導航:首頁 > 裝置知識 > 蛋白質自動轉印裝置

蛋白質自動轉印裝置

發布時間:2022-11-15 13:35:18

A. 納米金在食品真菌毒素中的應用

納米金
金的微小顆粒
納米金即指金的微小顆粒,其直徑在1~100nm,具有高電子密度、介電特性和催化作用,能與多種生物大分子結合,且不影響其生物活性。由氯金酸通過還原法可以方便地制備各種不同粒徑的納米金,其顏色依直徑大小而呈紅色至紫色。
中文名
納米金
外文名
AuNPs
直徑
1~100nm,
類別
金的微小顆粒
作用
高電子密度、介電特性和催化
發展歷史檢測技術發展檢測應用優點制備方法TA說
發展歷史
自從16世紀歐洲現代化學的奠基人、傑出的醫師、化學家Paracelsus制備出「飲用金」用來治療精神類疾病以來,納米金就開始登上了科學的舞台。1857年英國科學家法拉第在研究道爾頓的理論時,利用氯化金還原出含納米金的溶液,發現在其中加入少量電解質後,可使溶液由紅寶石色變為藍色,並最終凝集為無色,而加入明膠等大分子物質便可阻止這種變化。盡管當時並不知道原因,但他的發現為納米金的應用奠定了科學基礎。1885年納米金溶液在美國常作為治療酗酒的主要成分;1890年Koch醫生發現結核桿菌不能夠在金的表面存活;1890年納米金被用來治療關節炎;1935年芝加哥外科專家Edward等人發現納米金溶液能有效的減輕患者病痛,強健體質。1939年Kausche和Ruska用電子顯微鏡觀察金顆粒標記的煙草花葉病毒,呈高電子密度細顆粒狀。1971年Faulk和Taylor首次採用免疫金染色(immunogold staining,IGS)將兔抗沙門氏菌抗血清與納米金顆粒結合,用直接免疫細胞化學技術檢測沙門氏菌的表面抗原,開創了納米金免疫標記技術。
檢測技術發展
作為現代四大標記技術之一的納米金標記技術(nanogold labelling techique),實質上是蛋白質等高分子被吸附到納米金顆粒表面的包被過程。吸附機理可能是納米金顆粒表面負電荷,與蛋白質的正電荷基團因靜電吸附而形成牢固結合,而且吸附後不會使生物分子變性,由於金顆粒具有高電子密度的特性,在金標蛋白結合處,在顯微鏡下可見黑褐色顆粒,當這些標記物在相應的配體處大量聚集時,肉眼可見紅色或粉紅色斑點,因而用於定性或半定量的快速免疫檢測方法中。由於球形的納米金粒子對蛋白質有很強的吸附功能,可以與葡萄球菌A蛋白、免疫球蛋白、毒素、糖蛋白、酶、抗生素、激素、牛血清白蛋白等非共價結合,因而在基礎研究和實驗中成為非常有用的工具。
納米金溶膠
作為顯微鏡示蹤物
1978年,Geobegan等將納米金標記抗體用於普通光鏡下檢測B淋巴細腦表面膜免疫球蛋白,建立了光鏡水平的免疫金染色(immunogold staining,IGS)。1981年 Danscher用銀顯影方法增強金顆粒的可見度,並提高了靈敏度。Holgate等人於1983年建立了用銀顯影液光鏡下金顆粒的可見性的免疫金銀染色法(immunogold-siliver staining,IGSS),利用銀的增強作用,加大單獨金粒子在光鏡下可視粒子的半徑,增加了小顆粒金粒子的標記密度,提高了靈敏度。1986年Fritz等人又在IGSS法基礎上成功地進行了彩色IGSS法,使得結果更加鮮艷奪目。盡管如此,由於亞硝酸銀化合物是光敏性的,需要在暗室里進行標記,實驗操作非常的不便,改用非光敏的醋酸銀化合物,價格又過於昂貴,所以納米金在光鏡中的應用日漸減少。而利用納米金的高電子密度,能在電鏡下清晰的分辨顆粒,作為在透射電鏡(TEM)、掃描電鏡(sEM)和熒光顯微鏡的示蹤物在電鏡免疫化學和組織化學中得到了廣泛應用。
應用於均相溶膠顆粒免疫測定技術
均相溶膠顆粒免疫測定法(sol particle immunoassay, SPIA)是利用免疫學反應時金顆粒凝聚導致顏色減退的原理,將納米金與抗體結合,建立微量凝集試驗檢測相應的抗原,如間接血凝一樣,用肉眼可直接觀察到凝集顆粒。已成功地應用於PCG的檢測,直接應用分光光度計進行定量分析。
應用於流式細胞儀
應用熒光素標記的抗體,通過流式細胞儀(Flow CytoMeter,FCM)計數分析細胞表面抗原,是免疫學研究中的重要技術之一。但由於不同熒光素的光譜相互重疊,區分不同的標記很困難。Boehmer等研究發現,納米金可以明顯改變紅色激光的散射角,利用納米金標記的羊抗鼠Ig抗體應用於流式細胞術,分析不同類型細胞的表面抗原,結果納米金標記的細胞在波長632nm時,90度散射角可放大10倍以上,同時不影響細胞活性。而且與熒光素共同標記,彼此互不幹擾。因此,納米金可作為多參數細胞分析和分選的有效標記物,分析各類細胞表面標志和細胞內含物。
應用於斑點免疫金銀染色技術
斑點免疫金銀染色法(Dot-IGS,IGSS)是將斑點ELISA與免疫納米金結合起來的一種方法。將蛋白質抗原直接點樣在硝酸纖維膜上,與特異性抗體反應後,再滴迦納米金標記的第二抗體,結果在抗原抗體反應處發生金顆粒聚集,形成肉眼可見的紅色斑點,此稱為斑點免疫金染色法(Dot-IGS)。此反應可通過銀顯影液增強,即斑點金銀染色法(Dot-IGS/IGSS)。
應用於免疫印跡技術
免疫印跡技術(immunoblotting,IBT)也稱為免疫轉印技術,其原理是根據各種抗原分子量大小不同,在電泳中行走的速度不同,因而在硝酸纖維素膜上占據的位置也不同;把含有特異性抗體的血清和這一薄膜反應,那麼特異性的抗原抗體反應就顯色。而納米金免疫印跡技術相比酶標記免疫印跡技術具有簡單、快速、具有相當高的靈敏度。而且應用納米金將硝酸纖維素膜上未反應抗體進行染色,評估轉膜效率,校正抗原一抗體反應的光密度曲線,即可進行定量免疫印跡測定。
應用於斑點金免疫滲濾測定技術
斑點金免疫滲濾測定法(dot immuno-gold filtration assay,DIGFA)是斑點免疫測定法(dot immunoboding assay,DIBA)中的一種,是1982年由Hawkes等人在免疫印跡技術基礎上改良發展起來的一項免疫學新技術。其原理完全同斑點免疫金染色法,只是在硝酸纖維膜下墊有吸水性強的墊料,即為滲濾裝置。在加抗原(抗體)後,迅速加抗體(抗原),再加金標記第二抗體,由於有滲濾裝置,反應很快,在數分鍾內即可顯出顏色反應。與斑點免疫滲濾測定法(d o t immunotietration assay,DIFA)相比,所不同的是免加底物液,直接由紅色膠體金探針顯色,結果鮮艷,背景更清楚,可以在室溫下保存。該方法已成功地應用於人的免疫缺陷病病毒(HI)的檢查和人血清中甲胎蛋白的檢測。使用的有HCG試劑盒,AFP試劑盒,消化道腫瘤篩檢試劑盒。
應用於免疫層析技術
免疫層析法(gold immunochromatography assay, GICA)是將各種反應試劑以條帶狀固定在同一試紙條上,待檢標本加在試紙條的一端,將一種試劑溶解後,通過毛細作用在層析條上滲濾、移行並與膜上另一種試劑接觸,樣品中的待測物同層析材料上針對待測物的受體(如抗原或抗體)發生特異性免疫反應。層析過程中免疫復合物被截留、聚集在層析材料的一定區域(檢測帶),通過可目測的納米金標記物得到直觀的顯色結果。而游離標記物則越過檢測帶,達到與結合標記物自動分離之目的。GICA特點是單一試劑,一步操作,全部試劑可在室溫長期保存。這種新的方法將納米金免疫檢測試驗推進到~個嶄新的階段。
生物感測器
生物感測器(biosensor)是指能感應(或響應)生物、化學量,並按一定規律將其轉換成可用信號(包括電信號、光信號等)輸出的器件或裝置。在生物感測器方面,納米金主要設計為免疫感測器,是利用生物體內抗原與抗體專一性結合而導致電化學變化設計而成。另外由於納米金的氧化還原電位是+1.68V,具有極強的奪電子能力,能大大提高作為測定血糖的生物感測器葡萄糖氧化酶膜的活性,金顆粒越細,活性越大。
生物晶元
生物晶元是以膜、玻璃、硅等固相介質為載體,其最大的優點在於高通量、並行化、微型化。一次實驗可同時檢測多種或多份生物樣品。生物晶元包括基因晶元、蛋白質晶元、細胞晶元、組織晶元。生物晶元用於食品安全檢測領域的應用主要包括農葯、獸葯殘留檢測,食品微生物檢測、動物疫病監測、轉基因動物植物檢測等。2002年Park等在《Science》雜志上介紹了一種以納米金為探針的基於電荷檢測的新型基因晶元,該晶元具有非常好的靈敏度及特異性,可以在十萬分之一比率中檢測出單鹼基突變的基因片段。
檢測應用
食品檢測分析一般採用化學分析法(CA)、薄層層析法(TLC)、氣相色譜法(GC)、高效液相色譜法(HPLC),但需要繁瑣、耗時的前處理,樣品損失也較大。相對於靈敏度較低的CA和TLC方法,GC、HPLC的靈敏度較高,但操作技術要求高、儀器昂貴,並不適合現場快速測定和普及,而以納米金為免疫標記物的檢測技術正彌補了這些技術的缺點,在現代食品分析檢測中的運用也越來越多。
