省略結構內容。 圖20-68 間接控制的空氣增壓器簡圖 1-加力氣室活塞;2-回位彈簧;3-控制閥活塞;4-放氣螺釘;5-膜片芯管;6-空氣濾清器;7-膜片;
8-排氣閥;9-進氣閥;10-放氣螺釘;11-復合式單向閥;12-輔助缸;13-球閥;14-輔助缸活塞;
15-片狀推叉;16-加力氣室推桿;17-加力氣室;18-保養孔 2.空氣增壓器的工作情況 (1)不制動時–––控制閥活塞3左側c室無控制油壓,控制閥的膜片7和活塞3在其回位彈簧的作用下被推到左側極端位6置,進氣閥9關閉,壓縮空氣不能進入d室。排氣閥8開啟,使d和e室與大氣相通。加力氣室的a室、b室也與大氣相通, 活塞1被推到左側極端位置。輔助缸活塞14與推桿16用銷連接,也處在左側極端位置。此時,片狀推叉15球端將球閥13推開,使輔助缸左右兩腔連通,增壓器處於不工作狀態,制動主缸和輔助缸油壓與大氣壓力相等。 (2)制動時–––制動主缸的控制油液進入輔助缸活塞14的左側,通過活塞14的中心孔,球閥13、出油閥11進入各自輪缸而制動。另一部分油液經節流小孔進入c室,推動活塞3和膜片7及芯管5右移。先消除排氣閥間隙使排氣閥8關閉,切斷d室和e室的通道,再將進氣閥9推開。貯氣筒的壓縮空氣進入d室,並經空氣管進入a室,推動活塞1、推桿16和活塞14右移。b室中的空氣經e室排出,並產生較小的噓聲。此時,由於輔助缸活塞14離開了左側的極端位置,片狀推叉15對球閥13的推力消失,球閥立即關閉,活塞14右腔的油壓升高。此時,作用在活塞14上的壓力,等於增壓推力和控制油壓推力之和。但前者比後者更大,因而減輕了操縱力。 (3)維持制動時–––若踏板停止不動時,隨著輔助缸活塞的右移,控制閥活塞左側的油壓趨於下降,膜片總成左移,進氣閥9關閉,控制閥即處於「雙閥關閉」的平衡狀態。此時,控制活塞左側的控制油壓推力與右側膜片上的氣壓推力平衡。輔助缸活塞左側的推力也與右側的總阻抗力平衡。 可見,制動主缸輸出的控制油壓,決定了控制閥隨動輸入的氣壓。當加力氣室的氣壓達到一定值時(0.6mpa),輔助缸輸出的油壓達13mpa。制動踏板再繼續踩下時,增壓器即進入定值加力段。 (4)放鬆制動時–––制動主缸的輸出油壓撤消,作用在控制閥活塞3和輔助缸活塞14左側的油壓即撤消回位。排氣閥8開啟,a室的壓縮空氣經空氣管返回d室,並經排氣間隙、芯管和e室帶著較大的噓聲排入大氣。活塞1、活塞3、活塞14都返回左側的極端位置。片狀推叉15又頂開球閥13,各輪缸油管的油液推開復合式單向閥11返回輔助缸和主缸,制動即解除。當閥門11外側油壓達到殘余壓力值時即關閉,使輔助缸輸出管路和各輪缸間保持一定的殘壓,制動主缸內無復合式單向閥,它和輔助缸間無殘壓存在。 (5)增壓器失效時和無壓縮空氣時 由於輔助缸活塞有中心孔和球閥13,在增壓器失效時和無壓縮空氣時,能進行應急制動。但制動力顯著降低,且踏板沉重。因此項應急功能必須存在,輔助缸只能是單活塞式,雙管路系統只能是並裝兩個空氣增壓器。 另外,從工作過程得知:在踩下制動踏板和放鬆制動踏板時,空氣濾清器6處會有一小、一大的排氣噓聲,這是人工檢驗空氣增壓器好壞的表徵。

