導航:首頁 > 裝置知識 > 沖壓自動進料裝置原理

沖壓自動進料裝置原理

發布時間:2022-10-21 21:19:41

⑴ 氣動送料機的原理圖

氣動塑料機的原理是通過安裝板將其安裝在沖壓自動化生產線軸中沖床的進料口端,材料沿進專口擋料輪送入,屬通過控制系統完成的工作原理。

氣動送料機。通過控制系統使固定夾板夾緊材料,夾板工作時,向活塞上部空間充入空氣推動活塞下行,活塞推動夾板克服復位彈簧力作用夾持住材料。

活塞上部通大氣時,在復位彈簧力作用下,活塞和夾板復位,松開材料;送料氣缸工作,拉動移動夾板向送料長度微調螺絲運動,直至使移動夾板貼靠在送料長度微調螺絲上。

此時,送料機移動夾板夾緊材料,固定夾板松開,然後,送料氣缸反向進氣,推動移動夾板向固定夾板方向運動,直至移動夾板運動到限位位置,送料機移動夾板運動時,拖動材料位移一定距離,然後固定夾板夾緊,移動夾板松開,重復上述工作過程。

空氣送料機移動夾板和固定夾板交替工作,即可將材料以步進方式送進沖床,通過調整送料長度微調螺絲實現氣缸行程調節,使沖壓材料的寬度符合生產要求,材料不斷送進沖床中,經沖床沖壓完成整個自動化生產。

空氣送料機由於每步送進距離准確,可實現自動化控制,能縮短初始送料的時間,提高生產效率,同時,避免了沖壓過程中材料偏移,並有效防止材料振動。

⑵ 什麼是進料泵工作原理是什麼

進料泵在工作前,泵體和進料管必須罐滿液體行成真空狀態,當葉輪快速轉動時,葉片促使液體很快旋轉,旋轉著的液體物料在離心力的作用下從葉輪中飛去,泵內的水被拋出後,葉輪的中心部分形成真空區域。液體物料在大氣壓力的作用下通過管網壓到了進料管內。這樣循環不已,就可以實現連續輸送。

在進料泵啟動前,泵殼內灌滿被輸送的液體;啟動後,啟動後,葉輪由軸帶動高速轉動,葉片間的液體也必須隨著轉動。在離心力的作用下,液體從葉輪中心被拋向外緣並獲得能量,以高速離開葉輪外緣進入蝸形泵殼。

在蝸殼中,液體由於流道的逐漸擴大而減速,又將部分動能轉變為靜壓能,以較高的壓力流入排出管道,送至需要場所。液體由葉輪中心流向外緣時,在葉輪中心形成了-定的真空,由於貯槽液面上方的壓力大於泵入口處的壓力,液體便被連續壓入葉輪中。可見,只要葉輪不斷地轉動,液體便會不斷地被吸入和排出。


在蝸殼中,液體由於流道的逐漸擴大而減速,又將部分動能轉變為靜壓能,以較高的壓力流入排出管道,送至需要場所。液體由葉輪中心流向外緣時,在葉輪中心形成了-定的真空,由於貯槽液面上方的壓力大於泵入口處的壓力,液體便被連續壓入葉輪中。可見,只要葉輪不斷地轉動,液體便會不斷地被吸入和排出。

⑶ 沖壓設備的安全設施

1、沖壓設備上應有銘牌、各種操作指示、安全與警告性指示。
2、電源接線應規范,設備的電纜不應有損傷,預防老化。
3、沖壓設備上的配電箱門鎖應帶鑰匙,開門自動切斷電源。
4、單次、連續、腳踏沖壓等操作的轉換應採用帶鑰匙鎖定的轉換開關。
5、沖壓設備單次行程操作時,不得出現連續沖壓行程。
6、對選用連續行程操作時,應在操作過程中設有預控動作環節。
7、沖壓設備上必須有緊急停止按鈕,並應能自鎖。
8、腳踏操作與手操作間應具有連鎖控制。
9、對露於機身外和機身頂部的傳動齒輪、皮帶輪、飛輪、杠桿等傳動零部件,均應裝設防護罩。
10、腳踏操作裝置採用腳踏板式,以腳踏進行電氣開關控制,並能自動復位。
11、腳踏板的上部及兩側應有防護罩,踏板應防滑。
12、沖壓設備必須具有防止手進入模具閉合區的安全防護措施,使用單位應根據沖壓設備種類、生產產品工件形狀等不同情況,採取自動進出料、加裝安全防護裝置、安全模具及使用取送料專用工具等沖壓作業安全措施。
13、定期對電氣系統的三項試驗(保護接地、絕緣、耐壓試驗),進行測試,並有測試報告。
14、每台沖壓設備都應取得《沖壓設備安全准用證》,並在有效期內。

⑷ 螺旋式進料裝置實現連續進料的基本原理是怎麼樣的

工作原理(工藝過程):利用進料螺旋的壓縮及來自止回閥的阻力作用,使原料在運行中形成密實的料塞,從而對高壓蒸汽起密封作用;又由於原料的不斷加入,料塞便不斷地形成並向前推移,從而實現連續性進料。

