導航:首頁 > 裝置知識 > 發動機渦輪附件傳動裝置

發動機渦輪附件傳動裝置

發布時間:2022-10-06 01:19:25

① 汽車發動機附件有哪些

(1)濾清器。濾清器位於發動機進氣系統中,它是由一個或幾個清潔空氣的過濾器部件組成的總成。其主要作用是濾除將要進入氣缸的空氣中有害雜質,以減少氣缸、活塞、活塞環、氣門及氣門座的早期磨損。

(2)活塞環。活塞環是用於崁入活塞槽溝內部的金屬環,活塞環是一種具有較大向外擴張變形的金屬彈性環,它被裝配到剖面與其相應的環形槽內。

(3)油封。油封是用來封油的機械元件,它將傳動部件中需要潤滑的部件與出力部件隔離,不至於讓潤滑油滲漏。

(4)節氣門體。氣門體是控制發動機吸氣多少的一個閥門。是一個圓形的鋼片,中間有一根軸,和油門拉線連接,並由油門拉線控制。

(5)增壓器。提高進入汽缸的可燃混合氣或空氣壓力的裝置。

(6)自動波箱。自動變速器的汽車,能根據路面狀況自動變速變矩,駕駛者可以全神貫地注視路面交通而不會被換檔搞得手忙腳亂。

(7)汽油泵。汽油泵的作用是把汽油從油箱中吸出,並經管路和汽油濾清器壓送到化油器的浮子室內。

(8)連桿。連桿機構中兩端分別與主動和從動構件鉸接以傳遞運動和力的桿件。

(9)電噴。電噴發動機都有冷起動加濃、自動冷車快怠速功能,能保證發動機不論在冷車或熱車狀態下順利起動。

② 汽車機械式傳動系由哪些裝置組成各起何作用

1)由離合器、變速器、萬向傳動裝置、驅動橋(主減速器、差速器、半軸)所組成。
2)各裝置的作用:
離合器:它可以切斷或接合發動機動力傳遞,起到下述三個作用1)保證汽車平穩起步;2)保證換擋時工作平順;3)防止傳動系過載。
變速器由變速傳動機構和操縱機構所組成。作用:
改變傳動比,擴大驅動輪轉矩和轉速的變化范圍,以適應經常變化的行駛條件,並使發動機在有利(功率較高而耗油率較低)的工況下工作
在發動機旋轉方向不變的前提下,使汽車能倒退行駛
利用空擋,中斷動力傳遞,以使發動機能夠起動、怠速,並便於變速器換擋或進行動力輸出。
萬向傳動裝置由十字軸、萬向節和傳動軸組成。作用:變夾角傳遞動力,即傳遞軸線相交但相互位置經常變化的兩軸之間的動力。
驅動橋:由主減速器、差速器、半軸等組成。
主減速器的作用:降速增扭;改變動力傳遞方向(動力由縱向傳來,通過主減速器,橫向傳給驅動輪)。
差速器的作用:使左右兩驅動輪產生不同的轉速,便於汽車轉彎或在不平的路面上行駛。
半軸的作用:在差速器與驅動輪之間傳遞扭短

