⑴ 電纜橋架跨越建築物變形縫處設置補償裝置,什麼是補償裝置
補償裝置主要分為自身補償和設備補償。比如供暖管道中的方型補償器、避雷帶的「Ω」型補償都屬於自身補償(管道或扁鋼進行自身加工)。設備補償指得是在需在補償的位置安裝補償設備,比如:波紋補償器、金屬軟管等。補償裝置的作用主要就是把硬連接換成軟連接,用來補償管道、橋架、等軸向或垂直於軸向的外力作用,防止管道、橋架受到外力損壞。
橋架的補償方法:在變形縫處兩段橋架連接時,其中一支橋架的連接片螺絲不上就可以了。
⑵ 並聯補償電器主要用在直流電路中
並聯補償電器,並聯接入交流電路中的若干電容器的組合。是一種產生容性超前電流、抵消感性負載的滯後電流,提高功率因數的裝置電器。
並聯補償,將具有容性功率負荷的裝置與感性功率負荷並聯接在同一電路從而實現無功補償的技術。
在電網中安裝並聯無功補償設備以後,可以提供感性負載所消耗的無功功率,減少了電網電源向感性負荷提供、由線路輸送的無功功率,由於減少了無功功率在電網中的流動,因此可以降低線路和變壓器因輸送無功功率造成的電能損耗。
並聯無功補償設備有並聯電容器、並聯電抗器或靜止補償器、STACOM、同步調相機等。並聯補償在電網無功補償中應用非常廣泛。
(2)並補裝置的作用擴展閱讀
並聯補償的作用:向電網提供或從電網吸收無功和/或有功功率;改變電網的阻抗特性;提高電力系統的靜態穩定性;改善電力系統的動態特性;維持或控制節點電壓;通過控制潮流變化阻尼系統振盪;快速可控的並聯補償可提高系統的暫態穩定性;負荷補償,提高電能質量。
輸電網:改善潮流可控性、提高系統穩定性和傳輸能力;配電網:提高負荷電能質量和減小負荷對電網的不利影響(如不對稱性、諧波等);布置方式:受電端(負荷側),長傳輸線中間增加變電站(即線路分段),並布置並聯補償設備。
⑶ 無功補償裝置的作用有些什麼,哪家做這個專業
呵呵
無功補償裝置,就是用來補償用電設備的無功功率需求的,使用補償裝置以後,供電局不會對你罰款,節約電費,減少設備故障,等等,好處多多。
生產這樣的設備的廠家奇多無比,建議你問問供電局,這些廠家平常都圍著供電局轉,你要供電局推薦三家來給你談談(就是給你講講課),半天你就成專家了,再比較比較他們的功能價格,呵呵,包你滿意!
⑷ 電力系統補償裝置有哪些各有什麼特點
電力系統無功補償主要採用以下幾種方式:
同步調相機:
同步調相機屬於早期無功補償裝置的典型代表,它不僅能補償固定的無功功率,對變化的無功功率也能進行動態補償。
並補裝置:
並聯電容器是無功補償領域中應用最廣泛的無功補償裝置,但電容補償只能補償固定的無功,電容器補償方式仍然屬於一種有級的無功調節,不能實現無功的平滑無級的調節。
並聯電抗器:
目前所用電抗器的容量是固定的,除吸收系統容性負荷外,用以抑制過電壓。
無功補償裝置的作用:
在電子供電系統中起提高電網的功率因數的作用,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境。
無功補償裝置的重要性:
選擇合理的補償裝置,可以最大限度的減少損耗,提高電網質量。如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。
無功補償裝置的主要表現作用:
①提高用戶的功率因數,從而提高供電設備的利用率;
②減少電力網路的有功損耗;
③合理地控制電力系統的無功功率流動,從而提高電力系統的電壓水平,改善電能質量,提高了電力系統的抗干擾能力;
④在動態的無功補償裝置上,配置適當的調節器,可以改善電力系統的動態性能,提高輸電線的輸送能力和穩定性;
⑤裝設靜止無功補償器(SVS)還能改善電網的電壓波形,減小諧波分量和解決負序電流問題。對電容器、電纜、電機、變壓器等,還能避免高次諧波引起的附加電能損失和局部過熱。
無功補償裝置的維護和檢修:
無功補償裝置的檢修建議採用電容:0.01uF~2000uF,電感:1mH~10H,誤差為:±(1%+2字)的DJCL-3H三相電容電感測試儀檢修維護和檢修。
