導航:首頁 > 裝置知識 > 試驗設計參數設計某氣動換裝置

試驗設計參數設計某氣動換裝置

發布時間:2022-11-01 11:47:02

A. 如何做扭矩扳手的MSA分析

1、表盤式扭矩扳手作為計量型量具管理,可以做計量型MSA;方法比較普通:若被測物體扭矩公差為20±2N,那就選公差內10個產品,3個測量人分三次測量,然後計算R&R和量具解析度(有專用表格);2、扭力設定型扭力扳手,不能做檢具管理,只能是一種工具,類似還有帶扭力設定的氣動螺絲刀等,不適合做MSA;該類工具的管理主要是每班定期校正,每次使用校正;而作為檢具管理的是扭力校正用的檢具;若顧客強制要你們做扭力設定型扭力扳手MSA,那也只能用計數型小樣法來判定:准備10件產品,3件不合格,扭力扳手設定好扭力,然後校正OK,2~3個人分三次用扭力扳手檢查產品若全部能正確判定

B. 氣密性試驗氣動夾具的設計原理

用氣缸堵住零件所有的出口,然後充氣,在規定氣壓下測量規定時間內泄漏的氣體體積或者氣壓降。
還有一種抽真空排氣的,夾具非常容易,找個膠墊擱在零件出口上就成了,內腔負壓會自己把膠墊吸住

C. 實驗中的設計參數是什麼意思

就是你這個實驗,希望達到的一個指標,比如測量精度0.1%。那麼假設你每次測量,精度都超過這個就說明你已經達到了。如果有一次測量沒有達到,就說明你的測量有問題。要去分析。