③ 渦噴6十大附件的原理及作用

渦輪噴氣發動機應用噴氣推進避免了火箭和沖壓噴氣發動機固有的弱點。因為採用了渦輪驅動的壓氣機,所以在低速時發動機也有足夠的壓力來產生強大的推力。渦輪噴氣發動機按照「工作循環」工作。它從大氣中吸進空氣,經壓縮和加熱這一過程之後,得到能量和動量的空氣以高達2000英尺/秒(610米/秒)或者大約1400英里/小時(2253公里/小時)的速度從推進噴管中排出。在高速噴氣流噴出發動機時,同時帶動壓氣機和渦輪繼續旋轉,維持「工作循環」。渦輪發動機的機械布局比較簡單,因為它只包含兩個主要旋轉部分,即壓氣機和渦輪,還有一個或者若干個燃燒室。然而,並非這種發動機的所有方面都具有這種簡單性,因為熱力和氣動力問題是比較復雜的。這些問題是由燃燒室和渦輪的高工作溫度、通過壓氣機和渦輪葉片而不斷變化著的氣流、以及排出燃氣並形成推進噴氣流的排氣系統的設計工作造成的。
發動機的推進效率在很大程度上取決於它的飛行速度。當飛機速度低於大約450英里/小時(724公里/小時)時,純噴氣發動機的效率低於螺旋槳型發動機的效率,由於螺旋槳的高葉尖速度造成的氣流擾動,在350英里/小時(563公里/小時)以上時螺旋槳效率迅速降低。因而,純渦輪噴氣發動機最適合較高的飛行速度。這些特性使得一些中等速度飛行的飛機不用純渦輪噴氣裝置而採用螺旋槳和燃氣渦輪發動機的組合 -- 渦輪螺旋槳式發動機。
推進效率
在馬赫數 Ma<0.6 的速度下渦輪螺旋槳發動機效率最高。而當速度提高到馬赫數 0.6-0.9 時,螺旋槳/渦輪組合的優越性在一定程度上被內外涵發動機、涵道風扇發動機和槳扇發動機所取代。這些發動機的排氣比純噴氣的渦輪噴氣發動機的排氣流量大而噴氣速度低,因而,其推進效率與渦輪螺旋槳發動機相當,超過了純噴氣發動機的推進效率。在亞音速(Ma<1.0)條件下,渦輪噴氣發動機的推進效率最低。當飛機飛行速度超過音速後(Ma>1.0),渦扇發動機由於迎風面積過大從而推進效率開始降低;與此相反,渦輪噴氣發動機的推進效率則迅速提升,即使在馬赫數 2.5-3.0 范圍下,渦輪噴氣發動機的推進效率仍然可以達到 90%,正因為如此,與三代機普遍使用的涵道比為0.5-0.8的中等涵道比渦扇發動機相比,F-22使用的F-119渦扇發動機把涵道比降回到0.29,為的就是能夠實現(Ma1.4)的超音速巡航。
每種發動機都有它們最佳使用的飛行包線-(由速度x/高度y構成的xy坐標系),並不是說渦扇發動機一定比渦噴發動機省油,在超音速時,同樣開加力燃燒室的渦扇發動機比渦噴發動機耗油率還高。
可調進氣道
渦輪沖壓噴氣發動機將渦輪噴氣發動機(它常用於馬赫數低於3的各種速度)與沖壓噴氣發動機結合起來,在高馬赫數時具有良好的性能。這種發動機的周圍是一涵道,前部具有可調進氣道,後部是帶可調噴口的加力噴管。起飛和加速、以及馬赫數3以下的飛行狀態下,發動機用常規的渦輪噴氣式發動機的工作方式;當飛機加速到馬赫數3以上時,其渦輪噴氣機構被關閉,氣道空氣藉助於導向葉片繞過壓氣機,直接流入加力噴管,此時該加力噴管成為沖壓噴氣發動機的燃燒室。這種發動機適合要求高速飛行並且維持高馬赫數巡航狀態的飛機,在這些狀態下,該發動機是以沖壓噴氣發動機方式工作的。
渦輪火箭發動機
渦輪/火箭發動機與渦輪/沖壓噴氣發動機的結構相似,一個重要的差異在於它自備燃燒用的氧。這種發動機有一多級渦輪驅動的低壓壓氣機,而驅動渦輪的功率是在火箭型燃燒室中燃燒燃料和液氧產生的。因為燃氣溫度可高達3500度,在燃氣進入渦輪前,需要用額外的燃油噴入燃燒室以供冷卻。然後這種富油混合氣(燃氣)用壓氣機流來的空氣稀釋,殘余的燃油在常規加力系統中燃燒。雖然這種發動機比渦輪/沖壓噴氣發動機小且輕,但是,其油耗更高。這種趨勢使它比較適合截擊機或者航天器的發射載機。這些飛機要求具有高空高速性能,通常需要有很高的加速性能而無須長的續航時間。
工作原理編輯本段
現代渦輪噴氣發動機的結構由進氣道、壓氣機、燃燒室、渦輪和尾噴管組成,戰斗機的渦輪和尾噴管間還有加力燃燒室。渦輪噴氣發動機仍屬於熱機的一種,就必須遵循熱機的做功原則:在高壓下輸入能量,低壓下釋放能量。因此,從產生輸出能量的原理上講,噴氣式發動機和活塞式發動機是相同的,都需要有進氣、加壓、燃燒和排氣這四個階段,不同的是,在活塞式發動機中這4個階段是分時依次進行的,但在噴氣發動機中則是連續進行的,氣體依次流經噴氣發動機的各個部分,就對應著活塞式發動機的四個工作位置。
空氣首先進入的是發動機的進氣道,當飛機飛行時,可以看作氣流以飛行速度流向發動機,由於飛機飛行的速度是變化的,而壓氣機適應的來流速度是有一定的范圍的,因而進氣道的功能就是通過可調管道,將來流調整為合適的速度。在超音速飛行時,在進氣道前和進氣道內氣流速度減至亞音速,此時氣流的滯止可使壓力升高十幾倍甚至幾十倍,大大超過壓氣機中的壓力提高倍數,因而產生了單靠速度沖壓,不需壓氣機的沖壓噴氣發動機。
進氣道後的壓氣機是專門用來提高氣流的壓力的,空氣流過壓氣機時,壓氣機工作葉片對氣流做功,使氣流的壓力,溫度升高。在亞音速時,壓氣機是氣流增壓的主要部件。
從燃燒室流出的高溫高壓燃氣,流過同壓氣機裝在同一條軸上的渦輪。燃氣的部分內能在渦輪中膨脹轉化為機械能,帶動壓氣機旋轉,在渦輪噴氣發動機中,平衡狀態下氣流在渦輪中膨脹所做的功等於壓氣機壓縮空氣所消耗的功以及傳動附件克服摩擦所需的功。經過燃燒後,渦輪前的燃氣能量大大增加,因而在渦輪中的膨脹比遠大於壓氣機中的壓縮比,渦輪出口處的壓力和溫度都比壓氣機進口高很多,發動機的推力就是這一部分燃氣的能量而來的。
從渦輪中流出的高溫高壓燃氣,在尾噴管中繼續膨脹,以高速沿發動機軸向從噴口向後排出。這一速度比氣流進入發動機的速度大得多,使發動機獲得了反作用的推力。
一般來講,當氣流從燃燒室出來時的溫度越高,輸入的能量就越大,發動機的推力也就越大。但是,由於渦輪材料等的限制,只能達到1650K左右,現代戰斗機有時需要短時間增加推力,就在渦輪後再加上一個加力燃燒室噴入燃油,讓未充分燃燒的燃氣與噴入的燃油混合再次燃燒,由於加力燃燒室內無旋轉部件,溫度可達2000K,可使發動機的推力增加至1.5倍左右。其缺點就是油耗急劇加大,同時過高的溫度也影響發動機的壽命,因此發動機開加力一般是有時限的,低空不過十幾秒,多用於起飛或戰斗時,在高空則可開較長的時間。
發展歷史編輯本段
戰爭需要
在第二次世界大戰以前,所有的飛機都採用活塞式發動機作為飛機的動力,這種發動機本身並不能產生向前的動力,而是需要驅動一副螺旋槳,使螺旋槳在空氣中旋轉,以此推動飛機前進。這種活塞式發動機+螺旋槳的組合一直是飛機固定的推進模式,很少有人提出過質疑。
到了三十年代末,尤其是在二戰中,由於戰爭的需要,飛機的性能得到了迅猛的發展,飛行速度達到700-800公里每小時,高度達到了10000米以上,但人們突然發現,螺旋槳飛機似乎達到了極限,盡管工程師們將發動機的功率越提越高,從1000千瓦,到2000千瓦甚至3000千瓦,但飛機的速度仍沒有明顯的提高,發動機明顯感到「有勁使不上」。
關鍵問題
問題就出在螺旋槳上,當飛機的速度達到800公里每小時,由於螺旋槳始終在高速旋轉,槳尖部分實際上已接近了音速,這種跨音速流場的直接後果就是螺旋槳的效率急劇下降,推力下降,同時,由於螺旋槳的迎風面積較大,帶來的阻力也較大,而且,隨著飛行高度的上升,大氣變稀薄,活塞式發動機的功率也會急劇下降。這幾個因素合在一起,決定了活塞式發動機+螺旋槳的推進模式已經走到了盡頭,要想進一步提高飛行性能,必須採用全新的推進模式,噴氣發動機應運而生。
噴氣推進的原理大家並不陌生,根據牛頓第三定律,作用在物體上的力都有大小相等方向相反的反作用力。噴氣發動機在工作時,從前端吸入大量的空氣,燃燒後高速噴出,在此過程中,發動機向氣體施加力,使之向後加速,氣體也給發動機一個反作用力,推動飛機前進。事實上,這一原理很早就被應用於實踐中,我們玩過的爆竹,就是依靠尾部噴出火葯氣體的反作用力飛上天空的。
突破
早在1913年,法國工程師雷恩.洛蘭就獲得了一項噴氣發動機的專利。這是一種沖壓式噴氣發動機,在當時的低速下根本無法工作,而且也缺乏所需的高溫耐熱材料。1930年,弗蘭克.惠特爾取得了他使用燃氣渦輪發動機的第一個專利,但直到11年後,他的發動機才完成其首次飛行,惠特爾的這種發動機形成了現代渦輪噴氣發動機的基礎。
進步
隨著航空燃氣渦輪技術的進步,人們在渦輪噴氣發動機的基礎上,又發展了多種噴氣發動機,如根據增壓技術的不同,有沖壓發動機和脈動發動機;根據能量輸出的不同,有渦輪風扇發動機、渦輪螺旋槳發動機、渦輪軸發動機和螺槳風扇發動機等。
噴氣發動機盡管在低速時油耗要大於活塞式發動機,但其優異的高速性能使其迅速取代了後者,成為航空發動機的主流。
相關結構編輯本段
進氣道
軸流式渦噴發動機的主要結構如圖,空氣首先進入進氣道,因為飛機飛行的狀態是變化的,進氣道需要保證空氣最後能順利的進入下一結構:壓氣機(compressor,或壓縮機)。進氣道的主要作用就是將空氣在進入壓氣機之前調整到發動機能正常運轉的狀態。在超音速飛行時,機頭與進氣道口都會產生激波(shockwave,又稱震波),空氣經過激波壓力會升高,因此進氣道能起到一定的預壓縮作用,但是激波位置不適當將造成局部壓力的不均勻,甚至有可能損壞壓氣機。所以一般超音速飛機的進氣道口都有一個激波調節錐,根據空速的情況調節激波的位置。
兩側進氣或機腹進氣的飛機由於進氣道緊貼機身,會受到機身附面層(boundary layer,或邊界層)的影響,還會附帶一個附面層調節裝置。所謂附面層是指緊貼機身表面流動的一層空氣,其流速遠低於周圍空氣,但其靜壓比周圍高,形成壓力梯度。因為其能量低,不適於進入發動機而需要排除。當飛機有一定迎角(angle of attack,AOA,或稱攻角)時由於壓力梯度的變化,在壓力梯度加大的部分(如背風面)將發生附面層分離的現象,即本來緊貼機身的附面層在某一點突然脫離,形成湍流。湍流是相對層流來說的,簡單說就是運動不規則的流體,嚴格的說所有的流動都是湍流。湍流的發生機理、過程的模型化都不太清楚。但是不是說湍流不好,在發動機中很多地方例如在燃燒過程就要充分利用湍流。
壓氣機
壓氣機由定子(stator)頁片與轉子(rotor)頁片交錯組成,一對定子頁片與轉子頁片稱為一級,定子固定在發動機框架上,轉子由轉子軸與渦輪相連。現役渦噴發動機一般為8-12級壓氣機。級數越多越往後壓力越大,當戰斗機突然做高g機動時,流入壓氣機前級的空氣壓力驟降,而後級壓力很高,此時會出現後級高壓空氣反向膨脹,發動機工作極不穩定的狀況,工程上稱為「喘振」,這是發動機最致命的事故,很有可能造成停車甚至結構毀壞。防止「喘振」發生有幾種辦法。經驗表明喘振多發生在壓氣機的5,6級間,在次區間設置放氣環,以使壓力出現異常時及時泄壓可避免喘振的發生。或者將轉子軸做成兩層同心空筒,分別連接前級低壓壓氣機與渦輪,後級高壓壓氣機與另一組渦輪,兩套轉子組互相獨立,在壓力異常時自動調節轉速,也可避免喘振。
燃燒室與渦輪
空氣經過壓氣機壓縮後進入燃燒室與煤油混合燃燒,膨脹做功;緊接著流過渦輪,推動渦輪高速轉動。因為渦輪與壓氣機轉子連在一根軸上,所以壓氣機與渦輪的轉速是一樣的。最後高溫高速燃氣經過噴管噴出,以反作用力提供動力。燃燒室最初形式是幾個圍繞轉子軸環狀並列的圓筒小燃燒室,每個筒都不是密封的,而是在適當的地方開有孔,所以整個燃燒室是連通的,後來發展到環形燃燒室,結構緊湊,但是整個流體環境不如筒狀燃燒室,還有結合二者優點的組合型燃燒室。
渦輪始終工作在極端條件下,對其材料、製造工藝有著極其苛刻的要求。多採用粉末冶金的空心頁片,整體鑄造,即所有頁片與頁盤一次鑄造成型。相比起早期每個頁片與頁盤都分體鑄造,再用榫接起來,省去了大量接頭的質量。製造材料多為耐高溫合金材料,中空頁片可以通以冷空氣以降溫。而為第四代戰機研製的新型發動機將配備高溫性能更加出眾的陶瓷粉末冶金的頁片。這些手段都是為了提高渦噴發動機最重要的參數之一:渦輪前溫度。高渦前溫度意味著高效率,高功率。
噴管
噴管(nozzle,或稱噴嘴)的形狀結構決定了最終排除的氣流的狀態,早期的低速發動機採用單純收斂型噴管,以達到增速的目的。根據牛頓第三定律,燃氣噴出速度越大,飛機將獲得越大的反作用力。但是這種方式增速是有限的,因為最終氣流速度會達到音速,這時出現激波阻止氣體速度的增加。而採用收斂-擴張噴管(也稱為拉瓦爾噴管)能獲得超音速的噴氣流。飛機的機動性來主要源於翼面提供的空氣動力,而當機動性要求很高時可直接利用噴氣流的推力。在噴管口加裝燃氣舵面或直接採用可偏轉噴管(也稱為推力矢量噴管,或向量推力噴嘴)是歷史上兩種方案,其中後者已經進入實際應用階段。著名的俄羅斯Su-30、Su-37戰機的高超機動性就得益於留里卡設計局的AL-31推力矢量發動機。燃氣舵面的代表是美國的X-31技術驗證機。
加力燃燒室
在經過渦輪後的高溫燃氣中仍然含有部分未來得及消耗的氧氣,在這樣的燃氣中繼續注入煤油仍然能夠燃燒,產生額外的推力。所以某些高性能戰機的發動機在渦輪後增加了一個加力燃燒室(afterburner,或後燃器),以達到在短時間里大幅度提高發動機推力的目的。一般而言加力燃燒能在短時間里將最大推力提高50%,但是油耗驚人,一般僅用於起飛或應付激烈的空中纏斗,不可能用於長時間的超音速巡航。
基本參數編輯本段
推力重量比:Thrust to weight ratio,代表發動機推力與發動機本身重量之比值,愈大者性能愈好。
壓氣機級數:代表壓縮機的壓縮葉片有幾級,通常級數愈大者壓縮比愈大。
渦輪級數:代表渦輪機的渦輪葉片有幾級。
壓縮比:進氣被壓縮機壓縮後的壓力,與壓縮前的壓力之比值,通常愈大者性能愈好。
海平面最大凈推力:發動機在海平面高度及條件,與外界空氣的速度差(空速)為零時,全速運轉所產生的推力,被使用的單位包括kN(千牛頓)、kg(公斤)、lb(磅)等。
單位推力小時耗油率:又稱比推力(specific thrust),耗油率與推力之比,公制單位為kg/N-h,愈小者愈省油。
渦輪前溫度:燃燒後之高溫高壓氣流進入渦輪機之前的溫度,通常愈大者性能愈好。
燃氣出口溫度:廢氣離開渦輪機排出時的溫度。
平均故障時間:每具發動機發生兩次故障的間隔時間之總平均,愈長者愈不易故障,通常維護成本也愈低。
使用情況編輯本段
渦噴發動機適合航行的范圍很廣,從低空低亞音速到高空超音速飛機都廣泛應用。前蘇聯的傳奇戰斗機米格-25高空超音速戰機即採用留里卡設計局的渦噴發動機作為動力,曾經創下3.3馬赫的戰斗機速度紀錄與37250米的升限紀錄。(這個紀錄在一段時間內不太可能被打破的)
與渦輪風扇發動機相比,渦噴發動機燃油經濟性要差一些,但是高速性能要優於渦扇,特別是高空高速性能。