⑸ 無功補償裝置的作用有哪些
無功功率補償Reactive power compensation,簡稱無功補償,在電力供電系統中起提高電網的功率因數的作用,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境。所以無功功率補償裝置在電力供電系統中處在一個不可缺少的非常重要的位置。合理的選擇補償裝置,可以做到最大限度的減少電網的損耗,使電網質量提高。反之,如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。
無功補償的作用:
⑴ 補償無功功率,可以增加電網中有功功率的比例常數。
⑵ 減少發、供電設備的設計容量,減少投資,例如當功率因數cosΦ=0.8增加到cosΦ=0.95時,裝1Kvar電容器可節省設備容量0.52KW;反之,增加0.52KW對原有設備而言,相當於增大了發、供電設備容量。因此,對新建、改建工程,應充分考慮無功補償,便可以減少設計容量,從而減少投資。
⑶ 降低線損,由公式ΔΡ%=(1-cosθ/cosΦ)×100%得出其中cosΦ為補償後的功率因數,cosθ為補償前的功率因數則:
cosΦ>cosθ,所以提高功率因數後,線損率也下降了,減少設計容量、減少投資,增加電網中有功功率的輸送比例,以及降低線損都直接決定和影響著供電企業的經濟效益。所以,功率因數是考核經濟效益的重要指標,規劃、實施無功補償勢在必行。
⑹ 水輪機補氣裝置的作用是什麼常用的有哪幾種補氣方式
混流式水輪機一般在30%~60%額定出力時容易在尾水管內發生水流渦帶,引起空腔汽蝕和機組振動。補氣裝置的作用,就是在機組出現不穩定工況時,補入空氣,可增加水的彈性,改善機組的運行條件。同時,由於補氣破壞了真空,還能防止機組突然甩負荷導水機構緊急關閉時,由於尾水管內產生負水擊,下游尾水反沖所產生的強大沖擊力或抬機現象。 補氣分自然補氣和強迫補氣兩種方式。一般均採用自然補氣,只有在水輪機吸出高度H。的負值較大,尾水管內壓力較高,很難用自然補氣方式補氣時,才採用壓縮空氣強迫補氣方式。常用的補氣裝置有軸心孔補氣裝置、尾水十字架補氣裝置和尾水短管補氣裝置。
⑺ 為什麼並聯補償電容器能在電網中得到廣泛應用
無功功率補償裝置在電子供電系統中所承擔的作用是提高電網的功率因數,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境。所以無功功率補償裝置在電力供電系統中處在一個不可缺少的非常重要的位置。合理的選擇補償裝置,可以做到最大限度的減少網路的損耗,使電網質量提高。反之,如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。
一、按投切方式分類:
1. 延時投切方式
延時投切方式即人們熟稱的"靜態"補償方式。這種投切依靠於傳統的接觸器的動作,當然用於投切電容的接觸器專用的,它具有抑制電容的涌流作用,延時投切的目的在於防止接觸器過於頻繁的動作時,電容器造成損壞,更重要的是防備電容不停的投切導致供電系統振盪,這是很危險的。當電網的負荷呈感性時,如電動機、電焊機等負載,這時電網的電流滯帶後電壓一個角度,當負荷呈容性時,如過量的補償裝置的控制器,這是電網的電流超前於電壓的一個角度,即功率因數超前或滯後是指電流與電壓的相位關系。通過補償裝置的控制器檢測供電系統的物理量,來決定電容器的投切,這個物理量可以是功率因數或無功電流或無功功率。