D. 高溫內壓疲勞爆破實驗裝置是台什麼樣的設備,參數是多少

高溫內壓疲勞爆破實驗裝置採用計算機輔助測試技術與板卡數據採集系統相融合,全自動控制的液壓系統,專門針對承壓管路或者其他承壓部件來設計製造的高溫內壓疲勞爆破實驗裝置。
根據相關技術規范,實驗工況具有高溫、高壓、高精度、壓力疲勞、應變疲勞等特點,系統一共分為鉛鉍合金介質大管件疲勞試驗模塊,鉛鉍合金介質小管件爆破和疲勞試驗模塊,鉛鉍合金介質大管件爆破試驗模塊,水介質大管件疲勞試驗模塊,水介質小管件爆破和疲勞試驗模塊,水介質大管件爆破試驗模塊,水介質常溫高壓外壓坍塌試驗模塊、水介質高溫低壓外壓坍塌試驗模塊共八大模塊。
主要技術參數(此參數是根據某企業的技術規格試驗得技術參數):
電源:AC380V±10%,50Hz±2%,總功率320Kw
氣源:乾燥潔凈的壓縮空氣4~7bar
冷卻水源:水溫低於25℃,水壓大於2bar,冷卻水流量15m³/h
液壓油源系統
功率:壓動力站的主功率約250KW(以實際設計為准)
系統額定流量:480L/min(以實際設計為准)
系統額定壓力:28MPa(以實際設計為准)
電壓及電流:AC380V±10%, 50Hz±2%
冷卻方式:水冷
鉛鉍合金介質試驗系統
試驗介質
介質:鉛鉍合金液態金屬
液化溫度:70~80℃
液化方式:
1、 介質箱干化加熱方式;
2、 管道外壁纏繞伴熱帶加熱防固化方式。
介質箱大小:60L
介質箱材質:不銹鋼材質
介質箱輔助配套:液位檢測、便利開啟加油蓋,排液,擦凈清洗,溫度測量等等
供液方式:溶體式齒輪泵輸送
輸送方式特點:高粘度,大密度高溫液體介質的強力輸送
大管件疲勞系統
管件規格:0.5L≤管件容腔大小≤70L,如長1200mm,φ328mm不銹鋼管等大直徑管材
疲勞管件芯軸:根據相應規格提供管件內芯軸,減少管件內液體容腔。
管件連接方式:
1、 輸入連接方式:特殊耐疲勞焊接,再轉為高壓錐面密封鎖緊連接方式;
2、 輸出連接方式:特殊耐疲勞焊接堵頭。
最大疲勞壓力值:100Mpa
疲勞頻率:0~1Hz(頻率越大,膨脹量越小)
脈沖壓力發生器:伺服增壓缸
增壓缸規格:活塞/活塞桿-行程:152/80-300
增壓缸增壓比:3.61:1
增壓缸增壓腔容積:1.51L
脈沖壓力實現原理:電液伺服控制技術實現
壓力檢測方式:壓力感測器檢測
壓力感測器量程:0~120Mpa
壓力感測器精度:±0.125%FS
增壓缸位移檢測方式:磁滯伸縮位移感測器檢測
位移控制精度:0.1mm
位移感測器量程:350mm
位移感測器精度:±0.05%FS
應變檢測方式:高溫點焊型應變片檢測
應變片工作溫度范圍:800℃
應變片連接方式:點焊連接
應變片規格:3mmx10mm方形
應變片數量:2件(一件用於做管件軸向應變測量和控制,一件用於管件徑向應變測量和控制)
應變片位置:800℃高溫爐內管件表面
試件膨脹量:膨脹量≤1L(頻率越大,膨脹量要求越小)
脈沖控制方式:
1、 壓力閉環控制方式;
2、 位移閉環控制方式;
3、應變軸向/徑向閉環控制方式。
貫穿補液功能:具有試驗時管件貫穿繼續補液繼續進行疲勞試驗功能
貫穿補液方式:高溫介質從環境箱出來經過冷卻系統冷卻至一定低溫後再經過溶體式齒輪泵灌入供液系統,並經過管道快速加熱系統將鉛鉍合金加熱到與環境溫度一致。此過程維持脈沖壓力峰值和谷值不變化,形成一個開式的循環系統。
小管件疲勞/爆破系統
管件規格:管件容腔大小≤0.5L,如長150mm,外徑9.5mm鋯管或小直徑管材
管件連接方式:輸入/輸出連接方式,雙卡套連接
最大疲勞/爆破壓力:224Mpa
疲勞頻率:0~5Hz(頻率越大,膨脹量越小),最大頻率可到10Hz(峰值和谷值不同時實現)
爆破升壓速率:0~500Mpa/min任意可設定
脈沖/爆破壓力發生器:伺服增壓缸
增壓缸規格:活塞/活塞桿-行程:54/18-400
增壓缸增壓比:8:1
增壓缸增壓腔容積:101.736mL
脈沖/爆破壓力實現原理:電液伺服控制技術實現
保壓時間:可任意設定
壓力感測器量程:0~250Mpa
壓力感測器精度:±0.25%FS
位移感測器量程:550mm