獸葯殘留
所謂獸葯殘留是指動物產品的任何可食部分所含獸葯的母體化合物及,或其代謝物,以及與獸葯有關的雜質的殘留。獸葯殘留既包括原葯也包括葯物在動物體內的代謝產物。主要的殘留獸葯有抗生素類、磺胺葯類、呋喃葯類、抗球蟲葯、激素葯類和驅蟲葯類。獸葯通常是通過在預防和治療動物疾病用葯、在飼料添加劑中使用以及在食品保鮮中引入葯物而帶來對食品的污染。人長期攝入含獸葯的動物性食品後,不但會對人體產生毒性作用,出現過敏反應,而且動物體內的耐葯菌株可傳播給人體,當人體發生疾病時,就給臨床上感染性疾病的治療帶來一定的困難,延誤正常的治療。另外有些殘留物還具有致畸、致癌、致突變作用。
Verheijen利用膠體金標記純化的抗鏈黴素單克隆抗體,對鏈黴素的檢測限為160ng/ml,檢測方便快速,不需要其他試劑和儀器,時間僅需lOmintl41。而使用膠體金免疫層析試紙條,在檢測蝦肉等組織試樣中殘留氯黴素(chloramphenicol,CAP)殘留時,靈敏度可達到 lng/ml,只需5~10min,並且與類似物沒有交叉反應。Yong Jin等也使用金標法來檢測動物血漿和牛奶中的新黴素殘留,其檢測限為10ng/mltl6J。鹽酸克倫特羅即β2受體興奮劑,俗稱「瘦肉精」能增強脂解和減慢蛋白質分解代謝,若在畜牧生產中使用,可明顯提高飼料轉化率和瘦肉率;但使用劑量過大,則會對動物和人(間接)的肝臟、腎臟等器官產生嚴重的毒副作用。盡管歐盟於1996年禁止在畜牧生產中使用該葯(EC Direc. tive 96/22/EC),我國農業部也於1997年明令禁止,但國內「瘦肉精」中毒事件時有發生。劉見使用金標試紙法快速檢測檢測鹽酸克倫特羅,最小檢測量達到40ng/ml。商品化的試紙條產品也比較成熟,比利時UCB Bio-procts公司開發的Tlhe Beta STAR檢測法就是將特定的β-內醯胺受體固定在試紙條上,用膠體金有色微粒作為標記物,5min內可以檢測到青黴素和頭孢黴素殘留。而國內的劉平在用生物電化學感測器檢測牛奶中殘留的青黴素時,認為使用納米金將有助於提高感測器的檢測限。
動物傳染病
動物傳染病不但會影響動物養殖經濟,也對人類健康構成威脅,聯合國糧農組織和世界衛生組織已把預防和控制嚴重的動物流行病作為其工作重點之一。蝦白斑病毒(white spot syndrome virus,WSSV)是阻礙蝦養殖業發展的主要因素,至今還沒有有效的葯物,所以及早檢測出病毒,顯得尤其重要。Wang Xiaojie等已成功研究了斑點免疫金滲濾法(DIGFA)t19~和金標試紙法來檢測蝦白斑病毒,其中金標試紙法的檢測限為1 μg/ml,而使用銀增強,可以達到0.01μg/ml。賴清金等使用金標試紙條來檢測豬瘟病毒,10~15min就能檢出結果,並可根據檢測結果合理指導豬瘟免疫和建立適宜的免疫程序。禽流感病毒(AIV)是引起禽類急性死亡的烈性、病毒性傳染病,而且能感染人,我國許多地區也先後報道有高致病性禽流感的發生,給養禽業造成了重大的經濟損失,也嚴重威脅了人類的健康。劉永德等將兔抗禽流感H5、H9亞型病毒抗體純化後,分別與制備的膠體金研製成免疫金探針,用改良的滲濾法安全快速地檢測被檢材料中禽流感H5、H9亞型病毒,3min即可得到結果,檢測靈敏度分別為1.62ug/ml和1.25μg/ml。
農葯殘留
農葯殘留分析的困難包括:樣品基質背景復雜、前處理過程繁瑣,需要耗費較多的時間、被測成分濃度較低、分析儀器的定性能力受到限制、儀器檢測靈敏度不夠等一系列問題,但使用金標記的快速檢測可以很好的解決以上問題。國內的王朔分別使用納米金免疫層析和納米金滲濾法檢測西維因的殘留,整個檢測過程只需5min,檢測限也分別達到100ug/L和50μg/L。國內的生物技術公司也開發出了成熟的商品化產品,如克百威農殘速測試紙條等。
致病微生物檢測
基於金標記的快速檢測研究在致病微生物方面比較多,檢測的種類也比較多。最早Hasan以免疫磁性分離技術為基礎的免疫膠體金技術已成功應用於01群霍亂弧菌(Vibriocholerae)的檢測。國內洪幫興等人研究了以硝酸纖維膜為載體納米金顯色的寡核苷酸晶元技術,為在分子水平快速簡便的鑒別致病菌提供了可能,甚至可以檢出致病菌的耐葯性變異。該晶元技術對大腸埃希氏菌、沙門氏菌、志賀氏菌、霍亂弧菌、副溶血弧菌、變形桿菌、單核細胞增生李斯特菌、蠟樣芽孢桿菌、肉毒梭菌和空腸彎麴菌等10種(屬)具有高靈敏度和特異性,檢出水平可達10CFU/mlt251。殷涌光等在使用集成化手持式Spreeta TM SPR感測器快速檢測大腸桿菌時,引入膠體金復合抗體作為二次抗體大幅度增加質量,進一步擴大了檢測信號,同時延長膠體金復合抗體與微生物的結合過程,使檢測信號進一步穩定與放大,從而顯著提高了檢測精度,使該感測器對大腸桿菌的檢測精度由10.6 CFU/ml提高到10.1CFU/ml。金免疫滲濾法重要的食源性致病菌之一大腸埃希氏菌0157:H7,檢測通常先以山梨醇麥康凱瓊脂(sMAC)進行初篩,然後用生化和血清學試驗做鑒定,一般需要24~48h,而採用膠體金免疫滲濾法檢測卻非常的簡便,在很短時間即可得到結果。
在致病菌快速檢測中金標試紙條的研究越來越廣泛。謝昭聰等應用膠體金免疫層析法檢測水產品中霍亂弧菌的研究中,增菌液霍亂弧菌含量為1CFU/ml,通過增菌12h後,即可應用膠體金免疫層析法診斷試劑檢出,而一般水產品霍亂弧菌檢測所採用的傳統常規方法,檢測時限長,增菌培養需8~16h,分離培養需14~20h,初步報告需30h以上,實際操作中,需要3d以上才能出報告。腸桿菌科的大屬沙門氏菌可引起人的沙門氏菌性食物中毒,王中民等人採用免疫滲濾法可檢出85%的引起食物中毒的沙門氏菌,靈敏度為2.4×107CFU/ml,對最常見的鼠傷寒、豬霍亂和腸炎沙門氏菌,檢出率達100%,而採用膠體金免疫層析法的靈敏度為2.1×106CFU/mlt30j。被美國列為七種主要食源性致死病菌之一的李斯特菌,如果按照傳統的分離培養和鑒定技術需要l~2周時間,而採用免疫膠體金層析法只需10min就能得到檢測結果,靈敏度達到87.5%。
真菌毒素的檢測
真菌毒素(Mycotoxin)是由真菌(Fungi)產生的具有毒性的二級代謝產物,廣泛存在食品和飼料中,人類若誤食受污染的食品,就會中毒或誘發一定疾病,甚至癌症。檢測食品中的真菌毒素常用理化方法或生物學方法。但理化法需要較昂貴的儀器設備,操作復雜。而運用免疫技術檢測真菌毒素敏感性高,特異性強,非常適用於食物樣品的檢測。D.J.Chiao等使用金標免疫層析法在10min之內即可檢測50ng/ml的肉毒桿菌毒素B(BoNT/B),如果使用銀增強則其檢測限可以達到50pg/ml,而且對A、E型肉毒桿菌毒素沒有交叉反應。貉麴黴毒素是麴黴屬和青黴屬產生的一類真菌毒素,其中毒性最大、與人類健康關系最密切、對農作物的污染最重、分布最廣的是赭麴黴素A(OTA),賴衛華等研製的赭麴黴毒素A快速檢測膠體金試紙條,檢測限達到了10ng/mlt331,遠遠低於我國對赭麴黴毒素的限量要求5μg/L。黃麴黴毒素B z的快速檢測國內也有很多研究,孫秀蘭研製的黃麴黴毒素B,金標免疫試紙條,其最低檢測限達到2.5ng/ml,而且能定性或半定量檢測食品中的黃麴黴毒素B,含量。
優點
隨著科學技術的不斷發展,食品分析檢測技術也在不斷地更新、完善和迅速發展,尤其是快速檢測技術更能適應現代高效、快速的節奏和滿足社會的要求。儀器分析法可以保證數據的精確性和准確性,但其流程仍比較煩瑣。盡管以納米金為標記物的免疫分析法及其它速測技術的開發過程需投入較多資金和較長時間,但具有簡單、快速、靈敏度高、特異性強、價廉、樣品所需量少等優點,其靈敏度與常規的儀器分析一致,適合現場篩選,而且其中的金免疫層析技術正在向定量、半定量檢測和多元檢測的方向發展,更加體現出金標技術的優勢。總之,快速檢測技術的快速、靈敏、簡便等優點,使之在食品衛生檢疫和環境檢測中有著廣泛的應用價值和發展前景。
制備方法
配製濃度為2.44×10-3 mol/L 的HAuCl4·4H2O溶液、濃度為3.43×10-2 mol/L 的Na3C6H5O7·2H2O 溶液、濃度為1.00×10-4 mol/L 的 PVP 溶液, 以及濃度為0.391 mol/L 的NaBH4 溶液備用。在燒杯中加入10 mL 氯金酸溶液, 10 mL 或不加保護劑溶液, 80 mL 三蒸水, 將燒杯置於數顯測速恆溫磁力攪拌器上, 邊加熱邊攪拌, 攪拌的轉速設置為600 r/min, 加熱至75℃, 恆溫2 min, 用移液管移取一定體積的還原劑(Na3C6H5O7 或NaBH4)溶液,迅速一次加入到上述混合液, 開始計時, 使液體顏色恆定並持續加熱一段時間共9 min, 停止加熱, 繼續攪拌5 min 後, 停止攪拌, 冷卻至室溫, 所得液體為納米金溶膠。

