導航:首頁 > 裝置知識 > 飛機起落裝置的作用

飛機起落裝置的作用

發布時間:2021-02-11 08:45:30

⑴ 民航客機起落裝置大多都是可收放式的對嗎

飛機起落架系統簡介;起落架是飛機的重要部件,用來保證飛機在地面靈活運;後三點式起落架具有以下優點:(1)在飛機上易於裝;時的姿態與地面滑跑、停機時的姿態相同;暴露出了越來越多的缺點:(1)在大速度滑跑時,遇;(3)在起飛、降落滑跑時是不穩定的;前三點式起落架的主要優點有:1)著陸簡單,安全可靠;接地時,作用在主輪的撞擊力使迎角急劇減小,因而不;2)前起落架。
起落架是飛機的重要部件,用來保證飛機在地面靈活運動,減小飛機著陸撞擊與顛簸,滑行剎車減速;收上起落架減小飛行阻力,放下支持飛機。本文將簡要介紹現代民用飛機起落架的組成及工作。 一、起落架的作用 起落架就是飛機在地面停放、滑行、起飛著陸滑跑時用於支撐飛機重力,承受相應載荷的裝置。概括起來,起落架的主要作用有以下四個: 1、承受飛機在地面停放、滑行、起飛著陸滑跑時的重力; 2、承受、消耗和吸收飛機在著陸與地面運動時的撞擊和顛簸能量;3、滑跑與滑行時的制動;4、滑跑與滑行時操縱飛機。二、起落架的配置形式 起落架的布置形式是指飛機起落架支柱(支點)的數目和其相對於飛機重心的布置特點。目前,飛機上通常採用四種起落架形式: 1、後三點式:這種起落架有一個尾支柱和兩個主起落架。並且飛機的重心在主起落架之後。後三點式起落架的結構簡單,適合於低速飛機,因此在四十年代中葉以前曾得到廣泛的應用。目前這種形式的起落架主要應用於裝有活塞式發動機的輕型、超輕型低速飛機上。

⑵ 飛機是什麼原理飛起來的

牛頓三大運動定律
第一定律:除非受到外來的作用力,否則物體的速度(v)會保持不變
沒有受力即所有外力合力為零,當飛機在天上保持等速直線飛行時,這時飛機所受的合力為零,與一般人想像不同的是,當飛機降落保持相同下沉率下降,這時升力與重力的合力仍是零,升力並未減少,否則飛機會越掉越快。
第二定律:質量為m的物體動量(p
=
mv)變化率是正比於外加力
F
且發生在力的方向
此即著名的
F=ma
公式,當物體受一個外力後,即在外力的方向產生一個加速度,飛機起飛滑行時引擎推力大於阻力,於是產生向前的加速度,速度越來越快阻力也越來越大,遲早引擎推力會等於阻力,於是加速度為零,速度不再增加,當然飛機此時早已飛在天空了。
第三定律:作用力與反作用力是數值相等且方向相反。
你踢門一腳,你的腳也會痛,因為門也對你施了一個相同大小的力
力的平衡
作用於飛機的力要剛好平衡,如果不平衡就是合力不為零,依牛頓第二定律就會產生加速度,為了分析方便我們把力分為X、Y、Z三個軸力的平衡及繞X、Y、Z三個軸彎矩的平衡。
軸力不平衡則會在合力的方向產生加速度,飛行中的飛機受的力可分為升力、重力、阻力、推力〔如圖1-1〕,升力由機翼提供,推力由引擎提供,重力由地心引力產生,阻力由空氣產生,我們可以把力分解為兩個方向的力,稱
x