④ 渦輪發動機

渦輪發動機(Turbine engine,或常簡稱為Turbine)是一種利用旋轉的機件自穿過它的流體中汲取動能的發動機形式,是內燃機的一種。常用作飛機與大型的船舶或車輛的發動機。
按照發動機燃料燃燒所需的氧化劑的來源不同可分為火箭發動機和空氣噴氣發動機。火箭發動機自帶氧化劑和火箭發動機。根絕氧化劑和燃燒劑的形態不同,又分為液體火箭發動機和固體火箭發動機。
渦輪發動機主要類型有:渦輪噴氣發動機(主要用於軍機);渦輪風扇發動機(主要用於干線飛機和軍機);渦輪螺旋槳發動機(主要用於支線飛機);渦輪軸發動機(主要用於直升機) 此外還有螺旋槳及風扇組合的漿扇發動機。從噴氣推進方式來講,還有沖壓噴氣發動機(主要用於導彈和靶機),採用間歇燃燒原理的脈沖噴氣發動機,以及不同類型組合的發動機,如渦輪/沖壓噴氣發動機。
所有的渦輪發動機都具備壓縮機(Compressor)、燃燒室(Cumbustion)、渦輪機(Turbine,也就是渦輪發動機之名的來源)三大部份。壓縮機通常還分成低壓壓縮機(低壓段)和高壓壓縮機(高壓段),低壓段有時也兼具進氣風扇增加進氣量的作用,進入的氣流在壓縮機內被壓縮成高密度、高壓、低速的氣流,以增加發動機的效率。氣流進入燃燒室後,由供油噴嘴噴射出燃料,在燃燒室內與氣流混合並燃燒。燃燒後產生的高熱廢氣,接著會推動渦輪機使其旋轉,然後帶著剩餘的能量,經由噴嘴或排氣管排出,至於會有多少的能量被用來推動渦輪,則視渦輪發動機的種類與設計而定,渦輪機會和壓縮機一樣分成高壓段與低壓段。
雖然渦輪發動機可能有許多不同的運作原理,但最簡單的渦輪型式可以只包含一個「轉子」(Rotor),例如一個帶有中心軸的扇葉,將此扇葉放置在流體中(例如空氣或水),流體通過時對扇葉施加的力量會帶動整個轉子開始轉動,進而得以從中心軸輸出軸向的扭力。風車與水車這類的裝置,可以說是人類最早發明的渦輪發動機原型。
依照不同的分類方式,渦輪發動機也可以分類成很多不同的型式。例如以燃燒室與轉子的位置是否在一起來區別,就存在有屬於外燃機一類的燃氣渦輪發動機(Gas turbine),與屬於內燃機的渦輪風扇發動機(Turbofan)。
如果將渦輪發動機反過來運作,則會變成一種輸入力量之後可以將流體帶動的設備,例如壓縮機(compressor)與泵(pump)。
有些渦輪發動機本身具有多組扇葉,其中部分是用於自流體汲取動力,部分是用於推動流體,二者不能混為一談。舉例來說在大部分的渦輪扇葉發動機與渦輪螺旋槳發動機中,位於燃燒室之前的扇葉實際的作用是用於加壓進氣,因此應被視為是一種壓縮機。真正的渦輪機部分是位於燃燒室後方的風扇,被燃燒後的排氣推動產生動力,再透過傳動軸將力量輸送至主扇葉(渦輪風扇發動機)或螺旋槳(渦輪旋槳發動機)處,推動其運轉。
發動機一些主要參數
發動機壓力比:壓力比是在發動機上兩個不同地點之間的壓力關系。
EPR=Pt7/Pt2(普惠公司JT系列)
EPR=Pt4.95/Pt2(PW4000系列)
發動機涵道比:是指渦輪風扇發動機通過外涵的空氣質量流量與通過內涵的空氣質量流量之比。涵道比為1左右是低涵道比發動機,2~3左右是中涵道比發動機,4以上是高涵道比發動機。
發動機排氣溫度:用EGT來表示。渦輪進口總溫是發動機最重要、最關鍵的參數,但是由於這里溫度高,溫度場不均勻,目前實際是測量渦輪排氣溫度間接反映渦輪進口溫度的高低,限制EGT以保證渦輪進口溫度不超過限制。
風扇轉速:用n1表示。對於高涵道比渦扇發動機,由於風扇產生推力占絕大部分,風扇轉速也是推力表徵參數,在駕駛艙顯示。
通常部件有:進氣道、風扇、低壓壓氣機、高壓壓氣機、燃燒室、高壓渦輪、低壓渦輪、噴管以及附件傳動部分。壓氣機、燃燒室組成核心發動機

⑤ 內燃機車的傳動裝置

為使柴油機的功率傳到動軸上能符合機車牽引要求而在兩者之間設置的媒介裝置。柴油機扭矩—轉速特性和機車牽引力—速度特性完全不同,不能用柴油機來直接驅動機車動輪:柴油機有一個最低轉速,低於這個轉速就不能工作,柴油機因此無法啟動機車;柴油機功率基本上與轉速成正比,只有在最高轉速下才能達到最大功率值,而機車運行的速度經常變化,使柴油機功率得不到充分利用;柴油機不能逆轉,機車也就無法換向。所以,內燃機車必須加裝傳動裝置來滿足機車牽引要求。
常用的傳動方式有機械傳動、液力傳動和電力傳動。
液力傳動箱、車軸齒輪箱、萬向軸等組成。液力變扭器(又稱變矩器)是液力傳動機車最重要的傳動元件,由泵輪、渦輪、導向輪組成。泵輪和柴油機曲軸相連,泵輪葉片帶動工作液體使其獲得能量,並在渦輪葉片流道內流動中將能量傳給渦輪葉片,由渦輪軸輸出機械能做功,通過萬向軸、車軸齒輪箱將柴油機功率傳給機車動輪;工作液體從渦輪葉片流出後,經導向輪葉片的引導,又重新返回泵輪。液力傳動機車(圖2)操縱簡單、可靠,特別適用於多風沙和多雨的地帶。
電力傳動分為三種:(a)直流電力傳動裝置。牽引發電機和電動機均為直流電機,發動機帶動直流牽引發電機,將直流電直接供各牽引直流電動機驅動機車動輪。(b)交—直流電力傳動裝置。發動機帶動三相交流同步發電機,發出的三相交流電經過大功率半導體整流裝置變為直流電,供給直流牽引電動機驅動機車動輪。(c)變—直—交流電力傳動裝置。發動機帶動三相同步交流牽引發電機,發出的交流電通過整流器到達直流中間迴路,中間迴路中恆定的直流電壓通過逆變器調節其振幅和頻率,再將直流電逆變成三相變頻調壓交流電壓,並供給三相非同步牽引電動機驅動機車動輪。電力傳動機車的應用最為廣泛。