5. 簡述液力傳動的工作原理

以液體為工作復介質,利用液體動制能來傳遞能量的流體傳動。葉輪將動力機(內燃機、電動機、渦輪機等)輸入的轉速、力矩加以轉換,經輸出軸帶動機器的工作部分。液體與裝在輸入軸、輸出軸、殼體上的各葉輪相互作用,產生動量矩的變化,從而達到傳遞能量的目的。液力傳動與靠液體壓力能來傳遞能量的液壓傳動在原理、結構和性能上都有很大差別。液力傳動的輸入軸與輸出軸之間只靠液體為工作介質聯系,構件間不直接接觸,是一種非剛性傳動。液力傳動的優點是:能吸收沖擊和振動,過載保護性好,甚至在輸出軸卡住時動力機仍能運轉而不受損傷,帶載荷起動容易,能實現自動變速和無級調速等。因此它能提高整個傳動裝置的動力性能。

6. 液力機械自動變速器的功用

液力變扭器(HYDRAULIC CONVERTER),是能改變所傳遞扭矩的液力傳動裝置。液力自動變速器的基本結構是由專液力變矩器與動屬力換檔的輔助變速裝置組成。

液力變矩器安裝在發動機和變速器之間,以液壓油為工作介質,起傳遞轉矩、變矩、變速及離合的作用。液力變矩器可在一定范圍內自動無級地改變轉矩比和傳動比,以適應行駛阻力的變化。

(6)液力傳動裝置結構擴展閱讀

液力自動變速器不用機械式的離合器,而且只有低速、高速和倒車三個擋位,因此,駕駛起來十分輕松,用不著踩離合器,也用不著頻繁換擋,運行平穩,低速扭矩大。

所以,特別受到業余駕駛員的歡迎。在美國,大多數汽車都裝用這種自動變速器。不過,這種自動變速器機構復雜,質量重,價格較貴,也比較費油,加速較慢。所以還不能完全取代齒輪變速器。

7. 液力耦合器基本工作原理

液力耦合器的結構與工作原理
 1、液力耦合器的結構組成 
液力耦合器是一種液力傳動裝置,又稱液力聯軸器。在不考慮機械損失的情況下,輸出力矩與輸入力矩相等。它的主要功能有兩個方面,一是防止發動機過載,二是調節工作機構的轉速。其結構主要由殼體、泵輪、渦輪三個部分組成。 
液力耦合器的殼體安裝在發動機飛輪上,泵輪與殼體焊接在一起,隨發動機曲軸的轉動而轉動,是液力耦合器的主動部分:渦輪和輸出軸連接在一起,是液力耦合器的從動部分。泵輪和渦輪相對安裝,統稱為工作輪。在泵輪和渦輪上有徑向排列的平直葉片,泵輪和渦輪互不接觸。兩者之間有一定的間隙(約3mm~4mm);泵輪與渦輪裝合成一個整體後,其軸線斷面一般為圓形,在其內腔中充滿液壓油。 
2、液力耦合器的工作原理 
當發動機運轉時,曲軸帶動液力耦合器的殼體和泵輪一同轉動,泵輪葉片內的液壓油在泵輪的帶動下隨之一同旋轉,在離心力的作用下,液壓油被甩向泵輪葉片外緣處,並在外緣處沖向渦輪葉片,使渦輪在液壓沖擊力的作用下旋轉;沖向渦輪葉片的液壓油沿渦輪葉片向內緣流動,返回到泵輪內緣的液壓油,又被泵輪再次甩向外緣。液壓油就這樣從泵輪流向渦輪,又從渦輪返回到泵輪而形成循環的液流。 
液力耦合器中的循環液壓油,在從泵輪葉片內緣流向外緣的過程中,泵輪對其作功,其速度和動能逐漸增大;而在從渦輪葉片外緣流向內緣的過程中,液壓油對渦輪作功,其速度和動能逐漸減小。液力耦合器要實現傳動,必須在泵輪和渦輪之間有油液的循環流動。而油液循環流動的產生,是由於泵輪和渦輪之間存在著轉速差,使兩輪葉片外緣處產生壓力差所致。如果泵輪和渦輪的轉速相等,則液力耦合器不起傳動作用。因此,液力耦合器工作時,發動機的動能通過泵輪傳給液壓油,液壓油在循環流動的過程中又將動能傳給渦輪輸出。由於在液力耦合器內只有泵輪和渦輪兩個工作輪,液壓油在循環流動的過程中,除了受泵輪和渦輪之間的作用力之外,沒有受到其他任何附加的外力。根據作用力與反作用力相等的原理,液壓油作用在渦輪上的扭矩應等於泵輪作用在液壓油上的扭矩,即發動機傳給泵輪的扭矩與渦輪上輸出的扭矩相等,這就是液力耦合器的傳動特點