B. eastern blot

eastern blot:電驅動轉移等電聚焦電泳後的蛋白區帶
biotting歷史如下(來自電泳的原理應用及進展):
轉印電泳最先是由Southern於1975年發明的。在電流作用下,他成功地將DNA片段從瓊脂糖凝膠中轉印到硝酸纖維膜上進行分子雜交分析,因此稱為Southern-blotting。後來,Alwine用類似方法也成功地將RNA從電泳膠中轉印到硝酸纖維膜上作分子雜交分析,但他並沒有稱這一技術為Alwine-blotting,而是稱之為Northern-blotting,以便與Sourhern blotting相對應。1981年Burette又成功地將SDS-PAGE膠中的蛋白質轉印到膜上進行免疫學分析(如抗原抗體結合、蛋白質與配基結合等),繼之Alwine,Burette稱這一技術為Western-blotting。這樣一來,在轉印電泳這個家族中,就有了Southernblotting,Northern-blotting和Western-blotting,僅僅缺一個Eastern-blotting。其實後來有人提議將IEF膠(即等電聚焦電泳)中的蛋白質轉印到膜上的技術稱為Eastern-blotting,但這一建議並未被廣泛接受

C. 分子量120kDa,轉膜條件求助

蛋白質從凝膠轉印至膜
1 )半干電轉移法
1. 用蒸餾水淋洗半干裝置的平板電極。…
具體的你看看這個。
http://www.bioon.com/experiment/72358_3.shtml

D. 納米金在生活中的用途

應用於均相溶膠顆粒免疫測定技術 均相溶膠顆粒免疫測定法(sol particle immunoassay, SPIA)是利用免疫學反應時金顆粒凝聚導致顏色減退的原理,將納米金與抗體結合,建立微量凝集試驗檢測相應的抗原,如間接血凝一樣,用肉眼可直接觀察到凝集顆粒。已成功地應用於PCG的檢測,直接應用分光光度計進行定量分析。 l.3 應用於流式細胞儀 應用熒光素標記的抗體,通過流式細胞儀(Flow CytoMeter,FCM)計數分析細胞表面抗原,是免疫學研究中的重要技術之一。但由於不同熒光素的光譜相互重疊,區分不同的標記很困難。Boehmer等研究發現,納米金可以明顯改變紅色激光的散射角,利用納米金標記的羊抗鼠Ig抗體應用於流式細胞術,分析不同類型細胞的表面抗原,結果納米金標記的細胞在波長632nm時,90度散射角可放大10倍以上,同時不影響細胞活性。而且與熒光素共同標記,彼此互不幹擾。因此,納米金可作為多參數細胞分析和分選的有效標記物,分析各類細胞表面標志和細胞內含物。 1.4 應用於斑點免疫金銀染色技術 斑點免疫金銀染色法(Dot-IGS,IGSS)是將斑點ELISA與免疫納米金結合起來的一種方法。將蛋白質抗原直接點樣在硝酸纖維膜上,與特異性抗體反應後,再滴迦納米金標記的第二抗體,結果在抗原抗體反應處發生金顆粒聚集,形成肉眼可見的紅色斑點,此稱為斑點免疫金染色法(Dot-IGS)。此反應可通過銀顯影液增強,即斑點金銀染色法(Dot-IGS/IGSS)。 1.5 應用於免疫印跡技術 免疫印跡技術(immunoblotting,IBT)也稱為免疫轉印技術,其原理是根據各種抗原分子量大小不同,在電泳中行走的速度不同,因而在硝酸纖維素膜上占據的位置也不同;把含有特異性抗體的血清和這一薄膜反應,那麼特異性的抗原抗體反應就顯色。而納米金免疫印跡技術相比酶標記免疫印跡技術具有簡單、快速、具有相當高的靈敏度。而且應用納米金將硝酸纖維素膜上未反應抗體進行染色,評估轉膜效率,校正抗原一抗體反應的光密度曲線,即可進行定量免疫印跡測定。 1.6 應用於斑點金免疫滲濾測定技術 斑點金免疫滲濾測定法(dot immuno-gold filtration assay,DIGFA)是斑點免疫測定法(dot immunoboding assay,DIBA)中的一種,是1982年由Hawkes等人在免疫印跡技術基礎上改良發展起來的一項免疫學新技術。其原理完全同斑點免疫金染色法,只是在硝酸纖維膜下墊有吸水性強的墊料,即為滲濾裝置。在加抗原(抗體)後,迅速加抗體(抗原),再加金標記第二抗體,由於有滲濾裝置,反應很快,在數分鍾內即可顯出顏色反應。與斑點免疫滲濾測定法(d o t immunotietration assay,DIFA)相比,所不同的是免加底物液,直接由紅色膠體金探針顯色,結果鮮艷,背景更清楚,可以在室溫下保存。該方法已成功地應用於人的免疫缺陷病病毒(HI)的檢查和人血清中甲胎蛋白的檢測。目前使用的有HCG試劑盒,AFP試劑盒,消化道腫瘤篩檢試劑盒。 1.7 應用於免疫層析技術 免疫層析法(gold immunochromatography assay, GICA)是將各種反應試劑以條帶狀固定在同一試紙條上,待檢標本加在試紙條的一端,將一種試劑溶解後,通過毛細作用在層析條上滲濾、移行並與膜上另一種試劑接觸,樣品中的待測物同層析材料上針對待測物的受體(如抗原或抗體)發生特異性免疫反應。層析過程中免疫復合物被截留、聚集在層析材料的一定區域(檢測帶),通過可目測的納米金標記物得到直觀的顯色結果。而游離標記物則越過檢測帶,達到與結合標記物自動分離之目的。GICA特點是單一試劑,一步操作,全部試劑可在室溫長期保存。這種新的方法將納米金免疫檢測試驗推進到~個嶄新的階段。