y
方向〔當然還有一個z方向,但對飛機不是很重要,除非是在轉彎中〕,飛機等速直線飛行時x方向阻力與推力大小相同方向相反,故x方向合力為零,飛機速度不變,y方向升力與重力大小相同方向相反,故y方向合力亦為零,飛機不升降,所以會保持等速直線飛行。
彎矩不平衡則會產生旋轉加速度,在飛機來說,X軸彎矩不平衡飛機會滾轉,Y軸彎矩不平衡飛機會偏航、Z軸彎矩不平衡飛機會俯仰〔如圖1-2〕。
伯努利定律
伯努利定律是空氣動力最重要的公式,簡單的說流體的速度越大,靜壓力越小,速度越小,靜壓力越大,這里說的流體一般是指空氣或水,在這里當然是指空氣,設法使機翼上部空氣流速較快,靜壓力則較小,機翼下部空氣流速較慢,靜壓力較大,兩邊互相較力〔如圖1-3〕,於是機翼就被往上推去,然後飛機就飛起來,以前的理論認為兩個相鄰的空氣質點同時由機翼的前端往後走,一個流經機翼的上緣,另一個流經機翼的下緣,兩個質點應在機翼的後端相會合〔如圖1-4〕,經過仔細的計算後發覺如依上述理論,上緣的流速不夠大,機翼應該無法產生那麼大的升力,現在經風洞實驗已證實,兩個相鄰空氣的質點流經機翼上緣的質點會比流經機翼的下緣質點先到達後緣〔如圖1-5〕。

⑶ 遙控飛機主要組成部分在飛行中起到什麼樣的作用

遙控飛機的飛行原理是根據空氣動力學來設計的,在設計的時候要遵守這三個守恆定律.質量守恆是只有在氣體的速度高至必須考慮相對論效應時此定律才會失效。動量守恆由牛頓第二定律推導可得。能量守恆在不考慮粘性時,即機械能守恆;在必須考慮粘性的情況下,即機械能和熱能的守恆。這樣方可保證飛機在空中能保持不下落的狀態,大多數遙控飛機都是由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成.這五個部分在飛行中起到什麼樣的作用呢? 1. 機翼—機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。不同用途的飛機其機翼形狀、大小也各有不同。 2. 機身—機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。 3. 尾翼—尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。 4.起落裝置—飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支撐飛機。 5.動力裝置—動力裝置主要用來產生拉力和推力,使飛機前進。

⑷ 飛機起飛原理

牛頓三大運動定律
第一定律:除非受到外來的作用力,否則物體的速度(v)會保持不變
沒有受力即所有外力合力為零,當飛機在天上保持等速直線飛行時,這時飛機所受的合力為零,與一般人想像不同的是,當飛機降落保持相同下沉率下降,這時升力與重力的合力仍是零,升力並未減少,否則飛機會越掉越快。
第二定律:質量為m的物體動量(p
=
mv)變化率是正比於外加力
F
且發生在力的方向
此即著名的
F=ma
公式,當物體受一個外力後,即在外力的方向產生一個加速度,飛機起飛滑行時引擎推力大於阻力,於是產生向前的加速度,速度越來越快阻力也越來越大,遲早引擎推力會等於阻力,於是加速度為零,速度不再增加,當然飛機此時早已飛在天空了。
第三定律:作用力與反作用力是數值相等且方向相反。
你踢門一腳,你的腳也會痛,因為門也對你施了一個相同大小的力
力的平衡
作用於飛機的力要剛好平衡,如果不平衡就是合力不為零,依牛頓第二定律就會產生加速度,為了分析方便我們把力分為X、Y、Z三個軸力的平衡及繞X、Y、Z三個軸彎矩的平衡。
軸力不平衡則會在合力的方向產生加速度,飛行中的飛機受的力可分為升力、重力、阻力、推力,升力由機翼提供,推力由引擎提供,重力由地心引力產生,阻力由空氣產生,我們可以把力分解為兩個方向的力,稱
x

y
方向〔當然還有一個z方向,但對飛機不是很重要,除非是在轉彎中〕,飛機等速直線飛行時x方向阻力與推力大小相同方向相反,故x方向合力為零,飛機速度不變,y方向升力與重力大小相同方向相反,故y方向合力亦為零,飛機不升降,所以會保持等速直線飛行。
彎矩不平衡則會產生旋轉加速度,在飛機來說,X軸彎矩不平衡飛機會滾轉,Y軸彎矩不平衡飛機會偏航、Z軸彎矩不平衡飛機會俯仰。
還有就是伯努利定律