下面就功率因數型舉例說明。當這個物理量滿足要求時,如cosΦ超前且>0.98,滯後且>0.95,在這個范圍內,此時控制器沒有控制信號發出,這時已投入的電容器組不退出,沒投入的電容器組也不投入。當檢測到cosΦ不滿足要求時,如cosΦ滯後且<0.95,那麼將一組電容器投入,並繼續監測cosΦ如還不滿足要求,控制器則延時一段時間(延時時間可整定),再投入一組電容器,直到全部投入為止。當檢測到超前信號如cosΦ<0.98,即呈容性載荷時,那麼控制器就逐一切除電容器組。要遵循的原則就是:先投入的那組電容器組在切除時就要先切除。如果把延時時間整定為300s,而這套補償裝置有十路電容器組,那麼全部投入的時間就為30分鍾,切除也這樣。在這段時間內無功損失補只能是逐步到位。如果將延時時間整定的很短,或沒有設定延時時間,就可能會出現這樣的情況。當控制器監測到cosΦ〈0.95,迅速將電容器組逐一投入,而在投入期間,此時電網可能已是容性負載即過補償了,控制器則控制電容器組逐一切除,周而復始,形成震盪,導致系統崩潰。是否能形成振盪與負載的性質有密切關系,所以說這個參數需要根據現場情況整定,要在保證系統安全的情況下,再考慮補償效果。
2. 瞬時投切方式
瞬時投切方式即人們熟稱的"動態"補償方式,應該說它是半導體電力器件與數字技術綜合的技術結晶,實際就是一套快速隨動系統,控制器一般能在半個周波至1個周波內完成采樣、計算,在2個周期到來時,控制器已經發出控制信號了。通過脈沖信號使晶閘管導通,投切電容器組大約20-30毫秒內就完成一個全部動作,這種控制方式是機械動作的接觸器類無法實現的。動態補償方式作為新一代的補償裝置有著廣泛的應用前景。現在很多開關行業廠都試圖生產、製造這類裝置且有的生產廠已經生產出很不錯的裝置。當然與國外同類產品相比從性能上、元器件的質量、產品結構上還有一定的差距。
動態補償的線路方式
(1)LC串接法原理如圖1所示
這種方式採用電感與電容的串聯接法,調節電抗以達到補償無功損耗的目的。從原理上分析,這種方式響應速度快,閉環使用時,可做到無差調節,使無功損耗降為零。從元件的選擇上來說,根據補償量選擇1組電容器即可,不需要再分成多路。既然有這么多的優點,應該是非常理想的補償裝置了。但由於要求選用的電感量值大,要在很大的動態范圍內調節,所以體積也相對較大,價格也要高一些,再加一些技術的原因,這項技術到目前來說還沒有被廣泛採用或使用者很少。
(2)採用電力半導體器件作為電容器組的投切開關,較常採用的接線方式如圖2。圖中BK為半導體器件,C1為電容器組。這種接線方式採用2組開關,另一相直接接電網省去一組開關,有很多優越性。
作為補償裝置所採用的半導體器件一般都採用晶閘管,其優點是選材方便,電路成熟又很經濟。其不足之處是元件本身不能快速關斷,在意外情況下容易燒毀,所以保護措施要完善。當解決了保護問題,作為電容器組投切開關應該是較理想的器件。動態補償的補償效果還要看控制器是否有較高的性能及參數。很重要的一項就是要求控制器要有良好的動態響應時間,准確的投切功率,還要有較高的自識別能力,這樣才能達到最佳的補償效果。
當控制器採集到需要補償的信號發出一個指令(投入一組或多組電容器的指令),此時由觸發脈沖去觸發晶閘管導通,相應的電容器組也就並人線路運行。需要強調的是晶閘管導通的條件必須滿足其所在相的電容器的端電壓為零,以避免涌流造成元件的損壞,半導體器件應該是無涌流投切。當控制指令撤消時,觸發脈沖隨即消失,晶閘管零電流自然關斷。關斷後的電容器電壓為線路電壓交流峰值,必須由放電電阻盡快放電,以備電容器再次投入。
元器件可以選單項晶閘管反並聯或是雙向晶閘管,也可選適合容性負載的固態接觸器,這樣可以省去過零觸發的脈沖電路,從而簡化線路,元件的耐壓及電流要合理選擇,散熱器及冷卻方式也要考慮周全。
3.混合投切方式
實際上就是靜態與動態補償的混合,一部分電容器組使用接觸器投切,而另一部分電容器組使用電力半導體器件。這種方式在一定程度上可做到優勢互補,但就其控制技術,目前還見到完善的控制軟體,該方式用於通常的網路如工礦、小區、域網改造,比起單一的投切方式拓寬了應用范圍,節能效果更好。補償裝置選擇非等容電容器組,這種方式補償效果更加細致,更為理想。還可採用分相補償方式,可以解決由於線路三相不平行造成的損失。