試件膨脹量:膨脹量≤100mL(頻率越大,膨脹量要求越小)
脈沖控制方式
1、等升壓速率增壓和等體積增壓控制方式;
2、位移閉環控制方式;
大管件爆破系統(膨脹量及容腔無限制)
管件連接方式
1、輸入連接方式:特殊耐疲勞焊接,再轉為高壓錐面密封鎖緊連接方式;
2、輸出連接方式:特殊耐疲勞焊接堵頭。
增壓原理:先導氣驅增壓泵增壓
增壓原理特點:氣動泵增壓不需要考慮管件內容腔過大供壓問題,可以無限內容腔供壓實現爆破。
先導氣控制方式:電氣比例控制技術
最大爆破壓力:310Mpa
升壓速率控制方式:電氣比例控制技術
壓力感測器量程:0~350Mpa
氣氛高溫實驗艙
工作溫度:RT~600℃(最大極限溫度800℃)
氣氛保護:防止高溫下管件氧化
爐膛尺寸:1000X1000X1800mm(寬*高*深),共1.8m³
加熱元件:310S電熱管(Cr20Ni80)
升溫速率:10~20℃/Min(推薦10℃/Min以內)
溫區個數:3溫區獨立控溫
溫場均勻性:≤±5℃(600度測溫)
溫度感測器:K型熱電偶
開門方式:側開門結構
控溫方式:採用PID方式調節,可以設置30段升降溫程序
風機個數:4個
電機功率:1.5KW
總計功率:60KW(以實際設計為准)
配置:帶照明、門限位,超溫報警等等
水介質試驗系統
試驗介質:水
使用溫度:常溫
供液方式:氣驅增壓泵輸送
應變檢測方式:常溫黏貼型應變片檢測
應變片工作溫度范圍:常溫
應變片連接方式:膠水黏貼連接
應變片數量:1件雙軸型應變片(一軸用於做管件軸向應變測量和控制,一軸用於管件徑向應變測量和控制)
應變片位置:常溫爐內管件表面
貫穿補液功能:具有試驗時管件貫穿繼續補液做脈沖功能
貫穿補液方式:常溫介質從環境箱出來經過回液泵回收液體,在氣驅增壓泵的作用下再次打入壓力交變系統中。此過程維持脈沖壓力峰值和谷值不變化,形成一個開式的循環系統。
增壓缸規格:活塞/活塞桿-行程:54/18-500
壓力控制精度:±1%
大管件爆破系統
常溫實驗艙
工作溫度:RT
爐膛尺寸:1000X1000X1500mm(寬*高*深),共1.8m³
固定台架:鋁型材框架
常溫高壓坍塌裝置
最大坍塌壓力:200Mpa
坍塌供壓升壓速率:0~300Mpa/min任意可設定
反應釜承壓能力:最大200Mpa
反應釜溫度:常溫
反應釜內膽規格:φ80mm,深度500mm有效空間
釜體材質:耐高壓腐蝕合金
輔助機構:電動升降,便於管件放入和取出
配置性:帶限位報警、超溫報警等
高溫低壓坍塌裝置系統
壓力感測器量程:0~50Mpa
反應釜承壓能力:最大35Mpa
反應釜溫度:MAX600℃
加熱方式:外部加熱絲導熱
溫度精度:±3℃
加熱功率:6KW
控溫模式:2測2控
反應釜內膽規格:φ200mm,深度300mm有效空間
空壓機系統
外形尺寸:LxWxH=670mmx450x500mm
模塊化方式:一體式結構
安裝位置:設備內置安放
工作原理方式:活塞式
排氣壓力:1.0Mpa
排氣流量:0.8m³/min
電機功率:5.5KW
介面尺寸:G3/4寸內牙規格
噪音水平:65dB
設備重量:265kg
計算機控制系統
波形控制:採用智能電液伺服控制技術,疲勞次數在可控范圍內任意設定。
試驗波形:正弦波、梯形波、三角波等
伺服控制系統:
1.閉環控制周期:1s
2.采樣精度:16位
3.反饋采樣通道:12模擬量輸入
4.伺服控制軸:2軸輸入
5.控制信號:壓力、應變、位移
應變採集系統:
1.採集精度:16位
2.採集通道數:32模擬量通道
3.採用西門子LMS(指定型號及指定相關參數)
液位報警、泄漏報警、異常報警過載保護、超溫報警、和安全停機等功能,並設有報警界面,可實時監控系統報警。
實時顯示溫度、壓力、應變上下限,試驗次數,壓力-時間曲線等信息,自動生成試驗數據報告。
系統設有基本設置界面,對壓力感測器、溫度感測器、應變片、伺服閥等元件參數設置,更換元器件時,輸入更新元器件參數即可完全替代。
PC機
下位機:美國高速控制器
上位機:聯想塔式伺服器計算機
軟體
控制軟體:高溫內壓疲勞爆破實驗裝置控制軟體
報告格式:Word、Excel、TXT等其他格式