都是在網上搜的,這是別人的答案

E. 什麼是Westernblot法及Westernblot法應用

什麼是Westernblot法:Westernblot法是一種將電泳與KIJSA結合起來的技術,可分為電泳、轉印、酶免疫測定3個階段。Westernblot法結合了電泳的高解析度和酶免疫測定的高敏感性和特異性,是一種能用於分析樣本組分的免疫學測定方法。
Westernblot法應用:Westernblot法應用分子生物學、生物化學和免疫遺傳學中時常會用到的一種實驗方法,並且是一種能對蛋白進行定性和半定量的分析方法。是通過特異性抗體對凝膠電泳處理過的細胞或生物組織樣品進行著色,並且通過分析著色的位置和著色深度獲得特定蛋白質在所分析的細胞或組織中的表達情況的信息。
蛋白質分析中應用的Western雜交法與DNA分析應用的Southern雜交法相似,均是把電流分離的組分從凝膠轉移至一種固相支持體,並均以針對特定氨基酸(Westernblot法)或核苷酸(Southern雜交法)序列所制備的特異性樣品作為探針檢測其相同或相似序列。 對於蛋白質來說,通常使用的探針是抗體,它與附著於固相支持體的靶蛋白所呈現的抗原表位發生特異性反應。Westernblot法的主要優點在於,它能夠從生物組織的粗提物或部分純化的粗提物中檢測和識別幾種特異的蛋白質。將聚丙烯醯胺凝膠電泳(SDS—PAGE)分離的蛋白質從聚丙烯醯胺凝膠上通過電轉移到一張合適的印跡膜上,隨後用和靈敏檢測系統相偶聯的抗體來識別結合在膜上的一種或幾種蛋白質。這一技術的靈敏度能達到標準的固相放射免疫分析的水平而又無需俊免疫沉澱法那樣必須對靶蛋白進行放射性標記。因此要對非放射性標記蛋白組成的復雜混合物中的某些特定蛋白進行鑒別和定量時,Westernblot法極為有用。此外,由於蛋白質的電泳分離幾乎總在變性條件下進行,因此溶解、聚集以及靶蛋白與外來蛋白的共沉澱等諸多問題全都無需加以考慮。
伯樂生命bio-rad Trans-Blot 轉印槽是一種多功能儀器,適用於多種Westernblot法應用。多組參數靈活可設,可調節的電壓設置(從30V的過夜轉印到到 200 V的1 小時快速實驗)。電極間距設置為8cm可用於標准轉印,設置為4cm用於高強度轉印。採用特級冷卻芯和水循環冷卻裝置來調節溫度-是天然酶(4°C)或高強度轉印的理想選擇,隨著轉印時間增加(多達24小時),不會引起緩沖液耗竭。

F. 蛋白質的合成技術是誰發明的

1963年,美國洛克菲勒大學梅里菲爾德博士發明了一項新的蛋白質合成技術——固相合成法,蛋白質合成技術獲得了飛躍的發展。這一技術是一種利用聚苯乙烯樹脂顆粒表面拉長氨基酸長鏈的特殊方法。梅里菲爾德博士根據這種方法創制了全自動蛋白質合成裝置,從此就能由機械來合成蛋白質了。