4. 在無功功率補償裝置的應用方面,選擇那一種補償方式,還要依電網的狀況而定,首先對所補償的線路要有所了解,對於負荷較大且變化較快的工況,電焊機、電動機的線路採用動態補償,節能效果明顯。對於負荷相對平穩的線路應採用靜態補償方式,也可使用動態補償裝置。一般電焊工作時間均在幾秒鍾以上,電動機啟動也在幾秒鍾以上,而動態補償的響應時間在幾十毫秒,按40毫秒考慮則從40毫秒到5秒鍾之內是一個相對的穩態過程,動態補償裝置能完成這個過程。
二、無功功率補償控制器
無功功率補償控制器有三種采樣方式,功率因數型、無功功率型、無功電流型。選擇那一種物理控制方式實際上就是對無功功率補償控制器的選擇。控制器是無功補償裝置的指揮系統,采樣、運算、發出投切信號,參數設定、測量、元件保護等功能均由補償控制器完成。十幾年來經歷了由分立元件--集成線路--單片機--DSP晶元一個快速發展的過程,其功能也愈加完善。就國內的總體狀況,由於市場的需求量很大,生產廠家也愈來愈多,其性能及內在質量差異很大,很多產品名不符實,在選用時需認真對待。在選用時需要注意的另一個問題就是國內生產的控制器其名稱均為"XXX無功功率補償控制器",名稱里出現的"無功功率"的含義不是這台控制器的采樣物理量。采樣物理量取決於產品的型號,而不是產品的名稱。
1.功率因數型控制器
功率因數用cosΦ表示,它表示有功功率在線路中所佔的比例。當cosΦ=1時,線路中沒有無功損耗。提高功率因數以減少無功損耗是這類控制器的最終目標。這種控制方式也是很傳統的方式,采樣、控制也都較容易實現。
* "延時"整定,投切的延時時間,應在10s-120s范圍內調節 "靈敏度"整定,電流靈敏度,不大於0-2A 。
* 投入及切除門限整定,其功率因數應能在0.85(滯後)-0.95(超前)范圍內整定。
* 過壓保護設量
* 顯示設置、循環投切等功能
這種采樣方式在運行中既要保證線路系統穩定、無振盪現象出現,又要兼顧補償效果,這是一對矛盾,只能在現場視具體情況將參數整定在較好的狀態下工作。即使調整的較好,也無法禰補這種方式本身的缺陷,尤其是在線路重負荷時。舉例說明:設定投入門限;cosΦ=0.95(滯後)此時線路重載荷,即使此時的無功損耗已很大,再投電容器組也不會出現過補償,但cosΦ只要不小於0.95,控制器就不會再有補償指令,也就不會有電容器組投入,所以這種控制方式建議不做為推薦的方式。
2. 無功功率(無功電流)型控制器
無功功率(無功電流)型的控制器較完善的解決了功率因數型的缺陷。一個設計良好的無功型控制器是智能化的,有很強的適應能力,能兼顧線路的穩定性及檢測及補償效果,並能對補償裝置進行完善的保護及檢測,這類控制器一般都具有以下功能:
* 四象限操作、自動、手動切換、自識別各路電容器組的功率、根據負載自動調節切換時間、諧波過壓報警及保護、線路諧振報警、過電壓保護、線路低電流報警、電壓、電流畸變率測量、顯示電容器功率、顯示cosΦ、U、I、S、P、Q及頻率。
由以上功能就可以看出其控制功能的完備,由於是無功型的控制器,也就將補償裝置的效果發揮得淋漓盡致。如線路在重負荷時,那怕cosΦ已達到0.99(滯後),只要再投一組電容器不發生過補,也還會再投入一組電容器,使補償效果達到最佳的狀態。採用DSP晶元的控制器,運算速度大幅度提高,使得富里葉變換得到實現。當然,不是所有的無功型控制器都有這么完備的功能。國內的產品相對於國外的產品還存在一定的差距。
3. 用於動態補償的控制器
對於這種控制器要求就更高了,一般是與觸發脈沖形成電路一並考慮的,要求控制器抗干擾能力強,運算速度快,更重要的是有很好的完成動態補償功能。由於這類控制器也都基於無功型,所以它具備靜態無功型的特點。
目前,國內用於動態補償的控制器,與國外同類產品相比有較大的差距,一是在動態響應時間上較慢,動態響應時間重復性不好;二是補償功率不能一步到位,沖擊電流過大,系統特性容易漂移,維護成本高、造成設備整體投資費用高。另外,相應的國家標准也尚未見到,這方面落後於發展。
三、濾波補償系統
由於現代半導體器件應用愈來愈普遍,功率也更大,但它的負面影響就是產生很大的非正弦電流。使電網的諧波電壓升高,畸變率增大,電網供電質量變壞。