⑸ 飛機的起飛和降落如何控制

飛機起飛靠的是與空氣的相對運動產生的升力,升力的大小取決於飛機與空氣的相對速度,而不是飛機與地面的相對速度。

飛機著陸與飛機起飛的情況類似。在著陸的過程中,飛機需要在不斷減速的同時保持足夠的升力,確保飛機可以平穩下降。

如果在逆風下起飛,飛機滑跑速度與風速的方向相反,飛機與空氣的相對速度等於二者之和。此時,飛機只需較小的滑跑速度就可以獲得離地所需的升力。

所以,與在無風下起飛相比,逆風起飛所需滑跑的距離會更短。相反,如果在順風下起飛,飛機要達到較大的滑行速度才能獲得離地所需的升力,滑跑距離相對要長一些。

在逆風下著陸,飛機可以在更小速度的情況下,獲得所需的升力,從而減小接地那一刻與地面的相對速度,進而縮短滑行距離。

而在順風下著陸,飛機為了獲得同樣的升力,飛機與地面的相對速度要比逆風著陸時大。這使得飛機在接地那一刻的速度變大,滑行距離變長,控制不好容易造成安全隱患

此外,機場跑道的方向是固定不變的,但風的方向卻是經常變化的。因此,飛機在起降時,不可能都是逆風的,往往是在側風的條件下進行的。

由於飛機在起降時速度比較慢,穩定性差,如遇強勁的側風,飛機可能發生偏轉,增加了飛行員操作的難度。因此,飛機在側風中起降時,飛行員要特別注意修正偏差,不然就會出現滑出跑道的危險。

(5)飛機起落裝置的作用擴展閱讀:

飛機是20世紀初最重大的發明之一,公認由美國人萊特兄弟發明。他們在1903年12月17日進行的飛行作為「第一次重於空氣的航空器進行的受控的持續動力飛行」被國際航空聯合會(FAI)所認可,同年他們創辦了「萊特飛機公司」。

自從飛機發明以後,飛機日益成為現代文明不可缺少的工具。它深刻的改變和影響了人們的生活,開啟了人們征服藍天歷史。

自從世界上出現飛機以來,飛機的結構形式雖然在不斷改進,飛機類型不斷增多,但到目前為止,除了極少數特殊形式的飛機之外,大多數飛機都是由下面六個主要部分組成,即:機翼、機身、尾翼、起落裝置、操縱系統和動力裝置。它們各有其獨特的功用。

飛機起落裝置的功用是使飛機在地面或水面進行起飛、著陸、滑行和停放。著陸時還通過起落裝置吸收撞擊能量,改善著陸性能。

早期陸上飛機起落裝置比較簡單,只有三個起落架,而且在空中不能收起,飛行阻力大。現代的陸上飛機起落裝置包含起落架和改善起落性能的裝置兩部分,且起落架在起飛後即可收起,以減少飛行阻力。

改善起落性能的裝置主要有起飛加速器、機輪剎車、減速傘等。水上飛機的起落架由浮筒代替機輪。

⑹ 飛機的工作原理和

飛行原理簡介(一)

要了解飛機的飛行原理就必須先知道飛機的組成以及功用,飛機的升力是如何產生的等問題。這些問題將分成幾個部分簡要講解。

一、飛行的主要組成部分及功用

到目前為止,除了少數特殊形式的飛機外,大多數飛機都由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成:

1. 機翼——機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。機翼上還可安裝發動機、起落架和油箱等。不同用途的飛機其機翼形狀、大小也各有不同。

2. 機身——機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,有的高速飛機將水平安定面和升降舵合為一體成為全動平尾。垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。