⑸ 沖床自動送料機的原理是什麼

自動送料機有很多復種,而制沖床自動送料機主要是針對沖床沖壓生產自動送料的。

沖床自動送料機原理大致就是,原材料通過進料口調節座控制材料寬度,進入伺服驅動滾輪,由上下滾輪互相作用力下往前輸送,送料步距,送料長度,速度有NC伺服系統控制。

⑹ 什麼是沖壓自動化

1實現沖壓自動化可以從哪些方面考慮?
2多工位級進模對沖壓設備有哪些要求?
3什麼是載體?它的形式有哪些?各自應用在什麼場合?
4試述多工位級進模條料排樣圖設計步驟。
5鉤式自動送料裝置工作原理是什麼?適用哪些場合?
6夾持式自動送料裝置有哪幾種類型?使用上有哪些區別?
7怎樣在普通壓力機上實現自動沖壓或多工位沖壓?
8什麼是自動模?他有何特點?它是如何分類的?
9擺動油缸是怎樣讓機械手的左右擺動的?
10二次加工是怎樣供料和送料的?用自己的語言描述。

⑺ 鍛壓機械的工作原理

鍛錘靠高壓氣體突然釋放的能量驅動上,下錘頭高速運動,懸空對擊,是金屬塑性成形的鍛造方法。高速錘鍛造是一種高能率成形方法,主要用於精密模鍛和熱擠壓。
瞬間釋放的高壓氣體(壓力一般為15000兆帕,迫使錘頭向下作9~24米/秒的高速運動,同時也向上推動高壓氣缸的缸蓋,並帶動整個機架向上運動。錘頭上的上模與機架上的下模在空中對擊工件,使之塑性變形。機架的質量遠大於錘體,所以移動速度慢,行程小,便於操作。錘擊後,安裝在機架內的回程桿將錘頭推回原處。機架放置於外支架的緩沖墊上。這類設備最初只能一次單擊,後來研製出可以連擊的﹑內燃式的高速錘。高速錘鍛造,存在明顯的變形慣性力和變形熱效應,控製得當可以提高金屬的塑性,改善金屬在模具中的流動充填性能,利用模鍛可成形薄壁﹑高肋的復雜形狀鍛件。高速錘鍛造多用於葉片﹑齒輪等零件的精鍛和擠壓。 利用帕斯卡定律製成的利用液體壓強傳動的機械,種類很多。當然,用途也根據需要是多種多樣的。如按傳遞壓強的液體種類來分,有油壓機和水壓機兩大類。水壓機產生的總壓力較大,常用於鍛造和沖壓。鍛造水壓機又分為模鍛水壓機和自由鍛水壓機兩種。模鍛水壓機要用模具,而自由鍛水壓機不用模具。
機器具有獨立的動力機構和電氣系統,採用按鈕集中控制,可實現調整、手動及半自動三種工作方式:機器的工作壓力、壓制速度,空載快下行和減速的行程和范圍,均可根據工藝需要進行調整,並能完成頂出工藝,可帶頂出工藝、拉伸工藝三種工藝方式,每種工藝又為定壓,定程兩種工藝動作供選擇,定壓成型工藝在壓制後具有頂出延時及自動回程。 光電安全保護裝置,在鍛壓機械的操作者與危險工作區之間的保護區域設置不可見紅外線光幕,一旦操作者某部位進入保護區遮斷光幕,控制系統則輸出信號至鍛壓機械安全執行機構,令鍛壓機械緊急停車,防止危險動作發生。可見,光電安全保護裝置自身並不能直接保護操作者,它僅僅是在可能發生安全事故之前,給機床發出停止危險動作的信號。因此,嚴格而言,光電安全保護裝置應稱為光電安全保護控制裝置
光電安全保護裝置通常分為反射式與對射式兩種。反射式光電安全保護裝置由控制器、感測器和反射器3部分組成,光幕由感測器發出,經反射器再反射回感測器予以接收;對射式光電安全保護裝置由控制器、發射感測器和接收感測器3部分組成,光幕由發射感測器發出,由接收感測器予以接收。 在鍛壓機械中有形形色色的自動送料裝置,此處指用於開式壓力機、閉式壓力機、多工位壓力機、高速壓力機等單機或沖壓自動線進行板料加工的自動送料裝置。自動送料裝置一般由料架及開卷校平機構、氣動鉗式送料機構、廢料收卷料架等3部分組成。料架及開卷校平機構有支撐卷料、開卷和校平3個功能,開卷機構將卷料少許松開並呈自由懸垂狀態,以減小送料機構在送料過程的拉力,有利於提高送料精度;校平機構以多滾輪對開卷後的卷料施力,使板材在沖壓前得到矯正,有利於提高製品精度。氣動鉗式送料機構以壓縮空氣為動力,控制夾鉗的開合與往復運動完成板料的送進,往復運動的行程無級可調以適應不同送料長度的要求。廢料收卷料架將沖壓後的廢帶料收卷,若沖壓時將廢帶料切斷回收,則不需要這一部分。沖壓模架沖壓模架是最典型的鍛壓機械功能部件,最早實現了標准化和專業化生產。在機械壓力機上完成沖裁、落料、拉伸、切口等沖壓工序,都離不開沖壓模具。沖壓模具的工作部分凸模、凹模安裝在沖壓模架上,不同的沖壓工序需要不同的凸模、凹模,卻可使用相同的沖壓模架。沖壓模架由上模板、下模板和導柱、導套組成,已開發出供不同規格、型號壓力機選用的系列產品,中等規格以下的沖壓模架已實現了標准化。國內生產沖壓模架的專業廠已為數不少,沖壓模架已作為標准部件生產與銷售。但大型沖壓模架通常是特殊定貨,與模具一起由模具製造廠向用戶成套提供