G. 納米金 是什麼意思

納米金即指金的微小顆粒,其直徑在1~100nm,具有高電子密度、介電特性和催化作用,能與多種生物大分子結合,且不影響其生物活性。由氯金酸通過還原法可以方便地制備各種不同粒徑的納米金,其顏色依直徑大小而呈紅色至紫色。
以納米金為免疫標記物的檢測技術的發展
作為現代四大標記技術之一的納米金標記技術(nanogold labelling techique),實質上是蛋白質等高分子被吸附到納米金顆粒表面的包被過程。吸附機理可能是納米金顆粒表面負電荷,與蛋白質的正電荷基團因靜電吸附而形成牢固結合,而且吸附後不會使生物分子變性,由於金顆粒具有高電子密度的特性,在金標蛋白結合處,在顯微鏡下可見黑褐色顆粒,當這些標記物在相應的配體處大量聚集時,肉眼可見紅色或粉紅色斑點,因而用於定性或半定量的快速免疫檢測方法中。由於球形的納米金粒子對蛋白質有很強的吸附功能,可以與葡萄球菌A蛋白、免疫球蛋白、毒素、糖蛋白、酶、抗生素、激素、牛血清白蛋白等非共價結合,因而在基礎研究和實驗中成為非常有用的工具。
1.1 作為顯微鏡示蹤物
1978年,Geobegan等將納米金標記抗體用於普通光鏡下檢測B淋巴細腦表面膜免疫球蛋白,建立了光鏡水平的免疫金染色(immunogold staining,IGS)。1981年 Danscher用銀顯影方法增強金顆粒的可見度,並提高了靈敏度。Holgate等人於1983年建立了用銀顯影液光鏡下金顆粒的可見性的免疫金銀染色法(immunogold-siliver staining,IGSS),利用銀的增強作用,加大單獨金粒子在光鏡下可視粒子的半徑,增加了小顆粒金粒子的標記密度,提高了靈敏度。1986年Fritz等人又在IGSS法基礎上成功地進行了彩色IGSS法,使得結果更加鮮艷奪目。盡管如此,由於亞硝酸銀化合物是光敏性的,需要在暗室里進行標記,實驗操作非常的不便,改用非光敏的醋酸銀化合物,價格又過於昂貴,所以納米金在光鏡中的應用日漸減少。而利用納米金的高電子密度,能在電鏡下清晰的分辨顆粒,作為在透射電鏡(TEM)、掃描電鏡(sEM)和熒光顯微鏡的示蹤物在電鏡免疫化學和組織化學中得到了廣泛應用。
1.2 應用於均相溶膠顆粒免疫測定技術
均相溶膠顆粒免疫測定法(sol particle immunoassay, SPIA)是利用免疫學反應時金顆粒凝聚導致顏色減退的原理,將納米金與抗體結合,建立微量凝集試驗檢測相應的抗原,如間接血凝一樣,用肉眼可直接觀察到凝集顆粒。已成功地應用於PCG的檢測,直接應用分光光度計進行定量分析。
l.3 應用於流式細胞儀
應用熒光素標記的抗體,通過流式細胞儀(Flow CytoMeter,FCM)計數分析細胞表面抗原,是免疫學研究中的重要技術之一。但由於不同熒光素的光譜相互重疊,區分不同的標記很困難。Boehmer等研究發現,納米金可以明顯改變紅色激光的散射角,利用納米金標記的羊抗鼠Ig抗體應用於流式細胞術,分析不同類型細胞的表面抗原,結果納米金標記的細胞在波長632nm時,90度散射角可放大10倍以上,同時不影響細胞活性。而且與熒光素共同標記,彼此互不幹擾。因此,納米金可作為多參數細胞分析和分選的有效標記物,分析各類細胞表面標志和細胞內含物。
1.4 應用於斑點免疫金銀染色技術
斑點免疫金銀染色法(Dot-IGS,IGSS)是將斑點ELISA與免疫納米金結合起來的一種方法。將蛋白質抗原直接點樣在硝酸纖維膜上,與特異性抗體反應後,再滴迦納米金標記的第二抗體,結果在抗原抗體反應處發生金顆粒聚集,形成肉眼可見的紅色斑點,此稱為斑點免疫金染色法(Dot-IGS)。此反應可通過銀顯影液增強,即斑點金銀染色法(Dot-IGS/IGSS)。
1.5 應用於免疫印跡技術
免疫印跡技術(immunoblotting,IBT)也稱為免疫轉印技術,其原理是根據各種抗原分子量大小不同,在電泳中行走的速度不同,因而在硝酸纖維素膜上占據的位置也不同;把含有特異性抗體的血清和這一薄膜反應,那麼特異性的抗原抗體反應就顯色。而納米金免疫印跡技術相比酶標記免疫印跡技術具有簡單、快速、具有相當高的靈敏度。而且應用納米金將硝酸纖維素膜上未反應抗體進行染色,評估轉膜效率,校正抗原一抗體反應的光密度曲線,即可進行定量免疫印跡測定。
1.6 應用於斑點金免疫滲濾測定技術
斑點金免疫滲濾測定法(dot immuno-gold filtration assay,DIGFA)是斑點免疫測定法(dot immunoboding assay,DIBA)中的一種,是1982年由Hawkes等人在免疫印跡技術基礎上改良發展起來的一項免疫學新技術。其原理完全同斑點免疫金染色法,只是在硝酸纖維膜下墊有吸水性強的墊料,即為滲濾裝置。在加抗原(抗體)後,迅速加抗體(抗原),再加金標記第二抗體,由於有滲濾裝置,反應很快,在數分鍾內即可顯出顏色反應。與斑點免疫滲濾測定法(d o t immunotietration assay,DIFA)相比,所不同的是免加底物液,直接由紅色膠體金探針顯色,結果鮮艷,背景更清楚,可以在室溫下保存。該方法已成功地應用於人的免疫缺陷病病毒(HI)的檢查和人血清中甲胎蛋白的檢測。目前使用的有HCG試劑盒,AFP試劑盒,消化道腫瘤篩檢試劑盒。
1.7 應用於免疫層析技術
免疫層析法(gold immunochromatography assay, GICA)是將各種反應試劑以條帶狀固定在同一試紙條上,待檢標本加在試紙條的一端,將一種試劑溶解後,通過毛細作用在層析條上滲濾、移行並與膜上另一種試劑接觸,樣品中的待測物同層析材料上針對待測物的受體(如抗原或抗體)發生特異性免疫反應。層析過程中免疫復合物被截留、聚集在層析材料的一定區域(檢測帶),通過可目測的納米金標記物得到直觀的顯色結果。而游離標記物則越過檢測帶,達到與結合標記物自動分離之目的。GICA特點是單一試劑,一步操作,全部試劑可在室溫長期保存。這種新的方法將納米金免疫檢測試驗推進到~個嶄新的階段。
1.8 生物感測器
生物感測器(biosensor)是指能感應(或響應)生物、化學量,並按一定規律將其轉換成可用信號(包括電信號、光信號等)輸出的器件或裝置。在生物感測器方面,納米金主要設計為免疫感測器,是利用生物體內抗原與抗體專一性結合而導致電化學變化設計而成。另外由於納米金的氧化還原電位是+1.68V,具有極強的奪電子能力,能大大提高作為測定血糖的生物感測器葡萄糖氧化酶膜的活性,金顆粒越細,活性越大。
1.9 生物晶元
生物晶元是以膜、玻璃、硅等固相介質為載體,其最大的優點在於高通量、並行化、微型化。一次實驗可同時檢測多種或多份生物樣品。生物晶元包括基因晶元、蛋白質晶元、細胞晶元、組織晶元。目前,生物晶元用於食品安全檢測領域的應用主要包括農葯、獸葯殘留檢測,食品微生物檢測、動物疫病監測、轉基因動物植物檢測等。2002年Park等在《Science》雜志上介紹了一種以納米金為探針的基於電荷檢測的新型基因晶元,該晶元具有非常好的靈敏度及特異性,可以在十萬分之一比率中檢測出單鹼基突變的基因片段。
納米金技術在食品安全快速檢測中的應用
目前食品檢測分析一般採用化學分析法(CA)、薄層層析法(TLC)、氣相色譜法(GC)、高效液相色譜法(HPLC),但需要繁瑣、耗時的前處理,樣品損失也較大。相對於靈敏度較低的CA和TLC方法,GC、HPLC的靈敏度較高,但操作技術要求高、儀器昂貴,並不適合現場快速測定和普及,而以納米金為免疫標記物的檢測技術正彌補了這些技術的缺點,在現代食品分析檢測中的運用也越來越多。
2.1 獸葯殘留
所謂獸葯殘留是指動物產品的任何可食部分所含獸葯的母體化合物及,或其代謝物,以及與獸葯有關的雜質的殘留。獸葯殘留既包括原葯也包括葯物在動物體內的代謝產物。主要的殘留獸葯有抗生素類、磺胺葯類、呋喃葯類、抗球蟲葯、激素葯類和驅蟲葯類。獸葯通常是通過在預防和治療動物疾病用葯、在飼料添加劑中使用以及在食品保鮮中引入葯物而帶來對食品的污染。人長期攝入含獸葯的動物性食品後,不但會對人體產生毒性作用,出現過敏反應,而且動物體內的耐葯菌株可傳播給人體,當人體發生疾病時,就給臨床上感染性疾病的治療帶來一定的困難,延誤正常的治療。另外有些殘留物還具有致畸、致癌、致突變作用。
Verheijen利用膠體金標記純化的抗鏈黴素單克隆抗體,對鏈黴素的檢測限為160ng/ml,檢測方便快速,不需要其他試劑和儀器,時間僅需lOmintl41。而使用膠體金免疫層析試紙條,在檢測蝦肉等組織試樣中殘留氯黴素(chloramphenicol,CAP)殘留時,靈敏度可達到 lng/ml,只需5~10min,並且與類似物沒有交叉反應。Yong Jin等也使用金標法來檢測動物血漿和牛奶中的新黴素殘留,其檢測限為10ng/mltl6J。鹽酸克倫特羅即β2受體興奮劑,俗稱「瘦肉精」能增強脂解和減慢蛋白質分解代謝,若在畜牧生產中使用,可明顯提高飼料轉化率和瘦肉率;但使用劑量過大,則會對動物和人(間接)的肝臟、腎臟等器官產生嚴重的毒副作用。盡管歐盟於1996年禁止在畜牧生產中使用該葯(EC Direc. tive 96/22/EC),我國農業部也於1997年明令禁止,但國內「瘦肉精」中毒事件時有發生。劉見使用金標試紙法快速檢測檢測鹽酸克倫特羅,最小檢測量達到40ng/ml。現在商品化的試紙條產品現在也比較成熟,比利時UCB Bio-procts公司開發的Tlhe Beta STAR檢測法就是將特定的β-內醯胺受體固定在試紙條上,用膠體金有色微粒作為標記物,5min內可以檢測到青黴素和頭孢黴素殘留。而國內的劉平在用生物電化學感測器檢測牛奶中殘留的青黴素時,認為使用納米金將有助於提高感測器的檢測限。
2.2 動物傳染病
動物傳染病不但會影響動物養殖經濟,也對人類健康構成威脅,聯合國糧農組織和世界衛生組織已把預防和控制嚴重的動物流行病作為其工作重點之一。蝦白斑病毒(white spot syndrome virus,WSSV)是阻礙蝦養殖業發展的主要因素,至今還沒有有效的葯物,所以及早檢測出病毒,顯得尤其重要。Wang Xiaojie等已成功研究了斑點免疫金滲濾法(DIGFA)t19~和金標試紙法來檢測蝦白斑病毒,其中金標試紙法的檢測限為1 μg/ml,而使用銀增強,可以達到0.0lμg/ml。賴清金等使用金標試紙條來檢測豬瘟病毒,10~15min就能檢出結果,並可根據檢測結果合理指導豬瘟免疫和建立適宜的免疫程序。禽流感病毒(AIV)是引起禽類急性死亡的烈性、病毒性傳染病,而且能感染人,我國許多地區也先後報道有高致病性禽流感的發生,給養禽業造成了重大的經濟損失,也嚴重威脅了人類的健康。劉永德等將兔抗禽流感H5、H9亞型病毒抗體純化後,分別與制備的膠體金研製成免疫金探針,用改良的滲濾法安全快速地檢測被檢材料中禽流感H5、H9亞型病毒,3min即可得到結果,檢測靈敏度分別為1.62ug/ml和1.25μg/ml。
2.3 農葯殘留
農葯殘留分析的困難包括:樣品基質背景復雜、前處理過程繁瑣,需要耗費較多的時間、被測成分濃度較低、分析儀器的定性能力受到限制、儀器檢測靈敏度不夠等一系列問題,但使用金標記的快速檢測可以很好的解決以上問題。國內的王朔分別使用納米金免疫層析和納米金滲濾法檢測西維因的殘留,整個檢測過程只需5min,檢測限也分別達到100ug/L和50μg/L。國內的生物技術公司也開發出了成熟的商品化產品,如克百威農殘速測試紙條等。
2.4 致病微生物檢測
目前基於金標記的快速檢測研究在致病微生物方面比較多,檢測的種類也比較多。最早Hasan以免疫磁性分離技術為基礎的免疫膠體金技術已成功應用於01群霍亂弧菌(Vibriocholerae)的檢測。國內洪幫興等人研究了以硝酸纖維膜為載體納米金顯色的寡核苷酸晶元技術,為在分子水平快速簡便的鑒別致病菌提供了可能,甚至可以檢出致病菌的耐葯性變異。該晶元技術對大腸埃希氏菌、沙門氏菌、志賀氏菌、霍亂弧菌、副溶血弧菌、變形桿菌、單核細胞增生李斯特菌、蠟樣芽孢桿菌、肉毒梭菌和空腸彎麴菌等10種(屬)具有高靈敏度和特異性,檢出水平可達10CFU/mlt251。殷涌光等在使用集成化手持式Spreeta TM SPR感測器快速檢測大腸桿菌時,引入膠體金復合抗體作為二次抗體大幅度增加質量,進一步擴大了檢測信號,同時延長膠體金復合抗體與微生物的結合過程,使檢測信號進一步穩定與放大,從而顯著提高了檢測精度,使該感測器對大腸桿菌的檢測精度由10 6 CFU/ml提高到10 1CFU/ml。金免疫滲濾法重要的食源性致病菌之一大腸埃希氏菌0157:H7,目前的檢測通常先以山梨醇麥康凱瓊脂(sMAC)進行初篩,然後用生化和血清學試驗做鑒定,一般需要24~48h,而採用膠體金免疫滲濾法檢測卻非常的簡便,在很短時間即可得到結果。
在致病菌快速檢測中金標試紙條的研究越來越廣泛。謝昭聰等應用膠體金免疫層析法檢測水產品中霍亂弧菌的研究中,增菌液霍亂弧菌含量為1CFU/ml,通過增菌12h後,即可應用膠體金免疫層析法診斷試劑檢出,而一般水產品霍亂弧菌檢測所採用的傳統常規方法,檢測時限長,增菌培養需8~16h,分離培養需14~20h,初步報告需30h以上,實際操作中,需要3d以上才能出報告。腸桿菌科的大屬沙門氏菌可引起人的沙門氏菌性食物中毒,王中民等人採用免疫滲濾法可檢出85%的引起食物中毒的沙門氏菌,靈敏度為2.4×107CFU/ml,對最常見的鼠傷寒、豬霍亂和腸炎沙門氏菌,檢出率達100%,而採用膠體金免疫層析法的靈敏度為2.1×106CFU/mlt30j。被美國列為七種主要食源性致死病菌之一的李斯特菌,如果按照傳統的分離培養和鑒定技術需要l~2周時間,而採用免疫膠體金層析法只需10min就能得到檢測結果,靈敏度達到87.5%。
2.5 真菌毒素的檢測
真菌毒素(Mycotoxin)是由真菌(Fungi)產生的具有毒性的二級代謝產物,廣泛存在食品和飼料中,人類若誤食受污染的食品,就會中毒或誘發一定疾病,甚至癌症。檢測食品中的真菌毒素常用理化方法或生物學方法。但理化法需要較昂貴的儀器設備,操作復雜。而運用免疫技術檢測真菌毒素敏感性高,特異性強,非常適用於食物樣品的檢測。D.J.Chiao等使用金標免疫層析法在10min之內即可檢測50ng/ml的肉毒桿菌毒素B(BoNT/B),如果使用銀增強則其檢測限可以達到50pg/ml,而且對A、E型肉毒桿菌毒素沒有交叉反應。貉麴黴毒素是麴黴屬和青黴屬產生的一類真菌毒素,其中毒性最大、與人類健康關系最密切、對農作物的污染最重、分布最廣的是赭麴黴素A(OTA),賴衛華等研製的赭麴黴毒素A快速檢測膠體金試紙條,檢測限達到了10ng/mlt331,遠遠低於目前我國對赭麴黴毒素的限量要求5μg/L。黃麴黴毒素B z的快速檢測國內也有很多研究,孫秀蘭研製的黃麴黴毒素B,金標免疫試紙條,其最低檢測限達到2.5ng/ml,而且能定性或半定量檢測食品中的黃麴黴毒素B,含量。
小 結
隨著科學技術的不斷發展,食品分析檢測技術也在不斷地更新、完善和迅速發展,尤其是快速檢測技術更能適應現代高效、快速的節奏和滿足社會的要求。儀器分析法可以保證數據的精確性和准確性,但其流程仍比較煩瑣。盡管以納米金為標記物的免疫分析法及其它速測技術的開發過程需投入較多資金和較長時間,但具有簡單、快速、靈敏度高、特異性強、價廉、樣品所需量少等優點,其靈敏度與常規的儀器分析一致,適合現場篩選,而且其中的金免疫層析技術正在向定量、半定量檢測和多元檢測的方向發展,更加體現出金標技術的優勢。總之,快速檢測技術的快速、靈敏、簡便等優點,使之在食品衛生檢疫和環境檢測中有著廣泛的應用價值和發展前景。