4.起落裝置——飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支撐飛機。

5.動力裝置——動力裝置主要用來產生拉力和推力,使飛機前進。其次還可為飛機上的其他用電設備提供電源等。現在飛機動力裝置應用較廣泛的有:航空活塞式發動機加螺旋槳推進器、渦輪噴氣發動機、渦輪螺旋槳發動機和渦輪風扇發動機。除了發動機本身,動力裝置還包括一系列保證發動機正常工作的系統。

飛機上除了這五個主要部分外,根據飛機操作和執行任務的需要,還裝有各種儀表、通訊設備、領航設備、安全設備等其他設備。

二、飛機的升力和阻力

飛機是重於空氣的飛行器,當飛機飛行在空中,就會產生作用於飛機的空氣動力,飛機就是靠空氣動力升空飛行的。在了解飛機升力和阻力的產生之前,我們還要認識空氣流動的特性,即空氣流動的基本規律。流動的空氣就是氣流,一種流體,這里我們要引用兩個流體定理:連續性定理和伯努利定理:

流體的連續性定理:當流體連續不斷而穩定地流過一個粗細不等的管道時,由於管道中任何一部分的流體都不能中斷或擠壓起來,因此在同一時間內,流進任一切面的流體的質量和從另一切面流出的流體質量是相等的。

連續性定理闡述了流體在流動中流速和管道切面之間的關系。流體在流動中,不僅流速和管道切面相互聯系,而且流速和壓力之間也相互聯系。伯努利定理就是要闡述流體流動在流動中流速和壓力之間的關系。

伯努利定理基本內容:流體在一個管道中流動時,流速大的地方壓力小,流速小的地方壓力大。

飛機的升力絕大部分是由機翼產生,尾翼通常產生負升力,飛機其他部分產生的升力很小,一般不考慮。從上圖我們可以看到:空氣流到機翼前緣,分成上、下兩股氣流,分別沿機翼上、下表面流過,在機翼後緣重新匯合向後流去。機翼上表面比較凸出,流管較細,說明流速加快,壓力降低。而機翼下表面,氣流受阻擋作用,流管變粗,流速減慢,壓力增大。這里我們就引用到了上述兩個定理。於是機翼上、下表面出現了壓力差,垂直於相對氣流方向的壓力差的總和就是機翼的升力。這樣重於空氣的飛機藉助機翼上獲得的升力克服自身因地球引力形成的重力,從而翱翔在藍天上了。

機翼升力的產生主要靠上表面吸力的作用,而不是靠下表面正壓力的作用,一般機翼上表面形成的吸力占總升力的60-80%左右,下表面的正壓形成的升力只佔總升力的20-40%左右。

飛機飛行在空氣中會有各種阻力,阻力是與飛機運動方向相反的空氣動力,它阻礙飛機的前進,這里我們也需要對它有所了解。按阻力產生的原因可分為摩擦阻力、壓差阻力、誘導阻力和干擾阻力。

1.摩擦阻力——空氣的物理特性之一就是粘性。當空氣流過飛機表面時,由於粘性,空氣同飛機表面發生摩擦,產生一個阻止飛機前進的力,這個力就是摩擦阻力。摩擦阻力的大小,決定於空氣的粘性,飛機的表面狀況,以及同空氣相接觸的飛機表面積。空氣粘性越大、飛機表面越粗糙、飛機表面積越大,摩擦阻力就越大。

2.壓差阻力——人在逆風中行走,會感到阻力的作用,這就是一種壓差阻力。這種由前後壓力差形成的阻力叫壓差阻力。飛機的機身、尾翼等部件都會產生壓差阻力。

3.誘導阻力——升力產生的同時還對飛機附加了一種阻力。這種因產生升力而誘導出來的阻力稱為誘導阻力,是飛機為產生升力而付出的一種「代價」。其產生的過程較復雜這里就不在詳訴。