E. 參數設計的方法

參數設計是一個多因素選優問題。由於要考慮三種干擾對產品質量特性值波動的影響,探求抗干擾性能好的設計方案,因此參數設計比正交試驗設計要復雜得多。田口博士採用內側正交表和外側正交表直積來安排試驗方案,用信噪比作為產品質量特性的穩定性指標來進行統計分析。
為什麼即使採用質量等級不高、波動較大的元件,通過參數設計,系統的功能仍十分穩定呢?這是因為參數設計利用了非線性效應。
通常產品質量特性值y與某些元部件參數的水平之間存在著非線性關系,假如某一產品輸出特性值為y,目標值為m,選用的某元件參數為x,其波動范圍為Dx (一般呈正態分布),若參數x取水平x1,由於波動Dx,引起y的波動為Dy1(如圖),通過參數設計,將x1移到x2,此時同樣的波動范圍Δx,引起y 的波動范圍縮小成Dy2,由於非線性效應十分明顯,Dy2Δy2,即提高了元件質量等級後,對應於x1的產品質量特性y的波動范圍仍然比採用較低質量等級元件、對應於水平x2的y波動范圍D y2要寬,由此可以看出參數設計的優越性。

F. 換熱器設計參數中,工作壓力、設計壓力及水壓試驗壓力值是如何確定的

換熱器關於壓力的規定在GB150中有說明:

工作壓力指在正常工作情況下,容器頂部可能達到的最高壓力。(這個是用戶提供的)

設計壓力指設定的容器頂部的最高壓力,與相應的設計溫度一起作為設計載荷條件,其值不低

於工作壓力。

試驗壓力指進行耐壓試驗或泄漏試驗時,容器頂部的壓力。(水壓試驗壓力一般取1.25倍的設計壓力)