⑥ 請問發動機上的渦輪是做什麼用的,其結構原理及用途是什麼

常用作飛機與大型的船舶或車輛的發動機。 按照發動機燃料燃燒所需的氧化劑的來源不同可分為火箭發動機和空氣噴氣發動機。火箭發動機自帶氧化劑和火箭發動機。根絕氧化劑和燃燒劑的形態不同,又分為液體火箭發動機和固體火箭發動機。 渦輪發動機主要類型有:渦輪噴氣發動機(主要用於軍機);渦輪風扇發動機(主要用於干線飛機和軍機);渦輪螺旋槳發動機(主要用於支線飛機);渦輪軸發動機(主要用於直升機) 此外還有螺旋槳及風扇組合的漿扇發動機。從噴氣推進方式來講,還有沖壓噴氣發動機(主要用於導彈和靶機),採用間歇燃燒原理的脈沖噴氣發動機,以及不同類型組合的發動機,如渦輪/沖壓噴氣發動機。 所有的渦輪發動機都具備壓縮機(Compressor)、燃燒室(Cumbustion)、渦輪機(Turbine,也就是渦輪發動機之名的來源)三大部份。壓縮機通常還分成低壓壓縮機(低壓段)和高壓壓縮機(高壓段),低壓段有時也兼具進氣風扇增加進氣量的作用,進入的氣流在壓縮機內被壓縮成高密度、高壓、低速的氣流,以增加發動機的效率。氣流進入燃燒室後,由供油噴嘴噴射出燃料,在燃燒室內與氣流混合並燃燒。燃燒後產生的高熱廢氣,接著會推動渦輪機使其旋轉,然後帶著剩餘的能量,經由噴嘴或排氣管排出,至於會有多少的能量被用來推動渦輪,則視渦輪發動機的種類與設計而定,渦輪機會和壓縮機一樣分成高壓段與低壓段。 雖然渦輪發動機可能有許多不同的運作原理,但最簡單的渦輪型式可以只包含一個「轉子」(Rotor),例如一個帶有中心軸的扇葉,將此扇葉放置在流體中(例如空氣或水),流體通過時對扇葉施加的力量會帶動整個轉子開始轉動,進而得以從中心軸輸出軸向的扭力。風車與水車這類的裝置,可以說是人類最早發明的渦輪發動機原型。 依照不同的分類方式,渦輪發動機也可以分類成很多不同的型式。例如以燃燒室與轉子的位置是否在一起來區別,就存在有屬於外燃機一類的燃氣渦輪發動機(Gas turbine),與屬於內燃機的渦輪風扇發動機(Turbofan)。 如果將渦輪發動機反過來運作,則會變成一種輸入力量之後可以將流體帶動的設備,例如壓縮機(compressor)與泵(pump)。 有些渦輪發動機本身具有多組扇葉,其中部分是用於自流體汲取動力,部分是用於推動流體,二者不能混為一談。舉例來說在大部分的渦輪扇葉發動機與渦輪螺旋槳發動機中,位於燃燒室之前的扇葉實際的作用是用於加壓進氣,因此應被視為是一種壓縮機。真正的渦輪機部分是位於燃燒室後方的風扇,被燃燒後的排氣推動產生動力,再透過傳動軸將力量輸送至主扇葉(渦輪風扇發動機)或螺旋槳(渦輪旋槳發動機)處,推動其運轉。 發動機一些主要參數 發動機壓力比:壓力比是在發動機上兩個不同地點之間的壓力關系。 EPR=Pt7/Pt2(普惠公司JT系列) EPR=Pt4.95/Pt2(PW4000系列) 發動機涵道比:是指渦輪風扇發動機通過外涵的空氣質量流量與通過內涵的空氣質量流量之比。涵道比為1左右是低涵道比發動機,2~3左右是中涵道比發動機,4以上是高涵道比發動機。 發動機排氣溫度:用EGT來表示。渦輪進口總溫是發動機最重要、最關鍵的參數,但是由於這里溫度高,溫度場不均勻,目前實際是測量渦輪排氣溫度間接反映渦輪進口溫度的高低,限制EGT以保證渦輪進口溫度不超過限制。 風扇轉速:用n1表示。對於高涵道比渦扇發動機,由於風扇產生推力占絕大部分,風扇轉速也是推力表徵參數,在駕駛艙顯示。 通常部件有:進氣道、風扇、低壓壓氣機、高壓壓氣機、燃燒室、高壓渦輪、低壓渦輪、噴管以及附件傳動部分。壓氣機、燃燒室組成核心發動機。

⑦ 渦輪飛機發動機的啟動

一、飛機發動機的啟動。 航空燃氣渦輪發動機的結構和循環過程,決定了它不能象汽車發動機那樣自主的點火起動。因為,在靜止的發動機中直接噴油點火,因為壓氣機沒有旋轉,前面空氣沒有壓力,就不能使燃氣向後流動,也就無法使渦輪轉動起來,這樣會燒毀燃燒室和渦輪導向葉片。 所以,燃氣渦輪發動機的起動特點就是:先要氣流流動,再點火燃燒,也即是發動機必須要先旋轉,再起動。這就是矛盾,發動機還沒起動,還沒點火,卻要它先轉動。 根據這個起動特點,就必須在點火燃燒前先由其他能源來帶動發動機旋轉。 在以前的小功率發動機上,帶動發動機到達一定轉速所需的功率小,就採用了起動電機來帶動發動機旋轉,如用於國產運-7,運-8飛機的渦槳5、渦槳6發動機。 但是隨著大推力發動機的出現,用電動機已無法提供如此大的能量來帶動發動機,達到點火燃燒時的轉速了,因此需要更大的能源來帶動發動機,這時,採用APU,產生壓縮空氣,用氣源代替電源來起動發動機成為了現在所有高涵道比發動機的起動方式。 二、壓縮空氣的來源 毫無疑問,壓氣機是壓縮空氣最好的來源。採用渦輪帶動壓氣機就可以連續不斷的提供飛機所需要的壓縮氣源。而由於這個燃氣渦輪裝置提供的氣源只要能滿足發動機起動的需要就可以了,所以功率,體積相比發動機要小得多,這就使這套燃氣渦輪裝置可以採用電動機來起動,然後再由這套燃氣渦輪裝置產生壓縮空氣來起動發動機,這樣就解決了發動機起動時需要大的能量的問題。 這套燃氣渦輪裝置被稱作APU(Auxiliary Power Unit 輔助動力裝置)。 三、起動過程發動機的起動過程是一個能量逐級放大的過程。 先由蓄電池提供電源給APU起動電機,帶動APU轉子旋轉; APU達到起動轉速後噴油燃燒,把燃料提供的化學能轉變為渦輪的機械能,並通過壓氣機把機械能轉換為空氣的壓力能。由於燃料的加入,APU產生的壓縮空氣的能量已遠遠大於蓄電池的能量了 最後,發動機上的空氣渦輪起動機把APU空氣的壓力轉化為帶動發動機核心機轉子旋轉的機械能,在達到發動機起動轉速時噴油點火,最終靠燃料的化學能使發動機進入穩定工作狀態。 所以,在整個起動過程中,帶動發動機核心機旋轉的大能量,從很低的蓄電池能量,通過燃料的加入,一步步升了起來,就象三峽大壩的梯級船閘。 這就是APU的好處:飛機本身只需要攜帶一個能量很低的,充足了電的蓄電池,通過APU,就能夠自主的完成發動機的起動,而不再依賴於地面設備來起動發動機。四、APU的特點APU和發動機一樣,都是燃氣渦輪裝置,但它們的目的不同,這是個很大的區別, 發動機用於產生推力,而APU不需要產生推力,它主要用來提供氣源,還有電源。氣源除用於發動機起動,還為飛機的空調系統供應連續不斷的空氣。 這個特點使APU不同於發動機。它要求APU在設計時,使渦輪產生的機械能主要通過壓氣機轉換為空氣的壓力能,還有一部分機械能通過齒輪傳遞給發電機以產生電能,而不是向後噴出產生推力。 所以,能量分配的不同,是APU和發動機的主要區別 五、APU的工作和發動機不同的是,APU的工作狀態很簡單,在起動過程完成之後,就進入了穩定工作狀態,即轉速維持不變。而發動機的卻需要依據飛行情況不斷的改變轉速和推力。 APU的工作狀態決定了APU的工作特點:保持轉速不變 引氣,是APU的目的。就是把APU壓氣機產生的壓縮空氣引出去給飛機的空調系統和發動機起動。 由於引氣,使APU的功率要受引氣的影響,這就和APU的工作狀態要求轉速保持不變產生了矛盾,下面將講訴這個問題 六、APU的發展早期的APU,象發動機一樣,氣流從進氣口先通過壓氣機,再到燃燒室和渦輪,最後從噴口噴出。氣流象一條線一樣流動,沒有岔路,串聯起了壓氣機和渦輪。如波音737的APU。這個設計有個缺點,就是在給發動機引氣以起動發動機時,由於負載突然變得很大,會使APU的轉速發生大的變化,而自動調節器為維持APU轉速的不變,會大幅增加供油量,使溫度有大的升高,這對APU不好。 現在的APU,普遍採用進氣分流,增加了負載壓氣機。這個結構的特點是:進氣道進來的氣流分成兩股,一股進入正常的增壓壓氣機和渦輪,主要用來帶動APU旋轉,然後氣流從噴口噴走,它是APU的功率部分;而另一股氣流進入負載壓氣機,這部分氣流由負載壓氣機增壓,專門用於產生供飛機使用的壓縮空氣。在這股氣流的進口有流量調節活門(進口導流葉片),它根據飛機對壓縮空氣的需求,實時的對活門(葉片)開度進行調節,來控制進入負載壓氣機空氣的多少。 這個設計使APU的負載部分和功率部份分開了,因此在大量引氣時也不會早成APU功率部分轉速和溫度大的波動,這有助於增加APU的壽命。 獨立的負載部分和功率部分是現在APU的特點。 {註明一點,負載壓氣機依然由渦輪通過傳動軸帶動,說它獨立是指氣流分別進入兩個部分,不再相干}