如果供電線路上有較大的諧波電壓,尤其5次以上,這些諧波將被補償裝置放大。電容器組與線路串聯諧振,使線路上的電壓、電流畸變率增大,還有可能造成設備損壞,再這種情況下補償裝置是不可使用的。最好的解決方法就是在電容器組串接電抗器來組成諧波濾波器。濾波器的設計要使在工頻情況下呈容性,以對線路進行無功補償,對於諧波則為感性負載,以吸收部分諧波電流,改善線路的畸變率。增加電抗器後,要考慮電容端電壓升高的問題。
濾波補償裝置即補償了無功損耗又改善了線路質量,雖然成本提高較多,但對於諧波成分較大的線路還是應盡量考慮採用,不能認為裝置一時不出問題就認為沒有問題存在。很多情況下,採用五次、七次、十一次或高通濾波器可以在補償無功功率的同時,對系統中的諧波進行消除。
⑻ 在電力系統中,採用並聯補償電容器進行無功補償的主要作用是什麼
補償電力系統感性負荷的無功功率,作用是提高功率因數,改善電壓質量,降低線路損耗。在電網中安裝並聯電容器等無功補償設備以後,可以提供感性負載所消耗的無功功率,減少了電網電源向感性負荷提供、由線路輸送的無功功率,可以降低線路和變壓器因輸送無功功率造成的電能損耗。
單相並聯電容器主要由心子、外殼和出線結構等幾部分組成。用金屬箔與絕緣紙或塑料薄膜疊起來一起卷繞,由若干元件、絕緣件和緊固件經過壓裝而構成電容心子,並浸漬絕緣油。電容極板的引線經串、並聯後引至出線瓷套管下端的出線連接片。電容器的金屬外殼內充以絕緣介質油。
無熔絲全膜電容器有與前不同的新含義,越過了晶體管繼電器、集成電路繼電器階段,直接進入了微機保護時代。我國無熔絲電容器內部元件的連接方式,有以下三種:
(1)傳統的佔主導地位的元件先並聯後串聯的方式。內部並聯元件數量比較少,不宜配置內熔絲的小容量電容器(例如lO0kvar以下),一直沿用這種接線方式。
(2)內部元件先串聯後並聯的方式,即最近又被重新倡導的一種接線方式。
(3)內部元件既有串聯成分,也有並聯成分,但與上述兩種接線方式不同,串中有並,並中有串,屬於混合連接方式。這樣的接法沒有統一的格式,需要根據設計時對單台容量大小與保護上的要求而定。
⑼ 無功補償裝置作用|無功補償裝置種類
無功補來償裝置的作用其源主要目的是提高功率因數,減少無功消損耗,減少電網因功率因數低,進而進行的電費調整,也可通常所說的電費罰款。因為國家規定功率因數要達到0.9以上,當功率因數低於國家規定時,用電過程中會產生無形損耗,線路消耗量電能,在低壓進行就地補償或高壓處進行集中補償是用電安全及節能必備的.
無功補償裝置的種類有很多種,一般分為,低壓無功補償裝置MSCGD,高壓無功補償裝置,自動無功補償兼消諧裝置,動態無功補償兼消諧裝置,自動無功補償兼濾波裝置TSCGD,高壓無功補償兼濾波裝置
⑽ 怎麼從電氣圖紙上看出無功補償是共補還是分補方式
共補就是採用三相電容器,投入時ABC同時補償無功。分補就是採用單相電容器,投入時A/B/C單相的投入。在電力供電系統中起提高電網的功率因數的作用,降低供電變壓器及輸送線路的損耗,提高供電效率,改善供電環境的技術。
所以無功功率補償裝置在電力供電系統中處在一個不可缺少的非常重要的位置。合理的選擇補償裝置,可以做到最大限度的減少電網的損耗,使電網質量提高。
反之,如選擇或使用不當,可能造成供電系統,電壓波動,諧波增大等諸多因素。詳細介紹了無功補償的基本原理、意義、投切方式、線路、控制器、高低壓裝置、補償方式、存在的問題等。
延時投切方式用於控制電容器投切的器件可以是投切電容器專用接觸器、復合開關或者同步開關(又名選相開關)。
投切電容器專用接觸器有一組輔助接點串聯電阻後與主接點並聯。在投入過程中輔助接點先閉合,與輔助接點串聯的電阻使電容器預充電,然後主接點再閉合,於是就限制了電容器投入時的涌流。
復合開關就是將晶閘管與繼電器接點並聯使用,但是復合開關既使用晶閘管又使用繼電器,於是結構就變得比較復雜,成本也比較高,並且由於晶閘管對過流、過壓及對dv/dt的敏感性也比較容易損壞。在實際應用中,復合開關故障多半是由晶閘管損壞所引起的。