G. 誰有關於自動換刀裝置的畢業論文呀

XKA5032A/C數控立式升降台銑床自動換刀裝置 論文編號:JX391 論文字數:19362.頁數:37 摘要 本論文介紹的是XKA5032A/C數控立式升降台銑床自動換刀裝置(刀庫式)的設計.刀庫式的自動換刀裝置是由刀庫和刀具交換裝置(換刀機械手)組成。它是多工序數控機床上應用最廣泛的換刀裝置,其整過換刀過程比較復雜。首先把加工過程中需要使用的全部刀具安裝在標準的刀柄上,在機床外進行尺寸預調後,按一定的方式裝入刀庫。換刀時,先在刀庫中進行選刀,由機械手從刀庫和主軸上取出刀具,然後交換位置,把新刀插入主軸,舊刀放回刀庫。存放刀具的刀庫具有較大的容量,其容量為六把刀具,採用盤形結構,安裝在機床的左側立柱上。因為XKA5032A/C數控立式升降台銑床外形及其他性能參數等均與THK6363型自動換刀數控鏜銑床相似,所以本機床的自動換刀裝置的設計將仿效THK6363型自動換刀數控鏜銑床換刀裝置,設計成採用軸向放置的鼓盤式刀庫形式和回轉式雙臂機械手組成。 刀具按預定工序的先後順序插入刀庫的刀座中,使用時按順序轉到取刀位置。用過的刀具放回原來的刀座內,也可以按加工順序放入下一個刀座內。該法不需要刀具識別裝置,驅動控制也比較簡單,工作可靠。但刀庫中每一把刀具在不同工序中不能重復使用,為了滿足加工需要只有增加刀具的數量和刀庫的容量,這就降低了刀具和刀庫的利用率。此外,裝刀時必須十分謹慎,如果刀具不按順序裝在刀庫中,將會產生嚴重的後果。順序選刀是在加工之前,將加工零件所需刀具按照工藝要求依次插入刀庫的刀套中,順序不能有差錯。加工時按順序調刀。適合加工批量較大、工件品種數量較少的中、小型自動換刀裝置。可知數控銑床用4把刀就可完成大多數的銑削加工。所以這個容量為6把刀的刀庫,幾乎不存在加工過程中需要重復利用刀具的情況,所以刀具的選擇方式確定為順序選擇刀具。 兩手互相垂直的回轉式單臂雙手機械手的優點是換刀動作可靠,換好時間短,缺點是刀柄精度要求高,結構復雜,聯機調整的相關精度要求高,機械手離加工區較近。一般來說,這種機械手用於刀庫刀座軸線與機床主軸軸線垂直,刀庫為徑向存取刀具形式的自動換刀裝置,因此,在XKA5032A/C數控立式升降銑床的自動換刀裝置中可採用這種機械手形式。 關鍵詞:數控銑床;自動換刀裝置;刀庫;換刀機械手 Abstract This thesis introction is the design that the XKA5032 A/C number controls the sign type working panel lifter miller to change the knife device(the knife database type) automatically.The knife database type automatically change the knife device is have by the knife database and the knife to exchange device(change the knife the machine hand) to constitute.It is many work ordinal numbers to control the top of the tool machine to apply to change the knife device most extensively, it is whole to lead to change the knife process more complicated.First process process in need to be use of all knifes have to install on the haft of the standard, pressing certain way to pack into the knife database after the tool machine carry on size to prepare to adjust outside.Be in the knife database carry on choosing knife first while change the knife, is taken out knife to have from the knife database and the principal axis by the machine hand, then exchange position, insert the new knife into the principal axis, the old knife puts back a knife database.The knife database that deposits knife to have has bigger capacity, its capacity has for six knifes, adopting the dish form structure, the left side that installs in the tool machine signs pillar up.The XKA5032 A/C number controls the sign type working panel lifter miller shape and other function parameter etc.s to all change the knife with THK6363 typeses automatically number to control the boring miller likeness, so this tool machine changes the knife the design of the device to change the knife in the wake of THK6363 typeses automatically automatically the number control the boring miller to change the knife device, the design becomeses the adoption stalk toward the drum dish type knife database form and the turn-over type double the arm machine hand for place to constitute. The knife has to press to schele to the work preface insert the knife of the knife database order of sequence, usage turn to take knife position in order.The knife for using puts back the original knife inside, can also press to process sequence to put into the next knife.That method doesn't need the knife to identify device, driving a control also more simple, work credibility.But the knife database in each knife have in the different work preface and can't repeat an usage, for satisfying to process to need to only increase the capacity of the quantity and the knife database that the knife have, this utilization that lowers knife to have with the knife database.Have to be very careful while packing knife in addition, if the knife doesn't in order have to pack in the knife database, will proce serious result.Sequence's choosing knife is before process, will process the knife that spare parts need to have to request to be one by one in order in the knife set of insert the knife database according to the craft, the sequence can't have mistake.Process adjust knife in order.Suit to process a batch quantity to compare greatly,the work piece the species quantity less of medium,small scaled the auto change the knife device.Can know the number controls miller to use 4 make the knife complete most milling and can pare to process.So this capacity is 6 knife databases of knifes, almost the nonentity process to need to make use of the circumstance that the knife have again in the process, so the knife have of the choice method assurance for in proper order choice the knife have. Two hands are mutual perpendicular of the advantage of the turn-over type single arm hands machine hand change the knife action credibility, changing good time short, the weakness is the haft accuracy to have high request, structure complications, the linking machine adjust of the related accuracy have high request, the machine hand leaves to process area nearer.Generally speaking, this kind of machine hand useds for the knife database knife the stalk line and the tool machine principal axis stalk line perpendicular, the knife database has a form to change the knife device automatically toward the access knife for the path, therefore can adopt this kind of machine hand form in the XKA5032 A/C number control the sign type rise and fall miller the auto change the knife the device. Keywords: numerical control milling machines ;Automatic tool changer ;Tool storage ;tool changing-manipulator 目錄 摘要I Abstract II 1 緒論 1 1.1 數控機床知識 1 1.2 數控銑床的分類 1 1.2.1 數控立式銑床 1 1.2.2 卧式數控銑床 2 1.2.3 立、卧式兩用數控銑床 2 1.3 數控銑床的結構特徵 2 1.3.1 數控銑床的主軸特徵 2 1.3.2 控制機床運動的坐標特徵 3 1.4 數控銑床的主要功能及加工對象 3 1.4.1 數控銑床的功能 3 1.4.2 自動換刀裝置(ATC)及其形式 3 1.4.3 自動換刀裝置應當滿足的基本要求 5 2 總體方案的確定 5 2.1 XKA5032A/C數控立式升降台銑床及其主要參數 5 2.1.1 其主要結構特點 6 2.1.2 其主要規格及技術參數 6 2.2 初定其自動換刀裝置的設計參數 7 2.3 確定其自動換刀裝置的形式 7 3 刀庫的設計 8 3.1 確定刀庫容量 8 3.2 確定刀庫形式 9 3.3 刀庫結構設計 9 3.4 初估刀庫驅動轉矩及選定電機 11 3.4.1 初選電動機與降速傳動裝置 11 3.4.2 初估刀庫驅動轉矩 11 3.5 刀庫轉位機構的普通圓柱蝸桿傳動的設計 11 3.6 刀庫驅動轉矩的校核 15 3.7 花鍵聯接的強度計算 15 3.8 夾緊機構插銷剪切強度的校核 16 3.9 確定刀具的選擇方式 16 3.10 刀庫的定位與刀具的松夾 17 4 刀具交換裝置的設計 18 4.1 確定換刀機械手形式 18 4.2 換刀機械手的工作原理 19 4.3 機械手的自動換刀過程的動作順序 20 4.4 機械手回轉軸4上的齒輪齒條設計 21 4.5 自動換刀裝置的相關技術要求 21 4.5.1 主軸准停裝置 21 4.5.2 換刀機械手的安裝與調試 22 4.6 自動換刀程序的編制 22 5 自動換刀裝置的控制原理 23 5.1 自動換刀裝置的液壓系統原理圖 23 5.2 自動換刀裝置換刀動作的順序控制過程 24 6 典型零件的設計 24 6.1 聯軸器 24 6.1.1 聯軸器的選用 25 6.1.2 聯軸器的校核 25 6.2 選擇離合器的類型 25 6.3 蝸桿蝸輪傳動設計的一些相關技術要求 25 6.4 托架的設計 25 鳴謝26 參考文獻 28 以上回答來自: http://www.lwtxw.com/html/44-5/5084.htm

