A. 離子檢測器
四極桿系統將離子按質荷比分離後最終引入檢測器,檢測器將離子轉換成電子脈沖,然後由積分線路計數。電子脈沖的大小與試樣中分析離子的濃度有關。通過與已知濃度的標准比較,實現未知試樣的痕量元素的定量分析。
離子檢測器有連續或不連續打拿極電子倍增器、法拉第杯檢測器、Daley檢測器等。現在的ICP-MS多採用一種不連續打拿極電子倍增器,其基本原理是基於二次電子發射過程,它由多個獨立的打拿極陣列組成。當任何一個帶電離子或中性粒子、離子或電子撞擊一個塗有特定物質的表面,都可以引起原子外層電子的釋放作用。釋放的二次電子的數目取決於入射離子的類型和能量,以及它的入射角度、入射面的材料和表面積等性質。電子倍增器通常有一個有限的壽命,它取決於總的累積放電。超過這個壽命,內表塗層不再起倍增作用,倍增器需更換。
電子倍增器的運行需要一個低於666.5×10-5Pa的真空環境。否則,檢測器室內將產生寄生放電現象。一個離子在收集器上產生一個大約為108電子脈沖。電子倍增器如已開啟,最好放在無塵、放有乾燥劑的玻璃乾燥器中保存。為了延長其使用壽命,施加的電壓應保持在能達到所要求性能的最小值。操作電壓應緩慢增加,直到達到脈沖計數倍增器的平台電壓。最佳的電壓值應該是拐點之後稍微大一點。
目前ICP-MS所採用的離子檢測器幾乎都是澳大利亞ETP 公司生產的不連續電子倍增器。新型不連續打拿極電子倍增器也稱為活化膜電子倍增器。活化膜是一種新的打拿極材料,其特點是:①二次電子發射效率高,所以增益高,靈敏度高;②在空氣中穩定,可以儲存數年,出廠保證有效期為不開啟存放兩年;③動態范圍寬;④使用壽命增加,比常規CEM 檢測器長35%~100%,這是因為電子倍增器中增益(即電子放大的能力)的降低機理不同。倍增器增益不斷降低的主要原因是打拿極表面雜質累積污染引起的,其污染程度受兩個因素影響:一是真空室殘留氣體中污染物的影響;二是打拿極表面入射的電子密度。活化膜檢測器的打拿極面積比連續打拿極面積大得多,每單位面積的雜質累積污染則相應減少,所以使用壽命增加。
普通的電子倍增器採用的是電子脈沖檢測模式,所以線性范圍只有5個數量級。要想解決ICP-MS中高低濃度同時測定的問題,必須擴大檢測器的線性動態范圍。現在的雙模式檢測器很好地解決了這個問題。它採用脈沖計數和模擬兩種方式,可同時測定同一個試樣中的低濃度和高濃度元素,線性范圍達8~9個數量級。採用全數字電子倍增器,自動切換靈敏度范圍,甚至可達12個數量級。
在高計數率條件下,離子撞擊檢測器的速率太高,以至於測量電路不能以有效的方式處理計數。離子在前面的離子輸出脈沖期間就到達了檢測器,因而未被計數系統檢測。檢測器和其他有關的計數電子器不能分辨連續脈沖的這段時間稱為「死時間」。死時間將導致儀器的信號響應超過某個計數率,一般約為1×106計數/秒時,就成為非線性。大多數早期ICP-MS系統的死時間校正約為110ns,而現代儀器則趨向於僅用20ns左右來校正響應的彎曲部分。「死時間」對於同位素比值的測定非常重要,死時間和元素的質量以及濃度有關,所以在有些特殊應用中,如同位素比值的精確測定,還是應該針對具體元素進行「死時間」校正。
B. 法拉第杯的原理
Faraday杯與質譜儀的其他部分保持一定電位差以便捕獲離子,當離子經過一個或多個抑制柵極進入杯中時,將產生電流,經轉換成電壓後進行放大記錄。
當離子或電子進入法拉第杯以後,會產生電流或電子流。對一個連續的帶單電荷的離子束來說: 其中,N是離子數量、t是時間(秒)、I是測得的電流(安培)、e是基本電荷(約 1.60 x 10-19 庫侖)。我們可以估算,若測得電流為 10-9 A (1 nA),即約有六十億個離子被法拉第杯收集。