⑧ LM2500燃氣輪機的結構與系統

壓氣機是燃氣輪機的主要部件之一,它的作用是提高流經空氣的壓力,向燃燒室供給符合要求的壓縮空氣。壓氣機性能的優劣直接影響燃氣輪機的功率、油耗、工作穩定性和可靠性等主要性能。LM2500的壓氣機為16級、高壓比、軸流單轉子設計,主要由壓氣機前承力機匣、壓氣機轉子、壓氣機靜子(中機匣)和壓氣機後承力機匣等組成。壓氣機靜子的前端由前承力機匣殼體支撐,後部由壓氣機後承力機匣支撐。而壓氣機轉子的前端由滾柱軸承支撐,後端由滾珠軸承支撐。
前承力機匣形成了壓氣機進口空氣的流通通道,轂部與外殼之間用導流支板聯接,支板為空心結構,內有回油池的滑油供油和回油管路。該機匣同時還支承著壓氣機前軸承、進氣管、整流罩、壓氣機殼體的前端、進氣導葉內支承、輸入齒輪箱和回油池端蓋。在機匣中還有密封壓力和通風等的空氣通道,以及監測壓氣機進口空氣壓力、溫度等參數的感測器。
壓氣機轉子是一個高速旋轉、對吸入空氣做功使其壓力上升的部件,核心是一個帶有圓周分布的燕尾榫槽的短鼓-輪盤混合結構,壓氣機葉片通過燕尾榫槽固定在其上。所有的法蘭聯接都採用過盈配合,以保證零件良好的定心和聯接剛性。轉子的短鼓-輪盤材料分別為:第1到10級為欽合金,其餘部分使用Inconel718合金製造。第l到14級工作葉片的材料為欽合金,第15和16級工作葉片的材料為A286合金鋼。由於第1級工作葉片相對比較狹長、剛性較差,為了減少振動,在葉片的中部有減振阻尼凸台,當所有的第1級葉片安裝好之後,凸台共同組成了一個阻尼圈。
壓氣機靜子是氣流減速擴壓的部件,也是燃氣輪機的主要承力殼體構件之一,它與前承力機匣和後承力機匣構成了一個整體。各級整流器(靜子葉片環)固定在靜子機匣內,形成氣流通道的靜子部分。靜子機匣由4部分組成,並用螺栓固定在一起。前兩段對分式機匣用欽合金製造,而後兩段對分式機匣用Inconel718合金製造。該壓氣機靜子由一級進口導葉和16級靜葉組成,進口導葉和第1到6級的靜葉為可調葉片。進口導葉和第1、2級靜葉的材料為欽合金,第3到16級靜葉的材料為A289合金鋼。
為了保證壓氣機工作的效率,要求工作葉片、靜葉片與靜子、轉子之間的間隙盡可能小,以減少氣流從葉尖逸漏的損失,但葉片又必須跟壁面保持足夠的間隙,以方便安裝,並防止工作時葉片受熱膨脹與壁面碰撞,造成發動機損傷。為了解決這個矛盾,在工作葉片、靜葉片項部相對的靜子、轉子壁面上噴塗有可磨損的材料,葉片的葉尖也作成可以磨損的形式,這樣,當發動機投入正常運行後,通過塗料跟葉尖之間的磨合,就能使間隙維持在一個合適的較小值,從而保證了壓氣機的高效運行。
壓氣機後承力機匣用Inconel718合金製造,由外殼體導流支板、轂以及回油池殼體組成,其外殼支撐著燃燒室、燃油總管、燃油噴嘴(30個)、點火器(2個)以及第1級渦輪導向器支承。軸承的軸向和徑向負荷以及第1級渦輪導向器負荷的一部分由毅承受,並通過10個徑向導流支板穿至機匣外殼。毅與導流支板以及外殼體通過焊接連成一體。機匣外殼既是燃燒室外殼,又是壓氣機機匣與渦輪中機匣之間結構負荷的傳遞通路。 燃燒室是保證燃氣輪機在各種工況下,順利將燃料的化學能轉換為熱能、並用來加熱工質的裝置。來自壓氣機的高壓空氣進入燃燒室後,與噴油嘴噴入的燃料混合燃燒,變成具有較大作功能力的高溫高壓燃氣,然後驅動渦輪作功。燃燒室是燃氣輪機的重要部件,燃氣輪機的性能和可靠性與其有著密切的關系。例如,燃燒室出口局部溫度過高,會引起渦輪葉片的過熱和燒毀;燒過程的不穩定會導致意外的熄火甚停機;燃燒組織不好,會使燃燒過程流動損失增加,降低燃燒效率、黔增大燃油消耗等等。因此,一個合適的燃燒室,是燃氣輪機工作良好的關鍵。
LM2500的燃燒室為單環形燃燒室,由燃燒室外套、火焰筒內環、火焰筒外環、火焰筒頭部、燃燒室內套、進口導流器、旋流器、雙油路壓力噴射式噴油嘴(30個)和半導體高能點火電嘴(2個)等零件構成。燃燒室內、外壁均採用氣膜冷卻,使得壁面溫度不至於過高,從而保證燃燒室的工作可靠性和壽命。燃燒室外套通過位於燃燒室進口處的10個肋板,與燃燒室內套在前端聯成一體,同時作為承力結構,支承壓氣機後軸承座。 燃氣渦輪是燃氣輪機的另一種要部件,其主要作用是將來自燃燒室高溫、高壓燃氣中的部分熱能和壓力能轉換成機械功,用以帶動壓氣機、附件和船舶推進裝置。渦輪的工作條件十分惡劣,要承受高溫、高轉速、頻繁的熱循環、熱沖擊、不均勻加熱、由於轉子不平衡和燃氣壓力脈動造成的不均衡負荷的作用,是燃氣輪機中熱負荷和動力負荷最大的部件。艦船燃氣輪機多採用軸流式渦輪,其主要特點是功率大、轉速高、燃氣溫度高、效率高,能有效滿足船舶推進的動力要求。
在艦船燃氣輪機中,用來帶動壓氣機和附件的渦輪稱為燃氣發生器渦輪,用來帶動減速器、螺旋槳等外負荷、進行功率輸出的稱為動力渦輪,二者在結構上大同小異,都是由轉子跟靜子兩大部分組成。燃氣發生器渦輪與動力渦輪間通常只存在氣動上的聯系,它們通常由中間擴壓器(也稱為中間機匣)聯通起來。一般而言,動力渦輪的直徑比燃氣發生器渦輪大得多,所以中間機匣具有一定的擴散錐角,以利於將燃氣發生器渦輪出口的燃氣以最小的流動損失引入動力渦輪作功。
LM2500燃氣輪機的燃氣發生器渦輪是典型的單轉子、2級軸流式渦輪,由渦輪轉子、第1和第2級渦輪導向器以及渦輪中間機匣等組成。渦輪導向器負責將從燃燒室出來的高溫、高壓燃氣以要求的角度和速度直接導向渦輪轉子的葉片,裝在壓氣機後機匣里,並由後者支承。燃氣發生器渦輪與壓氣機轉子是機-械聯接的,從燃氣中獲取能量後可以直接驅動壓氣機旋轉。渦輪轉子的前支承在壓氣機轉子後軸上,由徑向止推球軸承承力,轉子後端由渦輪中間機匣內的徑向軸承支承。渦輪中間機匣除了支承燃氣發生器渦輪轉子之外,也支承動力渦輪轉子。中間機匣包括過渡段,燃氣流從燃氣發生器渦輪經過過渡段進入動力渦輪。
燃氣發生器渦輪轉子由一個錐形前軸、兩個帶葉片和護圈的渦輪盤、一個圓錐形轉子隔板、一個熱屏蔽和一個後軸組成,兩級渦輪葉片均為長葉柄、內冷卻式結構,葉根為機樹形。長葉柄葉片不但為冷卻空氣提供了通路,而且因為較高的阻尼作用減小了振動,輪盤外緣的溫度也降低了。葉片成對地釺焊在一起,材料為Rene80鈷基合金,表面滲有抗腐蝕、抗氧化的鈷鉻鋁釔保護層。
渦輪轉子和兩級渦輪葉片均由壓氣機排出的空氣進行冷卻。氣流通過第1級導向器支承和渦輪軸前的孔引入。空氣首先冷卻轉子內部和兩個盤端,然後經過成對葉樵間的通路進入葉片。第1級渦輪轉子葉片由內部對流和外部冷卻氣膜進行冷卻,第2級葉片只使用對流方式進行冷卻,所有冷卻空氣最後都由葉尖排出。燃氣發生器渦輪轉子的前軸、隔板、熱屏蔽、後軸、輪盤等部件通過短螺栓聯接,形成剛性很好的可拆卸轉子結構。
LM2500燃氣輪機的動力渦輪來自於TF39渦輪風扇發動機帶動風扇的低壓渦輪,在進行艦用化改裝時,動力渦輪的進口溫度明顯下降,是一種典型的低負荷設計,級數達到了6級,以獲得較高的效率(設計工況效率達92.5%)和良好的變工況特性。為適應高效率要求,在結構上使用了帶冠工作葉片。靜子機匣內壁採用了具有蜂窩結構可容損材料製成的襯里,減小了泄漏。因為級數多,採用了兩端支承結構,設置了兩個專門的承力支承部件―前支架和後支架。
前支架又稱為渦輪中機匣,前安裝邊與燃氣發生器的後安裝邊聯接,後安裝邊則與動力渦輪的靜子機匣相連接。前支架主要由內座圈、外殼體和聯接二者的整流支板組成,是一個整體傳力元件。渦輪第1級導向器葉片環固定於其內,內座圈處安裝前軸承組合體。後支架又稱為渦輪後機匣,前安裝邊與動力渦輪靜子機匣相聯接,後安裝邊與排氣渦殼聯接。後支架也是整體傳力元件,主要由內座圈、外殼體和聯接二者的整流支板組成,內座圈處安裝後軸承組合件。
動力渦輪靜子為水平剖分式結構,第2到第6級導向器葉片環固定在靜子機匣的環槽中。在各級靜子葉片環之前,機匣的內壁面處以及葉片環內環壁面處,均嵌裝蜂窩結構可容損材料製成的密封裝置,以減少動力渦輪工作葉片與機匣之間的徑向減小,以及減小葉片環內環壁面與轉子之間的級間密封間隙,從而提高了動力渦輪的效率。
動力渦輪轉子為短螺栓聯接、盤鼓混合式結構。錐形前鼓軸固定在第3級輪盤之前,錐形後鼓軸固定在第6級輪盤之前,使得轉子支點間距大大縮短,結構緊湊,增強了轉子的抗彎剛性。這種由短螺栓聯接的多級盤鼓式結構的優點是簡單、重量輕、聯接剛性好,而且布局靈活,拆裝、.更換損壞的元件也比較方便。動力渦輪的6級工作葉片全部為帶冠結構,抗振性能好,效率高,用耐腐蝕材料Rene77合金製造,前3級工作葉片表面還塗有防腐蝕塗層。導向器葉片的前3級也是用Rene77合金製造,後3級則改為用Rene41合金製造。 附件傳動裝置在艦船燃氣輪機上有許多需要由燃氣發生器轉子帶動的附屬系統以及設備的附件,如滑油泵、燃油泵、燃油自動調節器等。而另外一些附屬系統以及設備的附件,又用來帶動燃氣輪機轉子轉動,如起動機、盤車裝置等。為了實現燃氣輪機轉子和這些附件間的傳動,需要設置專門的傳動裝置,即附件傳動裝置。