⑻ 老式沖壓的工作原理是什麼

沖床的設計原理是將圓周運動轉換為直線運動,由主電動機出力,帶動飛輪,經離合器帶動齒輪、曲軸(或偏心齒輪)、連桿等運轉,來達成滑塊的直線運動,從主電動機到連桿的運動為圓周運動。

連桿和滑塊之間需有圓周運動和直線運動的轉接點,其設計上大致有兩種機構,一種為球型,一種為銷型(圓柱型) ,經由這個機構將圓周運動轉換成滑塊的直線運動。沖床對材料施以壓力,使其塑性變形,而得到所要求的形狀與精度,因此必須配合一組模具(分上模與下模),將材料置於其間,由機器施加壓力,使其變形,加工時施加於材料之力所造成之反作用力,由沖床機械本體所吸收。1.上模
上模是整副沖模的上半部,即安裝於壓力機滑塊上的沖模部分。
2、上模座
上模座是上模最上面的板狀零件,工件時緊貼壓力機滑塊,並通過模柄或直接與壓力機滑塊固定。
3、下模
下模是整副沖模的下半部,即安裝於壓力機工作檯面上的沖模部分。
4、下模座
下模座是下模底面的板狀零件,工作時直接固定在壓力機工作檯面或墊板上。
5、刃壁
刃壁是沖裁凹模孔刃口的側壁。
6、刃口斜度
刃口斜度是沖裁凹模孔刃壁的每側斜度。
7、氣墊
氣墊是以壓縮空氣為原動力的彈頂器。參閱「彈頂器」。
8、反側壓塊
反側壓塊是從工作面的另一側支持單向受力凸模的零件。
9、導套
導套是為上、下模座相對運動提供精密導向的管狀零件,多數固定在上模座內,與固定在下模座的導柱配合使用。
10、導板
導板是帶有與凸模精密滑配內孔的板狀零件,用於保證凸模與凹模的相互對准,並起卸料(件)作用。 11、導柱
導柱是為上、下模座相對運動提供精密導向的圓柱形零件,多數固定在下模座,與固定在上模座的導套配合使用。
12、導正銷
導正銷是伸入材料孔中導正其在凹模內位置的銷形零件。
13、導板模
導板模是以導板作導向的沖模,模具使用時凸模不脫離導板。
14、導料板
導料板是引導條(帶、卷)料進入凹模的板狀導向零件。
15、導柱模架
導柱模架是導柱、導套相互滑動的模架。(參閱「模架」)。
16、沖模
沖模是裝在壓力機上用於生產沖件的工藝裝備,由相互配合的上、下兩部分組成。
17、凸模
凸模是沖模中起直接形成沖件作用的凸形工作零件,即以外形為工作表面的零件。
18、凹模
凹模是沖模中起直接形成沖件作用的凹形工作零件,即以內形為工作表面的零件。
19、防護板
防護板是防止手指或異物進入沖模危險區域的板狀零件。
20、壓料板(圈)
壓料板(圈)是沖模中用於壓住沖壓材料或工序件以控制材料流動的零件,在拉深模中,壓料板多數稱為壓料圈。
21、壓料筋
壓料筋是拉延模或拉深模中用以控制材料流動的筋狀突起,壓料筋可以是凹模或壓料圈的局部結構,也可以是鑲入凹模或壓料圈中的單獨零件。
22、壓料檻
壓料檻是斷面呈矩形的壓料筋特稱。參閱「壓料筋」。
23、承料板
承料板是用於接長凹模上平面,承托沖壓材料的板狀零件。
24、連續模
連續模是具有兩個或更多工位的沖模,材料隨壓力機行程逐次送進一工位,從而使沖件逐步成形。
25、側刃
側刃是在條(帶、卷)料側面切出送料定位缺口的凸模。
26、側壓板
側壓板是對條(帶、卷)料一側通過彈簧施加壓力,促使其另一側緊靠導料板的板狀零件。
27、頂桿
頂桿是以向上動作直接或間接頂出工(序)件或序料的桿狀零件。
28、頂板
頂板是在凹模或模塊內活動的板狀零件,以向上動作直接或間接頂出工(序)件或廢料。
29、齒圈
齒圈是精沖凹模或帶齒壓料板上的成圈齒形突起,是凹模或帶齒壓料板的局部結構而不是單獨的零件。 30、限位套
限位套是用於限制沖模最小閉合高度的管狀零件,一般套於導柱外面。
31、限位柱
限位柱是限制沖模最小閉合高度的柱形件。
32、定位銷(板)
定位銷(板)是保證工序件在模具內有不變位置的零件,以其形狀不同而稱為定位銷或定位板。
33、固定板
固定板是固定凸模的板狀零件。
34、固定卸料板
固定卸料板是固定在沖模上位置不動的卸料板。(參閱「卸料板」)。
35、固定擋料銷(板)
固定擋料銷(板)是在模具內固定不動的擋料銷(板)。(參閱「擋料銷(板)」)。
36、卸件器
卸件器是從凸模外表面卸脫工(序)件的非板狀零件或裝置。
37、卸料板
卸料板是將材料或工(序)件從凸模上卸脫的固定式或活動式板形零件。卸料板是有時與導料板做成一體,兼起導料作用,仍稱卸料板。
38、卸料螺釘
卸料螺釘是固定在彈壓卸料板上的螺釘,用於限制彈壓卸料板的靜止位置。
39、單工序模
單工序模是在壓力機一次行程中只完成一道工序的沖模。
40、廢料切刀
廢料切刀有兩種。1.裝於拉深件凸緣切邊模上用於割斷整圈切邊廢料以利清除的切刀。2.裝於壓力機或模具上用於將條(帶、卷)狀廢料按定長切斷以利清除的切刀。
41、組合沖模
組合沖模是按幾何要素(直線、角度、圓弧、孔)逐副逐步形成各種沖件的通用、可調式成套沖模。平面狀沖件的外形輪廓一般需要幾副組合沖模分次沖成。
42、始用擋料銷(板)
始用擋料銷(板)是供材料起始端部送進時定位用的零件。始用擋料銷(板)都是移動式的。
43、拼塊
塊是組成一個完整凹模、凸模、卸料板或固定板等的各個拼合零件。
44、擋塊(板)
擋塊(板)是供經側刃切出缺口的材料送進時定位用的淬硬零件,兼用以平衡側刃所受的單面切割力。擋塊(板)一般與側刃配合使用。
45、擋料銷(板)
擋料銷(板)是材料沿送進方向的定位零件,以其形狀不同而稱為擋料銷或擋料板。擋料銷(板)是固定擋料銷(板)、活動擋料銷(板)、始用擋料銷(板)等的統稱。
46、墊板
墊板是介於固定板(或凹模)與模座間的淬硬板狀零件,用以減低模座承受的單位壓縮應力。