有兩種因素會造成測量的誤差,第一個是入射的帶電粒子撞擊法拉第杯表面產生低能量的二次電子而逃離;第二種是入射粒子的反向散射。因此法拉第杯只適用於加速電壓<1kV的質譜儀,因為更高的加速電壓使產生能量較大的離子流,這樣離子流轟擊入口狹縫或抑制柵極時會產生大量二次電子甚至二次離子,從而影響信號檢測。
C. 現代誇父,一頭扎進太陽,為什麼帕克太陽探測器沒有被融化掉
我們都知道每到夏天,陽光就很足就會給人們帶來灼熱的感覺,天空離我們的距離是我們不敢想像的,隔了這么遠還能使我們這么熱,那麼可想而知太陽的溫度得是非常的高,太陽內部進行著核聚變不斷的在釋放能量,太陽表面溫度可以達到6000攝氏度,因為帕克的太陽探測器在對著太陽的一側裝有防熱罩,厚度達11.4cm,所以可以盡可能地反射太陽光。
設計宇宙飛船的科學家和製造者更擔心的是宇宙飛船上的需要用的儀器和設備在運行的期間會凍結而不是融化。為了避免這種情況,這些儀器和設備的外部用電熱毯包裹,並配有獨立的太陽能加熱器。帕克太陽探測器為我們的生活帶來了極大的便利。
D. 質譜分析法的基本原理
目前,質譜分析法 ( mass spectrometric method) 是測量同位素豐度最有效的方法。質譜儀根據帶電原子和分子在磁場或電場中具有不同的運動,將它們相互分離。由於質譜儀的種類多樣,用途又非常廣泛,因此,就不一一進行介紹下面僅簡單介紹一下質譜分析的基本原理,詳細論述可參考 Brand ( 2002) 。
質譜儀一般可分為四個重要的組成部分: ① 進樣系統; ② 離子源; ③ 質量分析器; ④ 離子檢測器 ( 圖 1. 8) 。
圖 1. 8 用於穩定同位素測量的氣源質譜儀示意圖
( 1) 進樣系統 ( inlet system) : 這一特殊裝置需要在幾秒鍾內迅速、連續地分析兩個氣體 ( 樣品和標准氣) ,所以安裝較為特殊,包括一個轉換閥( changeover valve) 。這兩種氣體由直徑約 0. 1mm、長約 1m 的毛細管從儲樣室( reservoir) 中引入,其中一種氣體流向離子源 ( ion source) ,另一種氣體流向廢氣泵 ( waste pump) ,從而保持毛細管中的氣流連續不斷。為避免質量損失( mass discrimination) ,氣體物質的同位素豐度測量利用黏性的氣體流。在黏性氣流狀態下,分子的自由路徑長度非常小,因此分子經常發生碰撞,氣體混合均勻,從而不會發生質量分離 ( mass separation) 。在黏性流進樣系統的末端,有一個泄漏口 ( leak) ,使得流線收縮。應用雙路進樣系統 ( al inlet system)可以對非常少量的樣品進行高精度分析,同時,樣品分析受黏性氣流保持狀態的限制。這一過程一般在 15 ~ 20mbar ( 100Pa) 的壓力下進行 ( Brand,2002) 。如要減小樣品量,則必須在毛細管之前將氣體濃縮為很小的體積。
( 2) 離子源 ( ion source) : 是質譜儀中離子形成、加速、聚焦成為狹窄的離子束的部位。在離子源中,氣體流總是呈分子狀態。氣體樣品的離子多由電子轟擊 ( electron bombardment) 產生。電子束,一般由加熱的鎢絲或錸絲發出,在靜電場中進行加速,在進入電離室 ( ionization chamber) 之前的能量達到 50 ~150eV 之間,以便使一次電離效率最大化。電離之後,根據離子獲得的能量,帶電分子被進一步分成若干分子碎片,從而產生特定化合物的質譜。
為了增加電離的幾率,採用同性質的弱磁場使電子保持螺旋軌道 ( spiral path) 。電子在電離室的末端由帶正電的捕集器收集,對電子流進行測量,並由電子發射調節器電路 ( emission regulator circuitry) 將其保持在恆定狀態。
電離的分子在電場的作用下脫離電子束,隨後由高達數千伏的電壓進行加速,其路徑形成離子束,該離子束通過出口狹縫進入分析器。因此,進入磁場的正離子在本質上都是單能的,即它們擁有相同的動能,其表達式如下:
穩定同位素地球化學( 第六版)
電離效率決定了質譜儀的靈敏度,其值約為 1000 ~2000 個分子產生一個離子( Brand,2002) 。
( 3) 質量分析器 ( mass analyzer) : 可根據其 m/e ( 質量/電荷) 比,將離子源發出的離子束分離開來。當離子束通過磁場時,離子發生偏轉,形成圓周軌跡,其圓周半徑與 m/e 的平方根成比例。通過這一過程,離子被分離並形成離子束,每個離子束都具有特定的 m/e 值。
1940 年,Nier 提出了扇形磁分析器 ( sector magnetic analyzer) 。在這種分析器中,離子束發生偏轉的磁場呈楔形。離子束以與磁場邊界呈直角的角度進入和離開磁場,因此其偏轉角度等於楔形角 ( 如可以是 60°) 。扇形磁分析器的優勢在於其離子源和檢測器相對來說,不受分析器磁場質量損失的影響。
( 4) 離子檢測器 ( ion detector) : 離子通過磁場後,被離子檢測器所收集。離子檢測器將輸入的離子轉換為電脈沖 ( electrical impulse) ,電脈沖隨後被輸入放大器。Nier et al. ( 1947) 提出,利用多個檢測器同時聚集離子流。這種同時利用兩個單獨放大器的優勢在於,對於所有 m/e 離子束,作為時間函數的離子流波動都是相同的。每一個檢測器通道都安裝有一個適合於所測離子流天然豐度的高電阻的電阻器。
現代同位素比質譜儀具有至少裝有三個法拉第杯 ( Faraday collector,Faraday cup) ,它們位於質譜儀的焦平面 ( focal plane) 上。這是由於相鄰峰值的間距隨質量變化,並且范圍是非線性的,因此,每組同位素往往都需要有一套單獨的法拉第杯。
連續流: 同位素比值監測質譜儀
20 世紀 50 年代早期,Nier 提出了雙黏性流質譜儀 ( al viscous-flow mass spectrometer) ,20 世紀 80 年代中期對商業質譜儀的硬體做了極小的修改。在過去的幾年裡,人們為減小用於同位素測量的樣品大小而進行了艱苦的嘗試。將傳統的雙路進樣技術改為連續流同位素比值監測質譜儀 ( continuous-flowisotope ratio monitoring mass spectrometer) 。使用這種質譜儀時,被分析的氣體混合於載氣流中的微量的氣體中,從而達到黏性流狀態。現今,市場在售的大多數氣體質譜儀都帶有連續流系統,而非雙路進樣系統。
傳統的離線樣品制備程序非常耗時,並且分析精度也取決於研究者的技能。而利用在線樣品制備技術,可將元素分析器和質譜儀直接結合,從而解決和最大程度地減少很多離線樣品制備導致的問題。這兩種技術的區別參看錶 1. 5。
表 1. 5 離線和在線測量技術之間的對比
這種新型的質譜儀往往結合有色譜技術 ( chromatographic technique) 。同位素測量所需的樣品量大小已經急劇減小到十億分之一摩爾甚至萬億分之一摩爾范圍 ( Merritt & Hayes,1994) 。氣相色譜-同位素比質譜儀技術 ( GC -IRMS) 的重要特性如下 ( Brand,2002) :
( 1) 按照分子在氣相色譜柱 ( GS column) 上流出的順序對離子流進行測量,但其相對於參比氣體的強度將不會發生明顯改變。色譜不但能夠分離不同的化學物質種類,還可分離不同的同位素種類。也就是說,從色譜柱流出後,隨色譜峰上位置的不同,該化合物的同位素組成發生變化。因此,必須對每個色譜峰的整體寬度進行積分,才能獲得該化合物真實的同位素比值。
(2)同位素信號的測量時間受色譜峰寬度的限制。對於陡峭的尖峰來說,這一時間可能不超過5s。
(3)在線分析儀器的絕對靈敏度與雙路進樣系統的儀器相比更為重要。由於色譜法所需的樣品量非常小,因此採用大量的樣品組以獲得有效的統計資料庫往往非常重要。