附屬系統和設備中的附件一般都裝在附件傳動機構的機匣上,其中裝有若干組齒輪組以及離合器等。只要燃氣輪機轉動這個附件的傳動機構,被帶動的附件即可投入運轉,燃氣輪機的各個附屬系統和設備就能進入正常工作。同樣,起動機、盤車裝置等附件工作時,也可以拖動燃氣輪機轉子轉動。附屬系統、設備的工作可靠性直接影響燃氣輪機的性能和工作可靠性,因此,一方面要求附屬系統和設備具有較高的性能,另一方面也要求附件傳動裝置結構可靠,能在各種工況下保證所有附件的轉速、轉向、功率傳遞等方面的技術要求。同時,還要求附件傳動裝置尺寸、重量小,使用、維護和更換都要比較方便。
LM2500燃氣輪機的附件傳動裝置位於壓氣機前機匣處,主要由輸入齒輪箱、徑向傳動軸和傳動齒輪箱等部件組成。輸入齒輪箱裝置由鑄鋁殼體、軸、一對圓錐齒輪、軸承以及滑油噴嘴等構成。徑向傳動軸是空心軸,軸的兩端用花鍵分別與輸入齒輪箱以及轉換齒輪箱內的圓錐齒輪相聯接,其作用是將功率由輸入齒輪箱傳至轉換齒輪箱的前部。
轉換齒輪箱則由兩個鋁制殼體、一個油氣分離器、齒輪、軸承、密封件、滑油噴嘴以及附件聯系器等部分組成。殼體底部有個入口蓋,為徑向傳動軸的安裝提供了方便。在後面部分的所有附件聯接器和惰輪,均採用「插入式」齒輪的設計思想,這樣在進行齒輪、軸承、密封件、聯接器組件等進行拆卸或更換時,就不用對齒輪箱進行分解。安裝在轉換齒輪箱上的附件有:燃氣輪機起動機、滑油供油泵和回油泵、燃油泵以及主燃油控制器。油氣分離器安裝在轉換齒輪箱前部,並作為齒輪箱的一部分而存在。 燃氣輪機不能依靠自身投入工作,需要外界能源來幫助起動,經過一個預先設定的起動過程,才能使主機進入穩定的工作狀態。通常把提供能量、拖動燃氣輪機旋轉的輔助機械稱為起動機,使燃氣輪機從靜止狀態起動加速到慢車工況的過程稱為起動過程,而用於完成燃氣輪機起動過程的各個工作部分,如起動機、起動燃油供給系統、點火系統、自動控制裝置等在內的一整套裝置、系統稱為燃氣輪機起動系統。在燃氣輪機起動系統中,起動機用於拖動燃氣發生器轉子轉動,使之加速到一定轉速,從而使進入燃燒室的空氣具有足夠壓力,保證燃燒室內混合氣可靠點火燃燒,使燃氣輪機進入自主運行狀態,是起動系統中的核心部件。現代燃氣輪機常用的起動機有電起動機、燃氣渦輪起動機和空氣渦輪起動機等三類,不管哪種,都要求有足夠的功率來拖動主機轉動。
LM2500燃氣輪機採用了同時具有液壓油馬達起動機和空氣渦輪起動機的雙重動力源起動系統,但由於艦船上的高壓空氣獲取比較方便,一般以空氣渦輪起動機為主用起動機。該機由進氣裝置、渦輪裝置、減速齒輪、切斷開關、超速離合器以及花鍵輸出軸組成。其中渦輪為單級軸流式渦輪,減速齒輪為帶有一個轉動齒環的復合式行星齒輪系統,超速離合器為棘爪-棘輪式,在起動期間可以保證可靠接合,而主機起動後,能保證起動機的順利脫開。 這是燃氣輪機各系統中最復雜的部分,其功用是保證向燃氣輪機的燃燒室可靠地供給一定壓力和流量的燃油,依靠燃油系統中自動調節器的調節作用,按照一定規律控制、調節燃氣輪機的供油量,使燃氣輪機在任何運行工況下,都能夠高效、安全可靠地工作。燃油系統可以分為供油和調節兩大部分,通常由燃油箱、燃油過濾器、低壓燃油泵、燃油加溫器(有時兼作滑油冷卻器)、高壓燃油泵、燃油自動調節器、燃油分配器、燃油總管、燃油噴嘴等組成。在管理中,也經常以高壓油泵為界,將燃油系統劃分為低壓燃油部分和高壓燃油部分。
在LM2500燃氣輪機的燃油系統中,通過調節和分配噴射到燃燒室中的燃油數量,可以控制燃氣發生器的轉速。動力渦輪的轉速是無法直接控制的,但可以根據燃氣發生器產生的燃氣流能量大小來確定。為了防止動力渦輪超速,由安裝在電子控制箱里的電子超速開關來保護,當動力渦輪轉速偏高時,自動減小燃燒室供油量,以保證動力渦輪的安全。
來自艦船油艙的燃油,流經燃氣輪機底座處的燃油進口接頭,進入主燃油泵增壓部分進行初步加壓,然後再進入燃油泵的高壓部分。高壓燃油流經燃油過濾器,然後進入燃油控制器。如果燃油過濾器堵塞,可以使用過濾器旁通閥使燃油繞過過濾器。艦船燃氣輪機通常只使用高質量的輕柴油,燃油中細小雜質的含量相對較少,只用過濾器就可以滿足燃油清潔的要求。為了保障燃氣輪機的正常運行,必須保證供給充足的燃油,所有燃油泵的流量要高於燃氣輪機的最大燃油消耗率,燃油在燃油控制器里被分為計量(供油)流量和旁通(回油)流量,超出需要的部分燃油通過旁通閥迴流到燃油泵高壓部分的進口。
安裝在燃油控制器出口處的增壓閥可以保持一定的背壓,保證有足夠的燃油壓力,使燃油控制器可以正常工作。串聯布置的兩個電控燃油停車閥,保證了燃油供應的可靠切斷。當停車閥開啟時,燃油從燃油控制器流出,經過增壓閥、燃油停車閥、燃油總管輸送到燃油噴嘴,30個燃油噴嘴經壓氣機後機匣伸進燃燒室,將燃油霧化噴出,維持正常的燃燒。當停車閥關閉時,燃油停止向燃油總管供應,旁通迴流到燃油泵進口。此時,停車閥的殘油泄放口開啟,將燃油總管、支管和噴嘴中的殘油泄出,防止因為剛停機時部件的高溫導致殘余燃油結焦,堵塞油路。
燃油和轉速調節系統可以控制可轉葉片(進口導葉和前6級靜葉可以轉動),以保證在整個運行工況的范圍內,使壓氣機保持良好的工作性能,防止燃氣輪機出現喘振。 滑油系統是保證燃氣輪機各支承和傳動元件潤滑、冷卻的滑油儲存、供油和回油系統。其功用是向軸承、齒輪等摩擦部件的工作表面供應滑油,起到液體潤滑的作用,減少這些工作表面的磨損和摩擦損失,同時帶走摩擦表面的熱量,維持軸承、齒輪等工作溫度的正常。由此可見,燃氣輪機的工作可靠性,很大程度上取決於滑油系統的工作可靠性。
艦船燃氣輪機的滑油系統通常設計為兩個獨立的系統:燃氣發生器部分的前滑油系統,以及動力渦輪、推進系統主傳動裝置部分的後滑油系統。但也可以將前、後滑油系統合並為一個系統,特別是在燃氣發生器和動力渦輪都使用滾動軸承支承的情況下,這種統一的滑油系統比較簡單、可靠,實用性強。
LM2500燃氣輪機的滑油系統,就是燃氣發生器和動力渦輪一體化的潤滑、冷卻系統。該系統包括了滑油供油、滑油回油以及回油池通風等三個分系統。滑油從儲油箱里靠重力供給安裝在主機上的滑油供油一回油泵,滑油泵的供油部分將流入的滑油加壓,輸送到要求潤滑、冷卻的部件和區域。滑油供油的過濾是由安裝在箱裝體內的雙聯式滑油過濾器來保證的。供油管路末端的滑油噴嘴直接將滑油噴進軸承、齒輪和花鍵等部位進行潤滑、冷卻。經過使用的滑油流到4個回油池和轉換齒輪箱底部,分別被回油泵抽出,返回滑油儲存、調節油箱,並進行冷卻。回油的過濾是由安裝在滑油箱上的雙聯式滑油過濾器來保證的。
滑油系統中的滑油在運行過程中會發生損耗,主要包括了滑油自身的分解、滑油蒸汽經密封裝置滲漏到氣流中以及經通氣管逸出到外界大氣中。燃氣輪機的滑油消耗量普遍不大,LM2500燃氣輪機的最大滑油消耗率約0.9公斤/時,平均滑油消耗率僅有約0.09公斤/時,與柴油機相比要小一個數量級。但由於燃氣輪機工作轉速高,對滑油的質量要求要遠遠高於柴油機。 早期的艦船燃氣輪機跟蒸汽輪機、柴油機一樣,也是呈「裸機」狀態布置於機艙內,雖然便於監測和接近、維護,但是燃氣輪機運行時的高溫和噪音等問題,對機艙環境影響很大,特別是高頻噪音的強度過大,嚴重影響機艙人員的正常工作。也許是受已經坍塌的「紅色帝國」長久以來片面拔高人的主觀能動性、忽視人員舒適性的習慣思維影響,烏克蘭在上世紀90年代設計的l)A80燃氣輪機依然採用「裸機」狀態,僅燃燒室及其後部分包裹了隔熱、隔音效果很差的簡單金屬罩。
為了避免這些不利影響,同時利於實現自動化和遠距離控制、充分發揮燃氣輪機的技術性能,出現了將燃氣輪機整體組件化的解決方案,即將燃氣發生器、動力渦輪、進氣室、排氣渦殼以及燃氣輪機附件、相關電氣設備等組裝在一個帶有防震底座的箱體里,構成一個完整的箱裝體(也稱為燃氣輪機模件)。燃氣輪機模件可以在工廠中裝配、調試好,而後裝艦使用,這樣可以大大減少在艦上的裝配工作量、降低裝配難度,同時保證模件工作的可靠性。箱裝體結構有利於隔熱、隔音和防震,內部布置有照明、加熱、滅火、通風等設備,極大改善了機艙工作條件。通常,燃氣輪機箱裝體為鋼制的密封罩殼,外觀一般為長方體。整台燃氣輪機安裝在底座上之後,用箱體罩起,然後和單獨裝箱的其他設備組成一個有機的整體,方便進行操縱、監測和維護。
LM2500燃氣輪機是最早採用箱裝體結構的艦船燃氣輪機之一,其箱裝體長約8米,寬約2.7米,高約3.1米。其中,底座是燃氣輪機和箱裝體的支承基礎,通過32個抗沖擊支承安裝到艦體機座結構上,底座上設置有燃氣輪機支承、渦殼支承、箱體以及間壁。底座上還設置有密封的貫穿孔,用以安裝抽氣管、燃油管、滑油管、控制電纜、儀表電纜、清洗水管、動力電纜、起動空氣管、滅火劑輸送管,以及殘油、殘水的泄放管。此外,還有燃油溢流閥、滑油過濾器及各種接頭、插座等附件。
箱裝體頂部布置由空氣進口、通風冷卻空氣口以及排氣口,各通過一個撓性接頭與船體結構相連。在空氣進口處有一組永久性的導軌,通過另外一組臨時安裝的導軌,可以將從底座脫開的燃氣輪機移動到進氣口的導軌處,此時移動到進氣口處的起吊裝置將協助把發動機從導軌拉出,從而吊出船外。箱體上有檢修門、天窗等開口。箱體本身為帶夾層和填料的多層隔音結構,從箱體內傳出的氣動和機械噪音都很低,當燃氣輪機工作時,在箱體外可進行正常交談。