⑼ 沖壓機構及送料機構設計

第一節 沖床沖壓機構、送料機構及傳動系統的設計
一、 設計題目
設計沖制薄壁零件沖床的沖壓機構、送料機構及其傳動系統。沖床的工藝動作如圖5—1a)所示,上模先以比較大的速度接近坯料,然後以勻速進行拉延成型工作,此後上模繼續下行將成品推出型腔,最後快速返回。上模退出下模以後,送料機構從側面將坯料送至待加工位置,完成一個工作循環。

(a) (b) (c)
圖5—1 沖床工藝動作與上模運動、受力情況
要求設計能使上模按上述運動要求加工零件的沖壓機構和從側面將坯料推送至下模上方的送料機構,以及沖床的傳動系統,並繪制減速器裝配圖。
二、 原始數據與設計要求
1.動力源是電動機,下模固定,上模作上下往復直線運動,其大致運動規律如圖b)所示,具有快速下沉、等速工作進給和快速返回的特性;
2.機構應具有較好的傳力性能,特別是工作段的壓力角應盡可能小;傳動角γ大於或等於許用傳動角[γ]=40o;
3.上模到達工作段之前,送料機構已將坯料送至待加工位置(下模上方);
4.生產率約每分鍾70件;
5.上模的工作段長度l=30~100mm,對應曲柄轉角0=(1/3~1/2)π;上模總行程長度必須大於工作段長度的兩倍以上;
6.上模在一個運動循環內的受力如圖c)所示,在工作段所受的阻力F0=5000N,在其他階段所受的阻力F1=50N;
7.行程速比系數K≥1.5;
8.送料距離H=60~250mm;
9.機器運轉不均勻系數δ不超過0.05。
若對機構進行運動和動力分析,為方便起見,其所需參數值建議如下選取:
1)設連桿機構中各構件均為等截面均質桿,其質心在桿長的中點,而曲柄的質心則與回轉軸線重合;
2)設各構件的質量按每米40kg計算,繞質心的轉動慣量按每米2kg·m2計算;
3)轉動滑塊的質量和轉動慣量忽略不計,移動滑塊的質量設為36kg;
6)傳動裝置的等效轉動慣量(以曲柄為等效構件)設為30kg·m2;
7) 機器運轉不均勻系數δ不超過0.05。
三、 傳動系統方案設計
沖床傳動系統如圖5-2所示。電動機轉速經帶傳動、齒輪傳動降低後驅動機器主軸運轉。原動機為三相交流非同步電動機,其同步轉速選為1500r/min,可選用如下型號:
電機型號 額定功率(kw) 額定轉速(r/min)
Y100L2—4 3.0 1420
Y112M—4 4.0 1440
Y132S—4 5.5 1440
由生產率可知主軸轉速約為70r/min,若電動機暫選為Y112M—4,則傳動系統總傳動比約為。取帶傳動的傳動比ib=2,則齒輪減速器的傳動比ig=10.285,故可選用兩級齒輪減速器。圖5—2 沖床傳動系統
四、 執行機構運動方案設計及討論
該沖壓機械包含兩個執行機構,即沖壓機構和送料機構。沖壓機構的主動件是曲柄,從動件(執行構件)為滑塊(上模),行程中有等速運動段(稱工作段),並具有急回特性;機構還應有較好的動力特性。要滿足這些要求,用單一的基本機構如偏置曲柄滑塊機構是難以實現的。因此,需要將幾個基本機構恰當地組合在一起來滿足上述要求。送料機構要求作間歇送進,比較簡單。實現上述要求的機構組合方案可以有許多種。下面介紹幾個較為合理的方案。