8. 坦克典型的液力傳動有哪些介紹

現代主戰坦克上,應用的液力傳動類型很多,這里只介紹典型的液力傳動簡單工作原理及其特點。

液力傳動的關鍵部件是液力元件,目前在坦克和其他戰斗車輛上,廣泛使用的液力元件兼有液力變矩器和液力偶合器的性能,這種液力元件稱為綜合式液力變距器。

它的泵輪與主動軸相連,泵輪轉動時,泵輪內的工作液體得到泵輪內葉片給予的能量後,產生離心力,迫使液體流動。這就是把發動機的機械能變成了泵輪內工作液體的動能和壓能。

液流進入渦輪,沖擊渦輪內葉片。此時,液體的能量又變成與渦輪相連的被動軸上的機械能,使被動軸旋轉。導輪在渦輪小轉速下與殼體固定在一起作為一個外力矩支點,使液流的壓能減小,動能增加。

然後液流再進入泵輪繼續循環。導輪在渦輪大輪速時與殼體自動解脫聯接,於是導輪開始在液流中空轉,此時,變矩器作為偶合器工作。綜合式變矩器在整個工作范圍內,效率均比較高,因而得到廣泛採用。

發動機的動力,從液力變矩器,或綜合式變矩器之後分流,一路經變速箱輸入左、右匯流行星排的齒圈,另一路經雙向變數泵雙向定量馬達,經錐齒輪而輸入左、右匯流行星排的太陽輪,由左、右匯流行星排框架軸輸入主動輪,以帶動兩側履帶旋轉。

坦克直線行駛時,液壓泵排量為零,液壓元件不參加工作,匯流行星排太陽輪由於液壓馬達鎖住而不動。

此時,發動機動力經液力變矩器,或綜合式變矩器,變速箱而傳入左、右匯流行星排齒圈,經匯流排框架輸入側減速器,帶動主動輪旋轉。可見這種傳動在直駛時為單流。

坦克轉向對,液壓泵、液壓馬達參加工作,發動機功率除按坦克直線行駛時輸入左、右匯流行星排齒圇外,還通過液壓泵、液壓馬達而輸入匯流行星太陽輪,使左、右匯流行星排太陽輪發生大小相等、方向相反的旋轉,這樣使匯流行星排框架的左、右速度不同,從而使坦克兩側履帶速度和牽引力不同,使坦克轉向。

這種典型的液力傳動除具有一般液力傳動的優點外,還具有如下特點,即直駛時功率為單流傳遞,轉向時功率為雙流傳遞,通過控制液壓泵排量的連續變化可使坦克獲得無級轉向的性能。

在空檔時,還可以獲得繞坦克幾何中心的轉向,此時,全部功率將由液壓元件傳遞。這種傳動由直駛到轉向的過渡連續平穩,轉向半徑的范圍寬,操縱特性好,高檔修正方向的能力好。

液壓機械傳動

未來的坦克上可能採用HMPT-500型液壓機械傳動裝置。該傳動裝置包括一個多片式主離合器,兩個油冷多片式停車制動器,兩套具有相同排量的球形活塞式液壓泵-液壓馬達組和一套齒輪裝置。

傳動裝置有三個排檔和一個倒檔,Ⅰ-倒檔為液壓傳動,Ⅱ-Ⅲ檔為液壓機械傳動。

就是說,該傳動的Ⅰ-倒檔為單流,Ⅱ-Ⅲ檔為雙流。該傳動具有液力傳動的一切優點,還克服了液力傳動中液力元件自動調節性能的不足,它具有可控無級變速的優點,使用這種傳動可使發動機按選擇的一條耗油率最小的功率—速度曲線工作,以達到最好的經濟性,它能與發動機實現最理想的匹配。

在Ⅰ-Ⅱ-Ⅲ檔速度范圍內,該傳動的轉向特性完全相同,即同一轉向信號,使兩履帶產生相同的差動速度,內側履帶減速時產生的能量直接傳輸到外側履帶,使其增速,從而減小了功率損失。