4.干擾阻力——它是飛機各部分之間因氣流相互干擾而產生的一種額外阻力。這種阻力容易產生在機身和機翼、機身和尾翼、機翼和發動機短艙、機翼和副油箱之間。

以上四種阻力是對低速飛機而言,至於高速飛機,除了也有這些阻力外,還會產生波阻等其他阻力。

三、影響升力和阻力的因素

升力和阻力是飛機在空氣之間的相對運動中(相對氣流)中產生的。影響升力和阻力的基本因素有:機翼在氣流中的相對位置(迎角)、氣流的速度和空氣密度以及飛機本身的特點(飛機表面質量、機翼形狀、機翼面積、是否使用襟翼和前緣翼縫是否張開等)。

1.迎角對升力和阻力的影響——相對氣流方向與翼弦所夾的角度叫迎角。在飛行速度等其它條件相同的情況下,得到最大升力的迎角,叫做臨界迎角。在小於臨界迎角范圍內增大迎角,升力增大:超過臨界臨界迎角後,再增大迎角,升力反而減小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超過臨界迎角,阻力急劇增大。

2.飛行速度和空氣密度對升力阻力的影響——飛行速度越大升力、阻力越大。升力、阻力與飛行速度的平方成正比例,即速度增大到原來的兩倍,升力和阻力增大到原來的四倍:速度增大到原來的三倍,勝利和阻力也會增大到原來的九倍。空氣密度大,空氣動力大,升力和阻力自然也大。空氣密度增大為原來的兩倍,升力和阻力也增大為原來的兩倍,即升力和阻力與空氣密度成正比例。

3,機翼面積,形狀和表面質量對升力、阻力的影響——機翼面積大,升力大,阻力也大。升力和阻力都與機翼面積的大小成正比例。機翼形狀對升力、阻力有很大影響,從機翼切面形狀的相對厚度、最大厚度位置、機翼平面形狀、襟翼和前緣翼縫的位置到機翼結冰都對升力、阻力影響較大。還有飛機表面光滑與否對摩擦阻力也會有影響,飛機表面相對光滑,阻力相對也會較小,反之則大.
參考資料:http://www.jgsng.com/readnews.asp?newsid=633
參考資料:http://..com/question/2880651.html

⑺ 飛機為什麼可以飛起來,是什麼原理

機翼的側剖面是一個上緣向上拱起,下緣基本平直的形狀。所以氣流吹過機翼上下表面而且要同時從機翼前端到達後端,從上緣經過的氣流速度就要比下緣的快(因為上緣弧度大,弧長較長,就是說距離較遠)。
按照物理學的伯努利方程:同樣是流過某個表面的流體,速度快的對這個表面產生的壓強要小。因此就得出機翼上表面大氣壓強比下表面的要小的結論,這樣子就產生了升力,升力達到一定程度飛機就可以離地而起。
有個公式不知道你有沒有見過:L=Cl*1/2*ρ*V*V*S。
它的意義是:飛機升力是一下五個量的乘積:
1.升力系數Cl
(那個C表示系數,l是角碼,我沒有字元編輯工具打不出來),它的值和飛機的迎風角度等許多精細的變數有關,一般在零點幾,詳細的記不大情了:(
2.二分之一
就是0.5
3.大氣密度ρ
(飛機所在環境,可以是高空也可以是低空)
4.飛機相對於周圍大氣速度的平方
V*V
(沒有角碼打不出來只能這么表示)
5.機翼面積
S
這個公式只適用於速度相對慢的飛行,就像常見的大小型客機飛行,其他飛行器(只要有機翼)速度不超過一馬赫時基本都可以用,但是象戰機那種兩三馬赫的大速度飛行就不行了,速度太大的話機翼表面的空氣會變得有黏性,要考慮到雷諾數,那時候就另有一個公式了,很復雜,我也不懂。:

⑻ 飛機起飛的原理是什麼

在真實且可產生升力的機翼中,氣流總是在後緣處交匯,否則在機翼後緣將會產生一個氣流速度為無窮大的點。這一條件被稱為庫塔條件,只有滿足該條件,機翼才可能產生升力。在理想氣體中或機翼剛開始運動的時候,這一條件並不滿足,粘性邊界層沒有形成。