通過採用加入內標樣方法,可以實現樣品分析標准化。內標樣的同位素組成利用傳統技術確定。
質譜分析技術有幾個獨立的發展途徑,這些途徑均具有兩個發展方向:元素分析儀→同位素比質譜儀,毛細管氣相色譜→同位素比質譜儀。在元素分析儀中,樣品燃燒生成CO2、N2、SO2和H2O,這些氣體以化學法捕集,或者在氣相色譜柱上被分離。這些技術的優勢有:①自動化制備樣品;②每個樣品的成本較低;③能夠進行大量的樣品分析。
E. 靜電的三種消除方式是什麼
第一種:通過離子風扇中和靜電中的異種電離子。中和作用
第二種:通過地線或者靜電裝置連接至大地,將靜電引向大地。
第三種:增加空氣中的濕度,冬天天氣越冷越乾燥,容易產生靜電。加濕機。
【日常生活中防靜電】
1.出門前去洗個手,或者先把手放牆上抹一下去除靜電,還有盡量不穿化纖的衣服。
2.為避免靜電擊打,可用小金屬器件(如鑰匙)、棉抹布等先觸碰大門、門把、水龍頭、椅背、床欄等消除靜電,再用手觸及。
3.穿全棉的內衣。
4.准備下車的時候,用右手握住檔,然後用手指碰著下面鐵的部位,然後開車門,把左手放在車門有鐵的位置,但是左手別松,然後把右手放掉,下車,這時候再用右手抓著門就不會被電到了
5.對付靜電,我們可以採取「防」和「放」兩手。「防」,我們應該盡量選用純棉製品作為衣物和家居飾物的面料,盡量避免使用化纖地毯和以塑料為表面材料的傢具,以防止摩擦起電。盡可能遠離諸如電視機、電冰箱之類的電器,以防止感應起電。「放」,就是要增加濕度,使局部的靜電容易釋放。當你關上電視,離開電腦以後,應該馬上洗手洗臉,讓皮膚表面上的靜電荷在水中釋放掉。在冬天,要盡量選用高保濕的化妝品。常用加濕器。有人喜歡在室內飼養觀賞魚和水仙花也是調節室內濕度的一種好方法。
另外,推薦一個經濟實用的加濕方法:在暖氣下放置一盆水,用一條舊毛巾(或吸水好的布),一頭放在水裡,一頭搭在暖氣上,這樣一晝夜可以向屋裡蒸發大約三升水。如果每個暖氣都這樣做,整個房間就會感到濕潤宜人。您不妨試試。
6.勤洗澡、勤換衣服,能有效消除人體表面積聚的靜電。
下面是兩個小竅門,有助於防止這種電擊。
1.在房屋內,地毯與鞋底摩擦後可能產生靜電,在屋外也可能由於刮風導致身上帶電。這時進出要碰鐵門時小心,手可能挨電打。反復遇到這樣的情況後,可採取如下辦法避免電擊:
在碰鐵門時,不要直接用手直接接觸鐵門,而是用手先大面積抓緊一串鑰匙,然後,用一個鑰匙的尖端去接觸鐵門,這樣,身上的電就會被放掉,而且不會遭電擊。
原理:手上放電的疼痛是由於高壓放電,由於放電時手與鐵門突然接觸時是極小面積的接觸,因而產生瞬間高壓。如果拿出來口袋裡的鑰匙,先大面積握住鑰匙(一串鑰匙本身不能傳走多少電荷因而這時也不會有電擊),再用一把鑰匙的尖端去接觸大的導體,這時,放電的接觸點就不是手皮膚上的某個點,而是鑰匙尖端,因此手不會感到疼痛。
2.下計程車時也常發生電擊現象。主要由於下車時身體與座位摩擦產生靜電積累,而下車後關門時,手突然碰鐵門就會遭電擊。
這種情況常發生時,最好注意:下車時,即在身體與座位摩擦時,就提前手扶金屬的車門框,可以在摩擦產生靜電時,隨時把身上的靜電排掉,而不至於下車後突然手碰鐵門時放電。
【孕婦防靜電】
孕婦預防靜電「騷擾」,可以在室內多種些適宜的花花草草,或者選擇使用合適的加濕器,讓居住環境保持適當的濕度。毛質或化纖質地的衣服容易產生靜電,孕產婦最好多准備些純棉質衣物。
避免長時間與電腦接觸,看電視或電腦時打開窗戶,看完之後應洗手、洗臉,使用保濕性能好的護膚品,以保證皮膚的水分,同時長期在靜電場環境生活的孕產婦,因其體內靜電的積蓄而導致血液PH值偏鹼性,所以要適當增加含維生素C、A、E和酸性食物的攝取,如胡蘿卜、捲心菜、西紅柿可以提高血液的酸度,維持人體正常的電解質平衡。