對於給定的轉向訊號,其轉向半徑隨車速的增加而增大。這種傳動,從坦克機動性觀點來看是比較理想的,從技術方面來看,難度較大。

9. 液力偶合器的工作原理有哪些

液力偶合器又稱液力聯軸器,是一種用來將動力源(通常是發動機或電機)與工作機連接起來,靠液體動量矩的變化傳遞力矩的液力傳動裝置。
液力偶合器是以液體為工作介質的一種非剛性聯軸器。液力耦合器(見圖)的泵輪和渦輪組成一個可使液體循環流動的密閉工作腔,泵輪裝在輸入軸上,渦輪裝在輸出軸上。兩輪為沿徑向排列著許多葉片的半圓環,它們相向耦合布置,互不接觸,中間有3mm到4mm的間隙,並形成一個圓環狀的工作輪。驅動輪稱為泵輪,被驅動輪稱為渦輪,泵輪和渦輪都稱為工作輪。泵輪和渦輪裝合後,形成環形空腔,其內充有工作油液。
泵輪通常在內燃機或電機驅動下旋轉,葉片帶動油液,在離心力作用下,這些油液被甩向泵輪葉片邊緣,由於泵輪和渦輪的半徑相等,故當泵輪的轉速大於渦輪轉速時,泵輪葉片外緣的液壓大於渦輪葉片外緣的液壓,由於壓差液體沖擊渦輪葉片,當足以克服外阻力時,使渦輪開始轉動,即是將動能傳給渦輪,使渦輪與泵輪同方向旋轉。油液動能下降後從渦輪的葉片邊緣又流回到泵輪,形成循環迴路,其流動路線如同一個首尾相連的環形螺旋線。液力耦合器靠液體與泵輪、渦輪的葉片相互作用產生動量矩的變化來傳遞扭矩。在忽略不計葉輪旋轉時的風損及其他機械損失時,它的輸出(渦輪)扭矩等於輸入(泵輪)扭矩。
優點
(1)具有柔性傳動自動適應功能。
(2)具有減緩沖擊和隔離扭振功能。
(3)具有改善動力機啟動能力,使之帶載荷或空載啟動功能。
(4)具有在外載荷超載時保護電機和工作機不受損壞的過載保護功能。
(5)具有協調多動力機順序啟動、均衡載荷和平穩並車功能。
(6)具有柔性制動減速功能(指液力減速器和堵轉阻尼型液力耦合器)。
(7)具有使工作機延時緩慢啟動功能,能平穩地啟動大慣量機械。
(8)對環境的適應性強,可以在寒冷、潮濕、粉塵、需防爆的環境下工作。
(9)可以使用廉價的籠型電機替代價格昂貴的繞線式電機。
(10)對環境沒有污染。
(11)傳遞功率與其輸入轉速的平方成正比,輸入轉速高時,能容量大,性能價格比高。
(12)具有無級調速功能,調速型液力耦合器可以在輸入端轉速不變的條件下,通過在運行中調節工作腔的充液量而改變輸出力矩和輸出轉速。
(13)具有離合功能,調速型和離合型液力耦合器,可以在電機不停止轉動的條件下,使工作機啟動或制動。
(14)具有擴大動力機穩定運行工作范圍功能。
(15)具有節電效果,能降低電機的啟動電流和持續時間,降低對電網的沖擊,降低電機的裝機容量,大慣量難啟動機械應用限矩型液力耦合器和離心式機械應用調速型液力耦合器節能效果顯著。
(16)除軸承、油封外無任何直接機械摩擦,故障率低,使用壽命長。
(17)結構簡單,操作維護簡便,不需要特別復雜的技術,養護費用低。
(18)性能價格比高,價格低廉,初始投資少,投資回收期短。
缺點
(1)始終存在轉差率,有轉差功率損失,限矩型液力偶合器的額定效率約等於0.96,調速型液力耦合器與離心式機械匹配相對運行效率在0.85~0.97之間。
(2)輸出轉速始終低於輸入轉速,且輸出轉速不能像齒輪傳動那樣准確不變。
(3)調速型液力耦合器需要附加冷卻系統,增加投資費用和運行費用。
(4)佔地面積較大,需要在動力機與工作機之間佔有一定空間。
(5)調速范圍相對較窄,與離心機械匹配調速范圍為1~1/5,與恆力矩機械匹配調速范圍為1~1/3。
(6)無變矩功能。
(7)傳遞功率的能力與其輸入轉速的平方成正比,輸入轉速過低時,耦合器規格增大,性能價格比降低。