應用領域
食品、玻璃、生物體的著色劑。
用於遺傳基因的鑒定技術。
用於環境凈化產品的提煉。
用於食品、化妝品的防腐劑。
加入到化妝品中起到美白、抗衰老、潤膚的作用。
生產抗菌、抑菌、消炎類葯品,醫療器械,保健用品,美容護理器械。
生產與人們生活息息相關的各類生活日用品、食品、飲品等。如納米金香皂,牙刷,各種美容面膜。

H. 賽智半干轉印系統好用嗎

好用。
1、賽智半干轉印系統相對濕式轉印來說速度要快很多,同等條件下需要的試劑和耗材的量也減少很多,流程也會相對干凈。
2、轉印系統可以在10分鍾內完成蛋白質凝膠轉印,快速高效。一個轉印盒一次可以有效轉印單塊Mini凝膠(7.0x8.5cm)或兩塊Mini凝膠。

I. eastern blotting

southern:用DNA作為探針雜交DNA.檢測目標DNA的存在與否
northern:用DNA或RNA探針雜交RNA.檢測目標RNA的存在與否
western:用抗體和目的蛋白結合進行雜交.檢測目標蛋白的存在與否.
沒有eastern雜交.少數人提議將IEF膠(即等電聚焦電泳)中的蛋白質轉印到膜上的技術稱為Eastern-blotting,但這一建議並未被廣泛接受.

J. 列印機的知識~!

列印機概述
列印機(printer)是計算機的輸出設備之一,用於將計算機處理結果列印在相關介質上。衡量列印機好壞的指標有三項:列印解析度,列印速度和雜訊。

列印機簡介
將計算機的運算結果或中間結果以人所能識別的數字 、字母、符號和圖形等,依照規定的格式印在紙上的設備。列印機正向輕、薄、短、小、低功耗、高速度和智能化方向發展。

列印機的種類很多,按列印元件對紙是否有擊打動作,分擊打式列印機與非擊打式列印機。按列印字元結構,分全形字列印機和點陣字元列印機。按一行字在紙上形成的方式,分串式列印機與行式列印機。按所採用的技術,分柱形、球形、噴墨式、熱敏式、激光式、靜電式、磁式、發光二極體式等列印機。

串式全形字元擊打式列印機 柱形、球形、菊花瓣形和杯形均屬此類。所有字元均完整地以反形凸刻於柱、球等字模載體上,字模載體在驅動源的驅動下能轉動,並可上、下移動,以將所需字模送到列印位置,通過列印錘敲擊字模載體或字模載體本身擺動,擊打色帶後在紙上印出所需列印的字元。這類列印機可印出質量高的全形字元,最大列印速度約為60字元/秒。缺點是列印字元數受字模載體所載字模數限定,不能列印漢字和圖像,不能實現彩色列印,且雜訊大。

串式點陣擊打式列印機 列印頭是由排成一列,並由電磁鐵驅動的列印針構成。通過針的運動撞擊色帶,在紙上印出一列點。列印頭可沿橫向移動列印出點陣,這些點的不同組合就構成各種字元或圖形。這類列印機能列印出接近全形字元質量的字元。它組字靈活,可列印圖形和圖像。通過使用彩色色帶還可列印幾種彩色。列印速度可達600字元/秒,結構簡單,成本低,可列印多份拷貝。應用十分普及,已部分取代了低、中速行式列印機。缺點是雜訊大。