1.齒輪—連桿沖壓機構和凸輪—連桿送料機構
如圖5—3所示,沖壓機構採用了有兩個自由度的雙曲柄七桿機構,用齒輪副將其封閉為一個自由度。恰當地選擇點C的軌跡和確定構件尺寸,可保證機構具有急回運動和工作段近於勻速的特性,並使壓力角盡可能小。
送料機構是由凸輪機構和連桿機構串聯組成的,按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,使其能在預定時間將工件推送至待加工位置。設計時,若使lOG<lOH ,可減小凸輪尺寸。

圖5—3 沖床機構方案之一 圖5—4沖床機構方案之二
2.導桿—搖桿滑塊沖壓機構和凸輪送料機構
如圖5—4所示,沖壓機構是在導桿機構的基礎上,串聯一個搖桿滑塊機構組合而成的。導桿機構按給定的行程速比系數設計,它和搖桿滑塊機構組合可達到工作段近於勻速的要求。適當選擇導路位置,可使工作段壓力角較小。
送料機構的凸輪軸通過齒輪機構與曲柄軸相連。按機構運動循環圖可確定凸輪推程運動角和從動件的運動規律,則機構可在預定時間將工件送至待加工位置。
3.六連桿沖壓機構和凸輪—連桿送料機構
如圖5—5所示,沖壓機構是由鉸鏈四桿機構和搖桿滑塊機構串聯組合而成的。四桿機構可按行程速比系數用圖解法設計,然後選擇連桿長lEF及導路位置,按工作段近於勻速的要求確定鉸鏈點E的位置。若尺寸選擇適當,可使執行構件在工作段中運動時機構的傳動角γ滿足要求,壓力角較小。
凸輪送料機構的凸輪軸通過齒輪機構與曲柄軸相連,若按機構運動循環圖確定凸輪轉角及其從動件的運動規律,則機構可在預定時間將工件送至待加工位置。設計時,使lIH<lIR,則可減小凸輪尺寸。

圖5—5沖床機構方案之三 圖5—6沖床機構方案之四
4.凸輪—連桿沖壓機構和齒輪—連桿送料機構
如圖5—6所示,沖壓機構是由凸輪—連桿機構組合,依據滑塊D的運動要求,確定固定凸輪的輪廓曲線。
送料機構是由曲柄搖桿扇形齒輪與齒條機構串聯而成,若按機構運動循環圖確定曲柄搖桿機構的尺寸,則機構可在預定時間將工件送至待加工位置。
選擇方案時,應著重考慮下述幾個方面:
1)所選方案是否能滿足要求的性能指標;
2)結構是否簡單、緊湊;
3)製造是否方便,成本可否降低。
經過分析論證,方案1是四個方案中最為合理的方案,下面就對其進行設計。
五、 沖壓機構設計
由方案1圖5—3可知,沖壓機構是由七桿機構和齒輪機構組合而成。由組合機構的設計可知,為了使曲柄AB回轉一周,C點完成一個循環,兩齒輪齒數比Z1/Z2應等於1。這樣,沖壓機構設計就分解為七桿機構和齒輪機構的設計。
1.七桿機構的設計
設計七桿機構可用解析法。首先根據對執行構件(滑塊F)提出的運動特性和動力特性要求選定與滑塊相連的連桿長度CF,並選定能實現上述要求的點C的軌跡,然後按導向兩桿組法設計五連桿機構ABCDE的尺寸。
設計此七桿機構也可用實驗法,現說明如下。
如圖5—7所示,要求AB、DE均為曲柄,兩者轉速相同,轉向相反,而且曲柄在角度的范圍內轉動時,從動件滑塊在l=60mm范圍內等速移動,且其行程H=150mm。圖5—7 七桿機構的設計