H. 消防工程師考試的細水霧滅火系統的設計參數是什麼

細水霧滅火系統設計參數

1.噴頭的最低設計工作壓力不應小於1.20 MPa。

2.閉式系統的設計參數

1)閉式系統的作用面積不宜小於140m2,每套泵組所帶噴頭數量不應超過100隻。

2)系統的噴霧強度、噴頭的布置間距和安裝高度,宜經實體火災模擬試驗結果確定。

3)當噴頭的設計工作壓力不小於10MPa時,閉式系統也可根據噴頭的安裝高度按下表的規定確定系統的最小噴霧強度和噴頭的布置間距。當噴頭的設計工作壓力小於10MPa時,應經試驗確定系統的最小噴霧強度、噴頭的布置間距和安裝高度。

閉式系統的噴霧強度、噴頭的布置間距和安裝高度

註:對於瓶組式系統,系統的設計持續噴霧時間可按其實體火災模擬試驗滅火時間的2倍確定,且不宜小於10min。

I. DOE試驗設計是什麼

在CDM項目中,DOE的職能就是要對CDM(清潔發展機制)項目進行定性的「審定(Validation)」和定量的「核查(Verification/ Certification)」。

DOE(試驗設計)在質量控制的整個過程中扮演了非常重要的角色,它是我們產品質量提高,工藝流程改善的重要保證。通過對產品質量,工藝參數的量化分析,尋找關鍵因素,控制與其相關的因素。