⑨ "渦輪發動機 的工作原理是什麼 "

渦輪發動機的工作原理 2007-03-05 10:11:03| 分類: 默認分類 | 標簽: |字型大小大中小 訂閱 .

渦輪噴氣發動機

在第二次世界大戰以前,所有的飛機都採用活塞式發動機作為飛機的動力,這種發動機本身並不能產生向前的動力,而是需要驅動一副螺旋槳,使螺旋槳在空氣中旋轉,以此推動飛機前進。這種活塞式發動機+螺旋槳的組合一直是飛機固定的推進模式,很少有人提出過質疑。

到了三十年代末,尤其是在二戰中,由於戰爭的需要,飛機的性能得到了迅猛的發展,飛行速度達到700-800公里每小時,高度達到了10000米以上,但人們突然發現,螺旋槳飛機似乎達到了極限,盡管工程師們將發動機的功率越提越高,從1000千瓦,到2000千瓦甚至3000千瓦,但飛機的速度仍沒有明顯的提高,發動機明顯感到「有勁使不上」。

問題就出在螺旋槳上,當飛機的速度達到800公里每小時,由於螺旋槳始終在高速旋轉,槳尖部分實際上已接近了音速,這種跨音速流場的直接後果就是螺旋槳的效率急劇下降,推力下降,同時,由於螺旋槳的迎風面積較大,帶來的阻力也較大,而且,隨著飛行高度的上升,大氣變稀薄,活塞式發動機的功率也會急劇下降。這幾個因素合在一起,決定了活塞式發動機+螺旋槳的推進模式已經走到了盡頭,要想進一步提高飛行性能,必須採用全新的推進模式,噴氣發動機應運而生。

噴氣推進的原理大家並不陌生,根據牛頓第三定律,作用在物體上的力都有大小相等方向相反的反作用力。噴氣發動機在工作時,從前端吸入大量的空氣,燃燒後高速噴出,在此過程中,發動機向氣體施加力,使之向後加速,氣體也給發動機一個反作用力,推動飛機前進。事實上,這一原理很早就被應用於實踐中,我們玩過的爆竹,就是依靠尾部噴出火葯氣體的反作用力飛上天空的。

早在1913年,法國工程師雷恩.洛蘭就獲得了一項噴氣發動機的專利,但這是一種沖壓式噴氣發動機,在當時的低速下根本無法工作,而且也缺乏所需的高溫耐熱材料。1930年,弗蘭克.惠特爾取得了他使用燃氣渦輪發動機的第一個專利,但直到11年後,他的發動機在完成其首次飛行,惠特爾的這種發動機形成了現代渦輪噴氣發動機的基礎。

現代渦輪噴氣發動機的結構由進氣道、壓氣機、燃燒室、渦輪和尾噴管組成,戰斗機的渦輪和尾噴管間還有加力燃燒室。渦輪噴氣發動機仍屬於熱機的一種,就必須遵循熱機的做功原則:在高壓下輸入能量,低壓下釋放能量。因此,從產生輸出能量的原理上講,噴氣式發動機和活塞式發動機是相同的,都需要有進氣、加壓、燃燒和排氣這四個階段,不同的是,在活塞式發動機中這4個階段是分時依次進行的,但在噴氣發動機中則是連續進行的,氣體依次流經噴氣發動機的各個部分,就對應著活塞式發動機的四個工作位置。

空氣首先進入的是發動機的進氣道,當飛機飛行時,可以看作氣流以飛行速度流向發動機,由於飛機飛行的速度是變化的,而壓氣機適應的來流速度是有一定的范圍的,因而進氣道的功能就是通過可調管道,將來流調整為合適的速度。在超音速飛行時,在進氣道前和進氣道內氣流速度減至亞音速,此時氣流的滯止可使壓力升高十幾倍甚至幾十倍,大大超過壓氣機中的壓力提高倍數,因而產生了單靠速度沖壓,不需壓氣機的沖壓噴氣發動機。