1)任作一直線,作為滑塊導路,在其上取長為l的線段,並將其等分,得分點F1、F2、…、Fn(取n=5)。
2)選取lCF為半徑,以Fi各點為圓心作弧得K1、K2、…、K5。
3)選取lDE為半徑,在適當位置上作圓,在圓上取圓心角為的弧長,將其與l對應等分,得分點D1、D2、…、D5。
4)選取lDC為半徑,以Di為圓心作弧,與K1、K2、…、K5對應交於C1、C2、…、C5。
5)取lBC為半徑,以Ci為圓心作弧,得L1、L2、…、L5。
6)在透明白紙上作適量同心圓弧。由圓心引5條射線等分(射線間夾角為)。
7)將作好圖的透明紙覆在Li曲線族上移動,找出對應交點B1、B2、…、B5,便得曲柄長lAB及鉸鏈中心A的位置。
8)檢查是否存在曲柄及兩曲柄轉向是否相反。同樣,可以先選定lAB長度,確定lDE和鉸鏈中心E的位置。也可以先選定lAB、lDE和A、E點位置,其方法與上述相同。
用上述方法設計得機構尺寸如下:
lAB=lDE=100mm, lAE=200mm, lBC= lDC=283mm, lCF=430mm,A點與導路的垂直距離為162mm,E點與導路的垂直距離為223mm。
2.齒輪機構設計
此齒輪機構的中心距a=200mm,模數m=5mm,採用標準直齒圓柱齒輪傳動,Z1=Z2=40,ha*=1.0。
六、 七桿機構的運動和動力分析
用圖解法對此機構進行運動和動力分析。將曲柄AB的運動一周360o分為12等份,得分點B1、B2、…、B12,針對曲柄每一位置,求得C點的位置,從而得C點的軌跡,然後逐個位置分析滑塊F的速度和加速度,並畫出速度線圖,以分析是否滿足設計要求。
圖5—8是沖壓機構執行構件速度與C點軌跡的對應關系圖,顯然,滑塊在F4~F8這段近似等速,而這個速度值約為工作行程最大速度的40%。該機構的行程速比系數為

故此機構滿足運動要求。圖5-8 七桿機構的運動和動力分析
在進行機構動力分析時,先依據在工作段所受的阻力F0=5000N,並認為在工作段內為常數,然後求得加於曲柄AB的平衡力矩Mb,並與曲柄角速度相乘,獲得工作段的功率;計入各傳動的效率,求得所需電動機的功率為5.3KW,故所確定的電動機型號Y132S—4(額定功率為5.5KW)滿足要求。(動力分析具體過程及結果略)。
七、 機構運動循環圖
依據沖壓機構分析結果以及對送料機構的要求,可繪制機構運動循環圖(如圖5—9所示)。當主動件AB由初始位置(沖頭位於上極限點)轉過角(=90o)時,沖頭快速接近坯料;又當曲柄由轉到(=210o)時,沖頭近似等速向下沖壓坯料;當曲柄由轉到(=240o)時,沖頭繼續向下運動,將工件推出型腔;當曲柄由轉到(=285o)時,沖頭恰好退出下模,最後回到初始位置,完成一個循環。送料機構的送料動作,只能在沖頭退出下模到沖頭又一次接觸工件的范圍內進行。故送料凸輪在曲柄AB由300o轉到390o完成升程,而曲柄AB由390o轉到480o完成回程。

圖5-9 機構運動循環圖
七、送料機構設計
送料機構是由擺動從動件盤形凸輪機構與搖桿滑塊機構串聯而成,設計時,應先確定搖桿滑塊機構的尺寸,然後再設計凸輪機構。
1.四桿機構設計
依據滑塊的行程要求以及沖壓機構的尺寸限制,選取此機構尺寸如下:
LRH=100mm,LOH=240mm,O點到滑塊RK導路的垂直距離=300mm,送料距離取為250mm時,搖桿擺角應為45.24o。
2.凸輪機構設計
為了縮小凸輪尺寸,擺桿的行程應小AB,故取,最大擺角為22.62o。因凸輪速度不高,故升程和回程皆選等速運動規律。因凸輪與齒輪2固聯,故其等速轉動。用作圖法設計凸輪輪廓,取基圓半徑r0=50mm,滾子半徑rT=15mm。
八、調速飛輪設計
等效驅動力矩Md、等效阻力矩Mr和等效轉動慣量皆為曲柄轉角的函數,畫出三者的變化曲線,然後用圖解法求出飛輪轉動慣量JF。
九、帶傳動設計
採用普通V帶傳動。已知:動力機為Y132S-4非同步電動機,電動機額定功率P=5.5KW ,滿載轉速n1=1440rpm ,傳動比i=2, 兩班制工作。
(1)計算設計功率Pd
由[6]中的表6-6查得工作情況系數KA =1.4