行式全形字元擊打式列印機 鼓式、鏈式、帶式均屬此類。反形字模載於字鼓、字鏈或字帶上,對應於紙上一行每一個字元位置一般都設置對應數目的列印錘,當字模載體運動將所需字模送到列印位置時,對應的列印錘擊打字模與色帶,將這些字印在紙上。這類列印機印字質量高。帶式的列印速度可達3000行/分,鼓式和鏈式可達 2000 行/分。缺點是列印字元數有限,不能列印漢字和彩色,雜訊大。

行式點陣字元擊打式列印機 梳型點陣針式列印機屬此類。列印元件由若干水平排成一行的列印針組成,通過電磁鐵驅動針撞擊色帶,在紙上印出一排點,根據字元點陣大小由幾排點構成一行字元 。列印速度可達 500行/分。缺點是雜訊大。

列印機分類

1、按原理分類

按照列印機的工作原理,將列印機分為擊打式和非擊打式兩大類。

串式點陣字元非擊打式列印機 主要有噴墨式和熱敏式列印機兩種。①噴墨式列印機。應用最廣泛的列印機。其基本原理是帶電的噴墨霧點經過電極偏轉後,直接在紙上形成所需字形。其優點是組成字元和圖像的印點比針式點陣列印機小得多,因而字元點的解析度高,印字質量高且清晰。可靈活方便地改變字元尺寸和字體。印刷採用普通紙,還可利用這種打字機直接在某些產品上印字。字元和圖形形成過程中無機械磨損,印字能耗小。列印速度可達 500字元/秒。廣泛應用的有電荷控制型(高壓型)和隨機噴墨型(負壓型)噴墨技術,近年來又出現了乾式噴墨印刷技術。②熱敏式列印機。流過印字頭點電阻的脈沖電流產生的熱傳到熱敏紙上,使其受熱變色 ,從而印出字元和圖像 。 主要特點是無雜訊,結構輕而小,印字清晰。缺點是速度慢,字跡保存性差。

行式點陣字元非擊打式列印機 主要有激光、靜電、磁式和發光二極體式列印機。①激光列印機。激光源發出的激光束經由字元點陣信息控制的聲光偏轉器調制後,進入光學系統,通過多面棱鏡對旋轉的感光鼓進行橫向掃描,於是在感光鼓上的光導薄膜層上形成字元或圖像的靜電潛像,再經過顯影、轉印和定影,便在紙上得到所需的字元或圖像。主要優點是列印速度高,可達 20000行/分以上。印字的質量高,雜訊小,可採用普通紙,可印刷字元、圖形和圖像。由於列印速度高,宏觀上看,就像每次列印一頁,故又稱頁式列印機。②靜電列印機。將脈沖電壓直接加在具有一層電介質材料的特殊紙上,以便在電介質上獲得靜電潛像,經顯影、加熱定影形成字元和圖像。它的特點是印刷質量高,字跡不退色,可長期保存,生成潛像的功耗小,無雜訊,簡單可靠。但需使用特殊紙,且成本高。③磁式列印機。它是電子復印技術的應用和發展。採用磁敏介質形成字元潛像,不需要高功率激光源,其優點是對濕度和溫度變化不敏感。印刷速度可達8000行/分。結構簡單,成本低。④發光二極體式列印機。除採用發光二極體作光源外,其工作原理與激光列印機類似。由於採用發光二極體,降低了成本,減小了功耗。

2、按照工作方式分類

分為點陣列印機,針式列印機,噴墨式列印機,激光列印機等。針式列印機通過列印機和紙張的物理接觸來列印字元圖形,而後兩種是通過噴射墨粉來印刷字元圖形的。

3、按用途分類

辦公和事務通用列印機

在這一應用領域,針式列印機一直佔領主導地位。由於針式列印機具有中等解析度和列印速度、耗材便宜,同時還具有高速跳行、多份拷貝列印、寬幅面列印、維修方便等特點,目前仍然是辦公和事務處理中列印報表、發票等的優選機種。

商用列印機

商用列印機是指商業印刷用的列印機,由於這一領域要求印刷的質量比較高,有時還要處理圖文並茂的文檔,因此,一般選用高解析度的激光列印機。

專用列印機

專用列印機一般是指各種微型列印機、存摺列印機、平推式票據列印機、條形碼列印機、熱敏印字機等用於專用系統的列印機。

家用列印機

家用列印機是指與家用電腦配套進入家庭的列印機,根據家庭使用列印機的特點,目前低檔的彩色噴墨列印機逐漸成為主流產品。

攜帶型列印機

攜帶型列印機一般用於與筆記本電腦配套,具有體積小、重量輕、可用電池驅動、便於攜帶等特點。

網路列印機

網路列印機用於網路系統,要為多數人提供列印服務,因此要求這種列印機具有列印速度快、能自動切換模擬模式和網路協議、便於網路管理員進行管理等特。

列印機著名品牌
1 HP(惠普)列印機 (1939年美國加州,世界品牌)
2 Epson(愛普生)列印機 (世界品牌)
3 Canon佳能 列印機 (世界品牌)
4 Samsung(三星) 列印機 (韓國品牌,世界500強大企業之一)

列印機應用

針式列印機在列印機歷史的很長一段時間上曾經佔有著重要的地位,從9針到24針,再到今天基本走出列印機歷史的舞台,可以說針式列印機的歷史貫穿著這幾十年的始終。針式列印機之所以在很長的一段時間內能長時間的流行不衰,這與它相對低廉的價格、極低的列印成本和很好的易用性分不開的。當然,它很低的列印質量、很大的工作雜訊也是它無法適應高質量、高速度的商用列印需要的根結,所以現在只有在銀行、超市等用於票單列印的很少的地方還可以看見它的蹤跡。

彩色噴墨列印機因其有著良好的列印效果與較低價位的優點因而佔領了廣大中低端市場。此外噴墨列印機還具有更為靈活的紙張處理能力,在列印介質的選擇上,噴墨列印機也具有一定的優勢:既可以列印信封、信紙等普通介質,還可以列印各種膠片、照片紙、卷紙、T恤轉印紙等特殊介質,在下文中將作為重點的介紹。

激光列印機則是近年來高科技發展的一種新產物,也是有望代替噴墨列印機的一種機型,分為黑白和彩色兩種,它為我們提供了更高質量、更快速、更低成本的列印方式。其中低端黑白激光列印機的價格目前已經降到了近2000元,達到了普通用戶可以接受的水平。它的列印原理是利用光柵圖像處理器產生要列印頁面的點陣圖,然後將其轉換為電信號棗一系列的脈沖送往激光發射器,在這一系列脈沖的控制下,激光被有規律的放出。與此同時,反射光束被接收的感光鼓所感光。激光發射時就產生一個點,激光不發射時就是空白,這樣就在接收器上印出一行點來。然後接收器轉動一小段固定的距離繼續重復上述操作。當紙張經過感光鼓時,鼓上的著色劑就會轉移到紙上,印成了頁面的點陣圖。最後當紙張經過一對加熱輥後,著色劑被加熱熔化,固定在了紙上,就完成列印的全過程,這整個過程准確而且高效。雖然激光列印機的價格要比噴墨列印機昂貴的多,但從單頁的列印成本上講,激光列印機則要便宜很多。而彩色激光列印機的價位很高,幾乎都要在萬元上下,應用范圍較窄,很難被普通用戶接受,在此就不過多的進行介紹了。

除了以上三種最為常見的列印機外,還有熱轉印列印機和大幅面列印機等幾種應用於專業方面的列印機機型。熱轉印列印機是利用透明染料進行列印的,它的優勢在於專業高質量的圖像列印方面,可以列印出近於照片的連續色調的圖片來,一般用於印前及專業圖形輸出 。大幅面列印機,它的列印原理與噴墨列印機基本相同,但列印幅寬一般都能達到24英寸(61cm)以上。它的主要用途一直集中在工程與建築領域。但隨著其墨水耐久性的提高和圖形解析度的增加,大幅面列印機也開始被越來越多的應用於廣告製作、大幅攝影、藝術寫真和室內裝璜等裝飾宣傳的領域中,又成為列印機家族中重要的一員。
美國ZCorp是專業三維列印機生產商,生產全球最快的三維列印機,也是唯一的真彩色三維列印機,加之極低的耗材使用成本使其得到全球眾多用戶的青睞.以色列2Objet快速成型機PolyJet技術,Eden系列三維列印機,16微米超高解析度,FullCure系列材料,是現今世界上成型精度最高(層厚僅0.016mm)使用最簡便的三維列印快速成型機