【工業生產中防靜電】
工業生產中,特別是電子生產加工和易燃易爆生產場所,靜電防護應該非常重視。
ESD20.20、IEC 61340、SJT 10694、MT 520等國際國內行業標准執行能夠有效防範靜電危害。
從標准角度來看,工業生產中防靜電主要工作有:1.根據生產制定控制方案;2.人員培訓;3.基礎設施和防護產品;4.方案執行監管、設施和防護的檢驗監測。
常見防護手段例舉:
1、環境危險程度控制
2.工藝控制
3.接地
4.增加濕度
5.抗靜電添加劑
6.靜電中和器
7.使用防靜電器具
8.加強靜電安全管理。
最有效的措施是讓人體與大地相「連接」即「接地」。因此,人要穿上防靜電鞋。要保持人體與大地相連,這就要求地面也是防靜電的才可以將人體的靜電導入大地,所以地面可以用防靜電地墊,防靜電復合膠板,並用防靜電接地線接好地,如經費充足,可選用防靜電活動地板,特別是在規劃設計機房廠房時可以考慮選用防靜電活動地板,如果機房廠房已定且設備也已安裝好,又不想因裝防靜電器材對這些設備造成停產等影響時,還可選用既價格低廉施工簡單的防靜電地墊,防靜電復合膠板等。
人穿防靜電鞋並有防靜電地墊、防靜電復合膠板或防靜電活動地板時就一定能起到好的防靜電效果?人穿防靜電鞋並有防靜電地墊、防靜電復合膠板或防靜電活動地板時還不一定能起到好的防靜電效果。通常人們還要穿襪子和墊鞋墊,年青人腳易出汗,這些襪子和墊鞋墊也能導靜電,但在中老年人在乾燥的季節時因鞋內乾燥,這襪子和墊鞋墊就不能導靜電,而且很多廠家只要求工作人員穿防靜電服和防靜電鞋,忽視了襪子和鞋墊的不利影響,使得這此防靜電鞋和防靜電地面不能發揮防靜電作用。因此在機房或廠房的入口處放置「人體綜合電阻檢測儀」,它能迅速准確檢測那些穿用不合格的防靜電鞋、襪子和墊鞋墊的人。
穿戴防靜電服,配帶防靜電有繩手腕帶,通過手腕帶接地線泄放人體靜電。
【控制生產車間靜電】
電子加工企業經常因無法把握靜電源的發生而頭痛,建議工作人員對於靜電不用怕,只要工作人員做好各方面的防護措施完全可以控制靜電的,靜電釋放或靜電耗散工作表面是一個靜電安全工作站必不可少的一部份,特別是那些用人工組裝的生產車間,當使用防靜電手腕帶,對於干凈工作表面並且合適地接到一個公共點上接地是必要的,且要經常檢測接地是否導通。
1、接地
接地對於減少在導體上產生的靜電荷是非常重要的,人體是導體,並且是靜電源發生地。因此,我們必須減少在接觸敏感防靜電元件或組件的人身上產生的靜電荷。人體產生的靜電最好是通過人體接地,且要確保接地良好有效。
【幾種個人接地裝置】
在工業中,手腕帶是最常用的接地裝置。手腕帶將安全且有效地排走人身體上的靜電荷,合理地發揮一個手腕帶的作用需要合理地接觸皮膚。一個臟的或松的手腕帶可能保留著漏走的靜電荷,使防靜電控制失效皮膚乾燥的工人必須擦拭防靜電潤手霜,使人體與手腕帶之間達到更好釋放靜電的路徑。導電的鞋類或腳接地可以被使用或補充手腕帶不足。工作站接地裝置
2、隔離
下一個概念是在儲存或運輸過程中隔離元氣件和組件。從帶電物體或帶電靜電場中隔離出來。在儲存或運輸過程中,絕緣體是最好的方式來阻止靜電釋放損傷發生。既然接地不能排走靜電荷或絕緣體,它是有必要從他們中隔離敏感元氣件和組件。在靜止工作、出貨、搬運區域減少常規塑膠和其它類型的絕緣體是最好方法從絕緣體中隔離產品。隔離也可通過限止進入整個工作區域或工作站來完成。最後,我們利用這個事實,靜電荷不能進入由導體材料或導體層做成的容器。這個效應被稱作法拉第杯效應。在儲存和運輸電子元氣件或裝載線路板時,確保有近似法拉第杯特性的容器被使用,這些容器將會從靜電釋放擊傷當中隔離出來。
法拉第杯
這種類型法拉第杯通常用在控制靜電釋放,它是金屬袋、導電袋、有蓋的周轉盒,這些法拉第杯可以攜帶這些在表面上的靜電荷並且在打開之前將它移走。
3、中和