(2)選擇帶型 由[6]中的圖6-10初步選用A型帶
(3)選取帶輪基準直徑 由[6]中的表6-7選取小帶輪基準直徑
由[6]中的表6-8取直徑系列值取大帶輪基準直徑:
(4)驗算帶速V
在(5~25m/s) 范圍內,帶速合適。
(5)確定中心a和帶的基準長度
在 范圍內初選中心距
初定帶長
查[6]中的表6-2 選取A型帶的標准基準長度
求實際中心距
取中心距為500mm。
(6)驗算小帶輪包角
包角合適
(7)確定帶的根數Z
查表得
取Z=3根
(8)確定初拉力
單根普通V帶的初拉力
(9)計算帶輪軸所受壓力


(10)帶傳動的結構設計(略)
十、齒輪傳動設計
齒輪減速器的傳動比為ig=10.285,採用標准得雙級圓柱齒輪減速器,其代號為
ZLY-112-10-1。


第二節 棒料校直機執行機構與傳動系統設計
一、設計題目
棒料校直是機械零件加工前的一道准備工序。若棒料彎曲,就要用大棒料才能加工出一個小零件,如圖5-10所示,材料利用率不高,經濟性差。故在加工零件前需將棒料校直。現要求設計一短棒料校直機。確定機構運動方案並進行執行機構與傳動系統的設計。

圖5-10 待校直的彎曲棒料
二、設計數據與要求
需校直的棒料材料為45鋼,棒料校直機其他原始設計數據如表5-1所示。
表5-1 棒料校直機原始設計數據
參數

分組 直徑d2
(mm) 長度L
(mm) 校直前最大麴率半徑ρ
(mm) 最大校直力
(KN) 棒料在校直時轉數
(轉) 生產率
(根/分)
1 15 100 500 1.0 5 150
2 18 100 400 1.2 4 120
3 22 100 300 1.4 3 100
4 25 100 200 1.5 2 80
註:室內工作,希望沖擊振動小;原動機為三相交流電動機,使用期限為10年,每年工作300天,每天工作16小時,每半年作一次保養,大修期為3年。

三、工作原理的確定
1) 用平面壓板搓滾棒料校直(圖5-11)。此方法的優點是簡單易行,缺點是因材料的回彈,材料校得不很直。
2) 用槽壓板搓滾棒料校直。考慮到「糾枉必須過正」,故將靜搓板作成帶槽的形狀,動、靜搓板的橫截面作成圖5-12所示形狀。用這種方法既可能將彎的棒料校直,但也可能將直的棒料弄彎了,不很理想。
3) 用壓桿校直。設計一個類似於圖5-13所示的機械裝置,通過一電動機,一方面讓棒料回轉,另一方面通過凸輪使壓桿的壓下量逐漸減小,以達到校直的目的。其優點是可將棒料校得很直;缺點是生產率低,裝卸棒料需停車。
4) 用斜槽壓板搓滾校直。靜搓板的縱截面形狀如圖5-14所示,其槽深是由深變淺而最後消失。其工作原理與上一方案使壓下量逐漸減小是相同的,故也能將棒料校得很直。其缺點是動搓板作往復運動,有空程,生產效率不夠高。雖可利用如圖所示的偏置曲柄滑塊機構的急回作用,來減少空程損失,但因動搓板質量大,又作往復運動,其所產生的慣性力不易平衡,限制了機器運轉速度的提高,故生產率仍不理想。
5) 行星式搓滾校直。如圖5-15所示,其動搓板變成了滾子1,作連續回轉運動,靜搓板變成弧形構件3,其上開的槽也是由深變淺而最後消失。這種方案不僅能將棒料校得很直,而且自動化程度和生產率高,所以最後確定採用此工作原理。圖5-11平面壓板搓滾棒料校直 圖5-12 槽壓板搓滾棒料校直

圖5-13 壓桿校直

圖5-14 斜槽壓板搓滾校直 圖5-15 行星式搓滾校直

四、執行機構運動方案的擬定
行星式棒料校直機有兩個執行構件,即動搓板滾子和送料滑塊。動搓板滾子的運動為單方向等速連續轉動,可將其直接裝在機器主軸上。送料滑塊的運動為往復移動。圖5-16給出了兩種送料機構方案,其中圖a)為曲柄搖桿機構與齒輪、齒條機構組合,圖b)為擺動推桿盤形凸輪機構與導桿滑塊機構的組合,曲柄(或凸輪)每轉一周送出一根棒料。由於凸輪機構能使送料機構的動作和搓板滾子的運動能更好的協調,故圖b)的執行機構運動方案優於圖a),下面設計計算針對圖b)方案進行。


a) b)
圖5-16 行星式棒料校直機執行機構運動方案

五、傳動系統運動方案的擬定
初步擬定的傳動方案如圖5-17所示。驅使動搓板滾子1轉動的為主傳動鏈,為提高其傳動效率,主傳動鏈應盡可能簡短,而且還要求沖擊振動小,故圖中採用了一級帶傳動和一級齒輪傳動。傳動鏈的第一級採用帶傳動有下列優點:電動機的布置較自由,電動機的安裝精度要求較低,帶傳動有緩沖減振和過載保安作用。
圖5-17 行星式棒料校直機傳動方案