噴墨列印機發展史
互聯網路的飛速發展,有人預言無紙時代即將來臨,列印機的末日已到。然而全球紙張消費量每年以成倍的速度在增長,列印機的銷量以平均接近8%的速度在增加。這一切都預示著列印機不但不會消失,而且會發展越來越來快,應用的領域越來越寬廣。從1885年全球第一台列印機的出現,到後來各種各樣的針式列印機、噴墨列印機和激光列印機,它們在不同的年代各領風騷,今天讓我們尋覓歷史的足跡,從技術、品牌與產品、應用市場及目標消費者三個方面,回顧噴墨列印機的光輝歷史,同時對噴打未來的發展趨勢作簡單分析。

一、技術

噴墨列印機基本的工作原理都是先產生小墨滴,再利用噴墨頭把細小的墨滴導引至設定的位置上,墨滴越小,列印的圖片就越清晰。基本原理看起來很簡單,但操作起來就沒那麼簡單了。正如微積分原理也並不復雜,復雜是的如何運用一樣。下面介紹噴墨列印機幾次技術突破具有歷史意義的紀事。

時間 事件紀要
1976年 全球第一台噴墨列印機誕生
1976年 壓電式墨點控制技術問世
1979年 Bubble Jet氣泡式噴墨技術問世
1980年8月 Canon公司第一次將其氣泡噴墨技術應用到其噴墨列印機Y-80,從此開始了噴墨列印機的歷史。
1991年 第一台彩色噴墨列印機、大幅面列印機出現
1994年 微壓電列印技術問世
1996年 Lexmark利用EXCIMER氬(ARGON)/氟(FLUMRINE)雷射切割技術推出全世界第一台1200*1200dpi超高解析度彩色噴墨列印機 Lexmark CJ7000
1998年 全球第一款同時具有1440dpi的最高解析度和六色列印功能的彩色噴打EPSON Stylus Photo 700面世
1998年 全球首款7色照片列印機Canon BJC-7100誕生
1999年 第一台不使用計算機可打A4照片的彩色噴墨列印機EpsonIP-100橫空出世
2000年 第一款支持自動雙面列印的彩色噴墨列印機HP DJ970Cxi誕生。
2003年 全球第一款應用八色墨水技術的數碼照片列印機HP Photosmart 7960問世
2005年春 全球首款9色照片列印機HP Photosmart 8758誕生

1976年,第一台噴墨列印機誕生

噴墨列印技術早在1960年就有人提出,但過了16年第一部商業化噴墨列印機才誕生在IBM,原始的 IBM4640採用歐洲瑞典路德工業技術學院的教授 Hertz 和他的同僚所開發,稱之為連續式噴墨技術。所謂連續式噴墨,是無論印紋或非印紋,都以連續的方式產生墨滴,再將非印紋的墨滴回收或分散。但此技術幾乎是用滴的方式將墨點印到紙上,效果之差可以想像,因此在現實中毫無實用價值。

1976年,壓電式墨點控制技術問世

與IBM4640同年,西門子科技的三位先驅研究者Zoltan, Kyser 和 Sear在同年研發發展成功壓電式墨點控制技術(EPSON 技術的前身),並將其成功運用在 Seimens Pt-80上,此款列印機在1978年量產銷售,成為世界上第一部具有商業價值的噴墨列印機。

1979年,Bubble Jet氣泡式噴墨技術問世

日本佳能的研究員成功地研究出 Bubble Jet氣泡式噴墨技術,此技術利用加熱組件在噴頭中將墨水瞬間加熱產生氣泡形成壓力,從而墨水自噴嘴噴出接著再利用墨水本身的物理性質冷卻熱點使氣泡消褪,藉此達到控制墨點進出與大小之雙重目的。這里引用該公司的一個小故事,1977年7月的一 天,東京目黑區的Canon 產品技術研究所的第22研究室的遠藤一郎,在實驗室進行實驗時,偶然將加熱的烙鐵放在注射針的附件上時,從注射針上迅速地飛出了墨水。受此啟發,2年後發明了氣泡式噴墨技術。

與此同時,惠普也發明了與之本質相同的技術,HP和Canon 都不約而同地宣稱是自己的研究人員率先發明了噴墨列印技術,以此建立自己在噴墨列印領域的地位。不過「氣泡」這一概念已被佳能搶去,惠普只好將此命名為Thermal Ink-Jet。

1980年8月,Canon公司第一次將其氣泡噴墨技術應用到其噴墨列印機Y-80。 從此開始了噴墨列印機的歷史。

1991年,第一台彩色噴墨列印機、大幅面列印機出現

惠普HP deskjet 500C是全球第一台彩色噴墨列印機,1994年6月,國內才出現經本土改造過的產品HP DeskJet 525Q。HP DesignJet是惠普公司首次將其熱噴墨列印技術應用到大幅面列印機中,推出的世界上第一台單色大幅面噴墨列印機。彩色噴墨列印機、大幅面列印的出現都是噴墨列印機史上最為重要的里程碑。

1994年,微壓電列印技術問世

早在上個世紀的70年代,愛普生就開始了壓電技術的研究,歷經將近20年,終於成功地將微壓電列印技術應用於列印機領域,實現了產品化。微電壓技術的基本原理是將許多微小的壓電陶瓷放置到噴墨列印機的列印頭噴嘴附近,利用墨水在電壓作用下會發生形變的原理,使噴嘴中的墨汁噴出,在輸出介質表面形成圖案。

此後,愛普生的智能墨滴變換技術、自然色彩還原技術、超精微墨滴技術等;佳能的專業照片優化技術、四重色控技術等;惠普的富麗圖分層技術、智能色彩增強技術等。均進一步提升了噴墨列印機的技術含量。
隨著科學的發展,人們可以用噴墨列印機製造出可供移植的人體器官?目前,科學家們已經使用噴墨盒「列印」出精確模式的幹細胞,現在科學家們正將此技術應用到一個完全嶄新的領域,探索列印細胞三維結構的途徑。
目前,這項研究成果發表在出版的《自然》雜志上。美國馬薩諸塞州大學材料科學家保羅·卡爾弗特說,三維技術將有助於揭開細胞之間的通信密碼,或許在未來,人造人體器官能夠通過這種噴墨列印機製造出來。
科學界利用噴墨列印機來研究幹細胞早有傳統。去年,美國科學家研製出一種培養幹細胞的「噴墨列印機」,它可以幫助科學家們更好地利用幹細胞。
列印機助幹細胞發育
獲取幹細胞並將其培養成為所需的細胞並不容易,因為人體組織非常復雜,由各種不同類型的細胞組成,它們必須以正確的模式進行分層,才能正常運轉。科學家想出了一套系統,他們把一層營養蛋白質放在一塊2.54厘米見方的玻璃片上,然後用一個自動控制的噴墨式列印機在上面將少量蛋白質噴成一種特殊的形式,它可以讓細胞生存、發育和分化。然後,將幹細胞放在這種模具上發育,就會形成不同的細胞。
為了設計新的細胞列印機,卡爾弗特到電子器件商店購買了噴墨列印機,改裝其核心部件並安裝在實驗室內一個由軟體控制的裝置上。卡爾弗特稱:「你所看到的安裝在機器中間的正是類似於噴墨盒的東西。然而噴頭噴出的並不是各種顏色的墨,而是不同類型的細胞培養基。盡管這種細胞列印裝置仍使用微型針式列印模式,但細胞培養基卻並未受損。」
卡爾弗特希望此項技術能夠製造出微型器官用於醫學測試。他還希望,將來人類能夠按照需求製造出可移植器官。

閱讀全文

與蛋白質自動轉印裝置相關的資料

熱點內容
dnf機械武器附魔什麼材料 瀏覽:651
從五金市場到貴陽會議中心怎麼走 瀏覽:912
瓶裝製冷劑怎麼用 瀏覽:45
什麼是半導體美容儀器 瀏覽:855
製冷劑r22指數是多少 瀏覽:955
浙江自動破窗器裝置 瀏覽:751
地熱的閥門怎麼關 瀏覽:691
汽車儀表中油耗參數怎麼調整 瀏覽:949
途觀液晶儀表盤如何調整 瀏覽:225
超聲波洗眼鏡為什麼能聽到聲音 瀏覽:225
雲南進口電動工具大全圖片 瀏覽:943
幕牆木索五金件 瀏覽:303
超聲波消毒機對樂園有什麼意義 瀏覽:464
塑料蓋的軸承如何加潤滑油 瀏覽:399
cad中閥門符號怎麼找 瀏覽:21
軸承為什麼會被燒壞 瀏覽:980
天然氣管道閥門標准 瀏覽:457
自動水果採摘裝置 瀏覽:412
繼電保護裝置做什麼實驗 瀏覽:220
江門兵器氧化設備哪裡買 瀏覽:80