實際上,DOE在CDM項目運作過程中非常關鍵,它直接決定了一個CDM項目能否成功注冊、產生的溫室氣體減排量能否獲得簽發及簽發多少。

(9)試驗設計參數設計某氣動換裝置擴展閱讀

DOE(試驗設計)方法:一類是正交試驗設計法,另一類是析因法。

DOE(試驗設計)用處

1、科學合理地安排實驗,從而減少實驗次數、縮短實驗周期,提高了經濟效益。

2、從眾多的影響因素中找出影響輸出的主要因素。

3、分析影響因素之間交互作用影響的大小。

4、分析實驗誤差的影響大小,提高實驗精度。

5、 找出較優的參數組合,並通過對實驗結果的分析、比較,找出達到最優化方案進一步實驗的方向。

J. 實驗方案設計

一、 實驗內容

考慮不同庫水升降條件下,「浸泡—風干」循環作用對岩石試樣實驗, 對每一期試樣進行單軸或三軸實驗, 得出在不同水位升降條件下對岩體力學參數的影響規律, 及在不同「浸泡—風干」循環期次作用下力學參數劣化規律。

二、 試驗岩樣

試驗所用砂岩取自三峽庫區秭歸沙鎮溪鎮白水河滑坡, 為侏羅繫上沙溪廟組砂岩。在同一個岩層開出較大片的岩塊, 並在現場切割成小塊運回試驗室鑽心取樣。 根據《工程岩體試驗方法標准》(GB/T50266—99)、 《水利水電工程岩石試驗規程》(SL264—2001)以及國際岩石力學學會推薦標准, 同時滿足RMT-150C岩石力學試驗系統三軸試驗岩樣規格要求, 經過細心切磨製成尺寸為Φ50mm×100mm圓柱形試件。 試樣的精度嚴格滿足規范要求: 高度、 直徑偏差≤±0.3mm, 試件兩端面不平整度≤±0.05mm(圖5-1)。

岩石礦物鑒定結果為絹雲母中粒石英砂岩(圖5-2), 孔隙式鈣質膠結結構, 基質具微細鱗片變晶結構的中粒砂狀結構。 岩石由石英、 長石、 岩屑、 雲母等組成。 碎屑組分有燧石岩屑, 次角-次圓狀, 粒徑0.3mm, 佔10%; 石英碎屑, 次角-次圓狀, 均勻分布,粒徑0.3~0.5mm, 佔80%; 基質組分為絹雲母, 佔10%。

圖5-9 有壓岩石溶解儀的結構圖

圖5-10 水壓力室俯視圖

圖5-11 控制箱

YRK-1岩石溶解試驗儀為本試驗開發的一種模擬庫水壓及庫水升降條件下岩石溶解試驗儀, 下面將對該儀器進行詳細的介紹。

(1)一種模擬庫水壓力條件的儀器的研製

本實驗儀器為一種模擬庫水壓力狀態下水-岩作用的實驗裝置, 模擬蓄水後庫岸岩(土)體所受水壓力環境, 通過考慮不同水壓力及水位升降條件下的岩石-水作用的浸泡實驗, 研究庫水條件下的水-岩作用及力學損傷特徵。 為了達到上述目的, 本儀器製作由岩石溶解室(壓力室), 動、 靜水模擬控制系統, 壓力控制系統, 壓力感測帶等組成。

水壓力室: 主要由底座、 圓柱形水壓力室和蓋板組成, 底板與蓋板之間分布有八根加固螺栓, 通過密封墊圈將圓柱形水壓力室固定在底座和蓋板之間。水壓力室採用不銹鋼和有機玻璃製作, 以便承受較大壓力。

壓力控制系統: 由內部壓力傳導系統和外部壓力控制系統組成。在水壓力室底部安裝一個壓力感測帶與外部壓力控制系統相接, 該壓力感測帶與外部壓力控制系統相連; 外部壓力控制系統由供壓裝置和高精度壓力表以及壓力傳導管道組成, 通過高精度壓力表將15MP壓力轉變為0~1.4MP(量程范圍)的壓力傳遞到壓力感測帶(穩壓狀態), 通過壓力感測帶將壓力傳遞給水, 進而控制水壓力室中的水壓, 滿足實驗要求達到的壓力狀態。