10. 液壓傳動和液力傳動的區別是什麼

1、定義不同

液壓傳動:液壓傳動是指以液體為工作介質進行能量傳遞和控制的一種傳動方式。在液體傳動中,根據其能量傳遞形式不同,又分為液力傳動和液壓傳動。

液力傳動主要是利用液體動能進行能量轉換的傳動方式,如液力耦合器和液力變矩器。液壓傳動是利用液體壓力能進行能量轉換的傳動方式。

液力傳動:液力傳動是液體傳動的一個分支,它是由幾個葉輪組成的一種非剛性連接的傳動裝置。這種裝置把機械能轉換為液體的動能,再將液體的動能轉換為機械能,起著能量傳遞的作用。

2、特點不同

液壓傳動:在機械上採用液壓傳動技術,可以簡化機器的結構,減輕機器質量,減少材料消耗,降低製造成本,減輕勞動強度,提高工作效率和工作的可靠性

液力傳動:液力傳動有諸多優點,如自動適應性,防振、隔振性能,還具有過載保護、自動協調、分配負載的功能。也有一些缺點,比如:效率較低、高效范圍較窄等。

3、組成不同

液壓傳動:動力元件,動力元件是把原動機輸入的機械能轉換為油液壓力能的能量轉換裝置。其作用是為液壓系統提供壓力油。動力元件為各種液壓泵。

執行元件,執行元件是將油液的壓力能轉換為機械能的能量轉換裝置。其作用是在壓力油的推動下輸出力和速度(直線運動),或力矩和轉速(回轉運動)。這類元件包括各類液壓缸和液壓馬達。

控制調節元件,控制調節元件是用來控制或調節液壓系統中油液的壓力、流量和方向,以保證執行元件完成預期工作的元件。這類元件主要包括各種溢流閥、節流閥以及換向閥等。這些元件的不同組合便形成了不同功能的液壓傳動系統。

輔助元件,輔助元件是指油箱、油管、油管接頭、蓄能器、濾油器、壓力表、流量表以及各種密封元件等。這些元件分別起散熱貯油、輸油、連接、蓄能、過濾、測量壓力、測量流量和密封等作用,以保證系統正常工作,是液壓系統不可缺少的組成部分。

工作介質,工作介質在液壓傳動及控制中起傳遞運動、動力及信號的作用。T作介質為液壓油或其他合成液體。

液力傳動:原動機(內燃機、電動機等)帶動泵輪旋轉,使工作液體的速度和壓力增加,這一過程實現了機械能向液體動能的轉化;然後具有動能的工作液體再沖擊渦輪,此時液體釋放能量給渦輪,使渦輪轉動將動力輸出,實現能量傳遞。

閱讀全文

與液力傳動裝置結構相關的資料

熱點內容
廣東防水機械設備哪裡有 瀏覽:434
儀表白底都有什麼車 瀏覽:753
大號工具箱圖片價格 瀏覽:989
電學儀表讀數的小數點位如何確定 瀏覽:446
汽輪機烏金軸承溫度不能超多少 瀏覽:47
自動控制裝置參數 瀏覽:169
拱熱管道疏水閥門要多大 瀏覽:510
加工中心電櫃空調怎麼加製冷液 瀏覽:465
地下室全是暖氣閥門 瀏覽:283
滾背的器材哪裡有賣的 瀏覽:835
蒸餾和萃取實驗裝置特點 瀏覽:733
儀表上出現電源故障是什麼情況 瀏覽:523
防雷裝置檢測怎麼測 瀏覽:894
備用電源自動投入裝置自動調節 瀏覽:457
怎麼判斷閥門國標 瀏覽:1000
機床里的程序怎麼鎖定 瀏覽:962
水滿可自動關閉的裝置 瀏覽:282
10KV防雷接地裝置定期檢測 瀏覽:324
機械停表測量的物理量是什麼 瀏覽:124
兩個三角形給水是什麼閥門 瀏覽:774