通常翼型(機翼橫截面)都是上方距離比下方長,剛開始在沒有環流的情況下上下表面氣流流速相同,導致下方氣流到達後緣點時上方氣流還沒到後緣,後駐點位於翼型上方某點,下方氣流就必定要繞過尖後緣與上方氣流匯合。

由於流體黏性(即康達效應),下方氣流繞過後緣時會形成一個低壓旋渦,導致後緣存在很大的逆壓梯度。隨即,這個旋渦就會被來流沖跑,這個渦就叫做起動渦。根據海姆霍茲旋渦守恆定律,對於理想不可壓縮流體在有勢力的作用下翼型周圍也會存在一個與起動渦強度相等方向相反的渦,叫做環流,或是繞翼環量。

環流是從機翼上表面前緣流向下表面前緣的,所以環流加上來流就導致後駐點最終後移到機翼後緣,從而滿足庫塔條件。由滿足庫塔條件所產生的繞翼環量導致了機翼上表面氣流向後加速,由伯努利定理可推導出壓力差並計算出升力。

這一環量最終產生的升力大小亦可由庫塔-茹可夫斯基方程計算:L(升力)=ρVΓ(氣體密度×流速×環量值)這一方程同樣可以計算馬格努斯效應的氣動力。根據伯努利定理——「流體速度越快,其靜壓值越小(靜壓就是流體流動時垂直於流體運動方向所產生的壓力)。」

因此上表面的空氣施加給機翼的壓力F1小於下表面的F2。F1、F2的合力必然向上,這就產生了升力。升力的原理就是因為繞翼環量(附著渦)的存在導致機翼上下表面流速不同壓力不同。

(8)飛機起落裝置的作用擴展閱讀:

飛機的動力裝置的核心是航空發動機,主要功能是用來產生拉力或推力克服與空氣相對運動時產生的阻力使飛機前進。次要功能則是為飛機上的用電設備提供電力,為空調設備等用氣設備提供氣源等。飛機的動力裝置除發動機外,還包括一系列保證發動機正常工作的系統,如引擎燃油系統、引擎控制系統等。

現代飛機的動力裝置一般為渦輪引擎(噴射引擎)和往復式引擎兩種。應用較廣泛的配置方式有四種:航空活塞式發動機加螺旋槳推進器;渦輪噴射引擎;渦輪螺旋槳引擎;渦輪扇引擎。隨著航空技術的發展,火箭發動機、沖壓引擎、原子能航空發動機、脈沖爆震發動機等,也有可能會逐漸被採用。

⑼ 飛機起落裝置有哪幾部分組成

起落架就是飛機在地面停放、滑行、起降滑跑時用於支持飛機重量、吸收撞擊能量的飛機部件。簡單地說,起落架有一點象汽車的車輪,但比汽車的車輪復雜的多,而且強度也大的多,它能夠消耗和吸收飛機在著陸時的撞擊能量。概括起來,起落架的主要作用有以下四個:承受飛機在地面停放、滑行、起飛著陸滑跑時的重力;承受、消耗和吸收飛機在著陸與地面運動時的撞擊和顛簸能量;滑跑與滑行時的制動;滑跑與滑行時操縱飛機。

基本組成

綜述

為適應飛機起飛、著陸滑跑和地面滑行的需要,起落架的最下端裝有帶充氣輪胎的機輪。為了縮短著陸滑跑距離,機輪上裝有剎車或自動剎車裝置。此外還包括承力支柱、減震器(常用承力支柱作為減震器外筒)、收放機構、前輪減擺器和轉彎操縱機構等。承力支柱將機輪和減震器連接在機體上,並將著陸和滑行中的撞擊載荷傳遞給機體。前輪減擺器用於消除高速滑行中前輪的擺振。前輪轉彎操縱機構可以增加飛機地面轉彎的靈活性。對於在雪地和冰上起落的飛機,起落架上的機輪用滑橇代替。