動、 靜水模擬控制系統: 該系統由穩壓電源、 直流電機、 葉輪組成。 直流電機安裝在水壓力室的底板下部, 通過轉軸與水壓力室內部的葉輪相連。 可以模擬在動水狀態下岩石的溶解特徵, 也可以模擬在靜水狀態下岩石的溶解特徵; 同時, 通過控制直流電機轉速進一步模擬在不同動水狀態下岩石的溶解特徵。 與壓力控制系統組合可以進一步模擬在水庫庫水壓力狀態下(具有一定的流速情況下)的水-岩作用。 同時在水壓力室下部設置水樣採集口, 通過水樣分析研究岩石溶解特徵。

(2)岩石溶解儀操作步驟

a. 壓力室放置試樣。 首先將制備好的岩樣放入水壓力室內, 分層直立或橫卧擺放;蓋上蓋板並將加固螺栓擰緊, 固定好。

b. 壓力室充水。 通過進水管向水壓力室內注水, 注水期間將放氣螺絲打開, 將水壓力室內空氣排除, 直至水漫出注水管後, 封閉進水管, 擰緊放氣螺絲。

c. 控制壓力室水壓力。 連接外部壓力控制系統與內部壓力控制系統, 確認連接完成後, 將總控箱中的氣源壓力調節閥全部放開(擰至最松位置), 放氣閥放到「開」的位置。 緩慢旋轉氣源壓力調節閥, 按照實驗要求調節壓力, 並通過外部壓力系統通過壓力傳到裝置將壓力傳遞給水, 保證水-岩作用是在一定庫水條件下進行。

d. 取出試樣。 完成一個實驗周期之後(實驗流程要求), 獲取試樣之前, 首先關閉總氣源(氮氣瓶), 按照試驗流程調節閥慢慢將氣源壓力減小, 打開放氣閥以及放氣螺絲,使殘余氣體放出。 開放水樣採集口, 獲取足夠水樣供分析。 取出岩樣做相應分析。

(3)岩石溶解試驗儀的特點

該儀器製作的優點是: 結構簡單、 易操作、安全可靠, 可以模擬庫區岩體所處不同水壓力環境, 根據需要保持或調節水壓力狀態模擬庫水位升降; 設置動、 靜水模擬控制系統, 以模擬庫水擾動; 設置取水管道, 以便分析離子濃度的變化。

該儀器可以模擬在庫水升降條件及水壓力狀態下岩石所處的水環境, 為研究庫水條件下水-岩作用機理及力學特性而提供一套室內實驗平台。

閱讀全文

與試驗設計參數設計某氣動換裝置相關的資料

熱點內容
機械液壓保安裝置 瀏覽:272
如何通過qq查詢設備 瀏覽:92
大眾低配儀表盤怎麼顯示油耗 瀏覽:137
什麼等機械在自行車上能找到 瀏覽:716
惠州五金製品企業黃頁 瀏覽:956
中山市小欖頭燈鋁圈帶牙五金製品廠 瀏覽:671
鑄造用不銹鋼用什麼料 瀏覽:307
傳送帶設備哪個好 瀏覽:319
機械裝置可以用什麼清洗 瀏覽:74
鐵路車號自動識別裝置的價格 瀏覽:523
手機k歌要哪些器材 瀏覽:689
南方軸承質量怎麼樣 瀏覽:152
幼兒為什麼機械記憶占優勢 瀏覽:634
新裝的暖氣前兩組熱怎麼調節閥門 瀏覽:169
新奇駿後工具箱軟 瀏覽:65
燒結機柔性傳動裝置 瀏覽:277
製冷機溫度低怎麼處理 瀏覽:643
機械液壓助力如何保養 瀏覽:717
軸承如何確定自由端與固定端 瀏覽:617
機械位移光電測量裝置的設計 瀏覽:959