進氣道後的壓氣機是專門用來提高氣流的壓力的,空氣流過壓氣機時,壓氣機工作葉片對氣流做功,使氣流的壓力,溫度升高。在亞音速時,壓氣機是氣流增壓的主要部件。

從燃燒室流出的高溫高壓燃氣,流過同壓氣機裝在同一條軸上的渦輪。燃氣的部分內能在渦輪中膨脹轉化為機械能,帶動壓氣機旋轉,在渦輪噴氣發動機中,氣流在渦輪中膨脹所做的功正好等於壓氣機壓縮空氣所消耗的功以及傳動附件克服摩擦所需的功。經過燃燒後,渦輪前的燃氣能量大大增加,因而在渦輪中的膨脹比遠小於壓氣機中的壓縮比,渦輪出口處的壓力和溫度都比壓氣機進口高很多,發動機的推力就是這一部分燃氣的能量而來的。

從渦輪中流出的高溫高壓燃氣,在尾噴管中繼續膨脹,以高速沿發動機軸向從噴口向後排出。這一速度比氣流進入發動機的速度大得多,使發動機獲得了反作用的推力。

一般來講,當氣流從燃燒室出來時的溫度越高,輸入的能量就越大,發動機的推力也就越大。但是,由於渦輪材料等的限制,目前只能達到1650K左右,現代戰斗機有時需要短時間增加推力,就在渦輪後再加上一個加力燃燒室噴入燃油,讓未充分燃燒的燃氣與噴入的燃油混合再次燃燒,由於加力燃燒室內無旋轉部件,溫度可達2000K,可使發動機的推力增加至1.5倍左右。其缺點就是油耗急劇加大,同時過高的溫度也影響發動機的壽命,因此發動機開加力一般是有時限的,低空不過十幾秒,多用於起飛或戰斗時,在高空則可開較長的時間。

隨著航空燃氣渦輪技術的進步,人們在渦輪噴氣發動機的基礎上,又發展了多種噴氣發動機,如根據增壓技術的不同,有沖壓發動機和脈動發動機;根據能量輸出的不同,有渦輪風扇發動機、渦輪螺旋槳發動機、渦輪軸發動機和螺槳風扇發動機等。

噴氣發動機盡管在低速時油耗要大於活塞式發動機,但其優異的高速性能使其迅速取代了後者,成為航空發動機的主流。

⑩ 簡述汽車發動機和底盤主要構造及各部分功能

一、發動機主要構造及各部分功能:

1、氣缸體

缸體是構成發動機的骨架,是發動機各機構和各系統的安裝基礎,其內、外安裝著發動機的所有主要零件和附件,承受各種載荷。

2、爆震感測器

發動機發生爆震時,爆震感測器把發動機的機械振動轉變為信號電壓送至ECU。ECU根據其內部事先儲存的點火及其他數據,及時計算修正點火提前角,去調整點火時間,防止爆震的發生。

3、火花塞

通過電極之間的放電現象產生火花,汽油發動機是通過燃料和混合氣體的適時燃燒使之產生動力,但是作為燃料的汽油即使處於高溫環境下也很難自燃,要想使其適時燃燒有必要用「火」來點燃。這里說的火花點火便是「火花塞」的作用。

4、分電器

汽油發動機點火系統中按氣缸點火次序定時的將高壓電流傳至各氣缸火花塞的部件。

5、缸線

缸線是傳統點火系中必不可少的一部分,是點火線圈把能量傳給火花塞的介質。

6、活塞

發動機好比是汽車的「心臟」,而活塞則可以理解為是發動機的「中樞」。每個活塞的裙體處都有三條皺紋,是為了安裝兩道氣環和一道油環,且氣環在上。在裝配時,兩道氣環的開口需要錯開,起到密封的作用。油環的作用主要是刮除飛濺到缸壁上的多餘潤滑油,並將潤滑油刮布均勻。

7、機濾

機濾全稱機油濾清器,它的作用是去除機油中的灰塵、金屬顆粒、碳沉澱物和煤煙顆粒等雜質,保護發動機。

8、機油冷卻器

機油冷卻器的作用是冷卻潤滑油,保持油溫在正常工作范圍之內。

9、節氣門

節氣門是控制空氣進入發動機的一道可控閥門,氣體進入進氣管後會和汽油混合成可燃混合氣,從而燃燒做工。

10、節溫器

節溫器是根據冷卻水溫度的高低自動調節進入散熱器的水量,改變水的循環范圍,以調節冷卻系的散熱能力,保證發動機在合適的溫度范圍內工作。

11、冷卻系統

冷卻系的主要功用是把受熱零件吸收的部分熱量及時散發出去,保證發動機在最適宜的溫度狀態下工作。

12、噴油嘴

噴油嘴是個簡單的電磁閥,當電磁線圈通電時,產生吸力,針閥被吸起,打開噴孔,燃油經針閥頭部的軸針與噴孔之間的環形間隙高速噴出,形成霧狀,利於燃燒充分。

13、平衡軸

平衡軸讓發動機工作起來更加平穩、順暢。平衡軸技術是一項結構簡單並且非常實用發動機技術,它可以有效減緩整車振動,提高駕駛的舒適性。

14、起動系統

為了使靜止的發動機進入工作狀態,必須先用外力轉動發動機曲軸,使活塞開始上下運動,氣缸內吸入可燃混合氣,然後依次進入後續的工作循環。而依靠的這個外力系統就是啟動系統。

15、氣門

氣門的作用是專門負責向發動機內輸入燃料並排出廢氣。

16、曲柄連桿機構

曲柄連桿機構是發動機實現工作循環,完成能量轉換的主要運動零件。

17、曲軸

曲軸是發動機的主要旋轉機構,它擔負著將活塞的上下往復運動轉變為自身的圓周運動,且通常我們所說的發動機轉速就是曲軸的轉速。

18、潤滑系統

潤滑系統的功用就是在發動機工作時連續不斷地把數量足夠、溫度適當的潔凈機油輸送到全部傳動件的摩擦表面,並在摩擦表面之間形成油膜,實現液體摩擦,從而減小摩擦阻力、降低功率消耗、減輕機件磨損,以達到提高發動機工作可靠性和耐久性的目的。

19、中冷器

中冷器一般只有在安裝了渦輪增壓的車才能看到。

發動機保養注意事項:

1、清理空氣濾清器

空氣濾清器直接關繫到汽車在行駛過程中發動機的進氣問題,廣本經銷店的經理告訴記者說,車輛只在城市中行駛,空氣濾清器還不會堵塞,但是汽車如果在灰塵較多的路面上行駛後,就需要特別關注一下空氣濾清器的清潔問題了。

如果空氣濾清器發生堵塞或積塵過多就會致使發動機進氣不暢,而且大量的灰塵進入汽缸,會加快汽缸積炭速度,使發動機點火不暢,動力不足,車輛的油耗就自然會升高。

如果在正常的城市公路上行駛,空氣濾清器在汽車行駛5000公里時就應該進行檢查,如果濾清器上積塵過多,可以考慮用壓縮空氣從濾芯內部向外吹,將灰塵吹凈。但壓縮空氣的壓力也不能過高,以防濾紙被損壞。他告訴記者,在清潔空氣濾清器時切不可用水或油,以防止油水浸染濾芯。

2、驅除節氣門油泥

節氣門處油泥產生的原因是多方面的,有些是燃料燃燒的廢氣在節氣門處形成積碳;再就是沒有被空氣濾清器過濾的雜質在節氣門處殘留形成。油泥多了進氣會產生氣阻,從而導致油耗的增加。車一般在行駛1萬到2萬公里時就應該對節氣門進行清洗。

3、清洗噴油嘴積碳

因為燃燒室容易產生積碳,而積炭會導致啟動困難;噴油嘴積炭也會導致油道堵塞、汽油噴射變形、霧化差,燃油消耗自然也會增大。

對於燃燒室的清洗可以採用專用退炭劑,使燃燒室和噴油嘴上的積炭軟化並與零件表面脫離,然後將軟化的積炭除去。這種除炭方法效果好,比起以前直接擦拭相比有不損傷零件表面等優點,並且除炭的效率也得到了大大的提高。

閱讀全文

與發動機渦輪附件傳動裝置相關的資料

熱點內容
青島巨型拋光設備哪裡有 瀏覽:144
天然氣管道外面的閥門在哪個位置 瀏覽:396
crv儀表盤出現扳手什麼意思 瀏覽:618
開料機自動上下料裝置 瀏覽:7
萊州東升閥門廠有限公司 瀏覽:379
單個軸承晃動怎麼解決 瀏覽:739
cad煤氣管道閥門 瀏覽:992
店透視工具箱准嗎 瀏覽:438
機械製造廠有多少車間 瀏覽:116
帕薩特儀表燈暗怎麼調 瀏覽:286
超聲波為什麼不能用塑料模 瀏覽:566
慈溪健身器材怎麼樣 瀏覽:381
汽車儀表顯示六角花表示什麼 瀏覽:709
小區為什麼沒有水表閥門 瀏覽:76
製冷設備屬於什麼材質 瀏覽:501
車用工具箱的價格 瀏覽:248
閥門開關處漏小怎麼辦 瀏覽:228
不需要皮帶傳動裝置防護 瀏覽:832
閥門手動兩用啟閉機套什麼定額 瀏覽:278
機械自動表不帶了怎麼辦 瀏覽:201