  1. 減震器飛機在著陸接地瞬間或在不平的跑道上高速滑跑時,與地面發生劇烈的撞擊,除充氣輪胎可起小部分緩沖作用外,大部分撞擊能量要靠減震器吸收。現代飛機上應用最廣的是油液空氣減震器。當減震器受撞擊壓縮時,空氣的作用相當於彈簧,貯存能量。而油液以極高的速度穿過小孔,吸收大量撞擊能量,把它們轉變為熱能,使飛機撞擊後很快平穩下來,不致顛簸不止。

  2. 收放系統收放系統一般以液壓作為正常收放動力源,以冷氣、電力作為備用動力源。一般前起落架向前收入前機身,而某些重型運輸機的前起落架是側向收起的。主起落架收放形式大致可分為沿翼展方向收放和翼弦方向收放兩種。收放位置鎖用來把起落架鎖定在收上和放下位置,以防止起落架在飛行中自動放下和受到撞擊時自動收起。對於收放系統,一般都有位置指示和警告系統。

  3. 機輪和剎車系統機輪的主要作用是在地面支持收飛機的重量,減少飛機地面運動的阻力,吸收飛機著陸和地面運動時的一部分撞擊動能。主起落架上裝有剎車裝置,可用來縮短飛機著陸的滑跑距離,並使飛機在地面上具有良好的機動性。機輪主要由輪轂和輪胎組成。剎車裝置主要有彎塊式、膠囊式和圓盤式三種。應用最為廣泛的是圓盤式,其主要特點是摩擦面積大,熱容量大,容易維護。

⑽ 飛機主要哪些部件組成各部件作用是什麼

一,飛機的原理飛行
飛機是重於空氣的飛行器,當飛機飛行在空中,就會產生作用於飛機的空氣動力,飛機就是靠空氣動力升空飛行的。
二,飛行的主要組成部分及功用
到目前為止,除了少數特殊形式的飛機外,大多數飛機都由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成。
1.
機翼——機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。機翼上還可安裝發動機、起落架和油箱等。不同用途的飛機其機翼形狀、大小也各有不同。
2.
機身——機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。
3.
尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,有的高速飛機將水平安定面和升降舵合為一體成為全動平尾。垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。
4.起落裝置——飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支掌飛機。
5.動力裝置——動力裝置主要用來產生拉力和推力,使飛機前進。其次還可為飛機上的其他用電設備提供電源等。現在飛機動力裝置應用較廣泛的有:航空活塞式發動機加螺旋槳推進器、渦輪噴氣發動機、渦輪螺旋槳發動機和渦輪風扇發動機。除了發動機本身,動力裝置還包括一系列保證發動機正常工作的系統。
*飛機上除了這五個主要部分外,根據飛機操作和執行任務的需要,還裝有各種儀表、通訊設備、領航設備、安全設備等其他設備。

閱讀全文

與飛機起落裝置的作用相關的資料

熱點內容
高效好氧生化裝置設計 瀏覽:401
dnf女機械帶什麼稱號號 瀏覽:769
為什麼格力製冷快 瀏覽:807
抖音達人用什麼設備拍的視頻 瀏覽:975
手機連接電腦的wifi設備名稱是什麼原因 瀏覽:417
閥門在安裝前應進行什麼試驗 瀏覽:923
暖氣閥門開關旋鈕結構 瀏覽:753
如何用儀表判斷油氣分離器好壞 瀏覽:559
製作奶茶需要什麼設備 瀏覽:683
哪些計量儀器需要外校 瀏覽:809
什麼的超聲波填空 瀏覽:96
軸承609z是什麼意思 瀏覽:497
傳熱實驗裝置簡圖 瀏覽:755
聯裕機械手怎麼樣 瀏覽:381
繞線機自動排線裝置 瀏覽:18
皇冠方向軸承多少錢 瀏覽:707
航拍儀器是什麼圖片 瀏覽:536
什麼是機械表的發條 瀏覽:486
軸承檢測儀器具有哪些 瀏覽:987
空調只有製冷怎麼制熱 瀏覽:292