六、執行機構設計
由於動搓板滾子1直接裝在機器主軸上,只有執行構件,沒有執行機構,故只需對送料機構進行設計。對於圖5-16b)所示得運動方案,送料機構的設計,實際上就是擺動推桿盤狀凸輪機構的設計。
凸輪軸的轉動是由滾子軸(傳動主軸)的轉動經過齒輪機構傳動減速而得到的。下面來討論滾子軸與凸輪軸間的傳動比應如何確定。
應注意在校直棒料時,不允許兩根棒料同時進入校直區,否則將因兩根棒料的相互干擾,可能一根棒料也未被校直。所以一定要待前一根棒料退出落下後,後一根棒料才能進入校直區。
設滾子1的直徑,棒料的直徑為,校直區的工作角為,從棒料進入到退出工作區,滾子1的轉角為。因在棒料校直時的運動狀態跟行星輪系傳動一樣,弧形搓板相當於固定的內齒輪,其內經為,角相當於行星架的轉角,根據周轉輪系的計算式,即可求得滾子1的相應轉角,即


設已確定為了校直棒料,棒料需在校直區轉過的轉數為,校直區的工作角為,則滾子1的直徑,可由下式確定:

為了保證不出現兩根棒料同時在校直區的現象,應在滾子1轉過角度時,送料凸輪4才轉一轉,由此可定出齒輪的傳動比為

圖中採用了一級齒輪減速(輪為過輪,用它主要是為了協調中心距)。若一級齒輪減速不能滿足要求時,可考慮用二級或三級齒輪減速。
對於第一組數據,並設校直區的工作角為=1200,則由上面公式可求得滾子1的直徑=240mm,滾子1的轉角為=2550,故取1=2600,從而求得齒輪的傳動比為ig=0.722。故取Zc=26,Za=36。
送料滑塊應將棒料推送到A點,設推送距離對應的圓心角為300,則可求得滑塊行程約為120mm,若取擺桿長lCF=400mm,則其擺角為17.25o。
確定推桿運動規律,設計凸輪輪廓曲線(略)。
七、傳動系統設計
原動機選為Y100L2-4非同步電動機,電動機額定功率P=3KW ,滿載轉速n=1420rpm,則傳動系統的總傳動比為i=n/n1,其中n1為滾子1的轉速。對於第一組數據,n1=2600×150/3600 =108.3,總傳動比為i=13.11,若取帶傳動的傳動比為ib=3.0,則齒輪減速器的傳動比為ig=13.11/3.0=4.3,故採用單級斜齒圓柱齒輪減速器。
帶傳動和單級斜齒圓柱齒輪減速器的設計(略)。

⑽ 送料機的工作原理是什麼呢

送料機工作原理:不同類型種類的送料機的工作原理是有一些細微的區別,但整體原理差不多,就拿滾輪式送料機來說,其由分料裝置、輸送輪、傳動桿、支架、控制電路等五部分組成,分料裝置以每次一桿棒料向輸送輪放料,
輸送輪將棒料送入磨削區。工作時棒料處於輸送輪上方,當棒料磨消旋轉時,在輸送輪的旋轉前進的狀態下,減少棒料磨擦力,從而提高磨消精度。工作時振動與噪音非常小,特別適用長棒料,精密工件加工。當前國內外應用日益廣泛的滾輪式自動送料機,可以配套於各類無心磨床使用,配合加工機床完成自動送料工作,存儲箱的棒料輸送完畢後,機床自動處於等待加料狀態,並通過警示裝置告知操作人員加料。

閱讀全文

與沖壓自動進料裝置原理相關的資料

熱點內容
電池包翻轉實驗裝置 瀏覽:727
什麼車儀表盤有擋位 瀏覽:332
化工設備儀表怎麼畫 瀏覽:880
三類手持式電動工具使用的場所 瀏覽:558
閥門開關Hss是什麼信號 瀏覽:965
氨壓縮機皮帶傳動裝置 瀏覽:81
哪裡做養殖設備的多 瀏覽:206
廣州廣一閥門廠 瀏覽:242
閥門as代表什麼意思 瀏覽:696
902軸承是什麼地方用的 瀏覽:179
維西特精密機械有限公司怎麼樣 瀏覽:695
手持電動工具的導線長度不得超過多少米 瀏覽:551
閥門上面帶細管是什麼閥門 瀏覽:928
a6怎麼改啟動儀表 瀏覽:6
汽車儀表盤靜電干擾怎麼辦 瀏覽:766
白色儀表盤燈什麼顏色 瀏覽:265
ed工具箱2進不了游戲 瀏覽:555
冰櫃沒製冷紅燈不亮什麼原因 瀏覽:4
蒸汽和空氣管道用什麼閥門 瀏覽:964
球磨機支撐裝置的作用 瀏覽:75