由於接地和隔離將不能從絕緣體諸如人工合成的布或常規塑膠當中釋放電荷,所以中和就顯得重要了。從絕緣體中中和或移走在製程工作中自然產生的電荷,稱之為電離。離子是存在於空氣中簡單帶電物質,離子是由於自然能源物質產生的,它包括太陽光、照明、露天為焰和輻射。我們可以通過離子發生器人造成上萬億的離子,離子發生器使用高電壓產生一個平衡的混合帶電離子,並且用風扇幫助離子漂移到物體上或區域里中和。離子化可以在五秒鍾內中和在絕緣體上的靜電荷,因此可以減少他們潛在的引起的傷害。通過離子化中合不是接地或隔離的替代品,離子化僅減少靜電釋放事故發生的可能性或風險。
4、預防
預防是你另外一個重要措施或重要裝置。這是在靜電釋放控制中最關鍵的因素。其它人或你在與電子元氣件接觸的工作中必須意識到靜電釋放的危險,理解它們,適應它們將比任何靜電釋放控制材料都值得注意最重要的事情。
F. 法拉第杯的應用
Faraday杯可以被用在許多需要偵測離子或電子的分析儀器里,如質譜儀。其優點是簡單可靠,配以合適的放大器可以檢測≈10-15A的離子流,缺點是沒有像其他帶電粒子偵測器如電子倍增管與微通道板那樣靈敏。不過法拉第杯透過電流與電荷的轉換,可獲得准確的電荷數量。它們常被搭配使用,法拉第杯用來偵測較強的訊號,電子倍增管或微通道板用來偵測微小的訊號。此外,法拉第杯也有設計成阻滯電場分析儀(Retarding field analyzer, RFA)的形式,可用來測量離子束的強度與能量分布。
G. 釤-釹法同位素年齡分析流程
方法提要
氫氟酸+高氯酸溶樣。化學分離分兩步進行,首先在陽離子樹脂交換柱上分離總稀土元素,然後採用離子交換法或萃取色層法從總稀土元素中分出釹、釤。熱電離質譜計(TIMS)上測出試樣的143Nd/144Nd比值,同位素稀釋法測定釤、釹含量(目的是測147Sm/144Nd比值),最小二乘擬合計算等時線年齡,同時給出釹同位素初始比值,或僅計算單個試樣的釹模式年齡。高精度的同位素分析和測定等時線年齡時合理選擇試樣,是測定工作成敗的關鍵。
本方法對測定精度要求,147Sm/144Nd比值相對誤差0.5%~1%,143Nd/144Nd比值相對誤差1×10-5~3×10-5,等時線年齡在100~1000Ma內,95%置信度,相對誤差小於2%~5%。
儀器裝置和器皿
熱電離質譜計MAT260、MAT261、MAT262、VG354、TRITON等相當類型。
點焊機質譜計的配套設備。
質譜計燈絲預熱裝置質譜計的配套設備。
聚四氟乙烯燒杯10mL與30mL。
氟塑料(F46)試劑瓶500mL、1000mL與2000mL。
聚乙烯塑料洗瓶250mL、500mL、1000mL。
氟塑料(F46)滴瓶30mL。
氟塑料(F46)燒杯30mL、50mL與250mL。
氟塑料(F46)對口雙瓶亞沸蒸餾器1000mL。
石英試劑瓶2000mL。
石英亞沸蒸餾器。
石英減壓亞沸蒸餾器。
石英交換柱內 徑6mm,高300mm,上部接內徑20mm高110mm敞口容器,尾端內嵌石英篩板,要求上面的樹脂不泄漏,溶液滴速適當,樹脂床直徑6mm,高100mm,13或16支為一組,用於總稀土元素分離。
石英交換柱 內徑2mm,高350mm,上部接內徑16mm高50mm小口容器,尾端內嵌氟塑料篩板,要求上面的樹脂不泄漏,溶液滴速適當,樹脂床直徑2mm,高300mm,13或16支為一組,用於α-HIBA離子交換分離。
石英交換柱 內徑8mm,高180mm,上部接內徑20mm高60mm敞口容器,尾端內嵌石英篩板,要求上面的樹脂不泄漏,溶液滴速適當,樹脂床直徑8mm,高100mm,13或16支為一組,用於萃取色層法釹、釤分離。
石英交換柱 內徑30mm,高400mm,上接敞口容器,下端塞聚四氟乙烯纖維,用於陽離子樹脂的預處理。
氟塑料(PFA)密封溶樣器 15mL。
高壓釜 包括30mL聚四氟乙烯悶罐、熱縮套、不銹鋼外套。
石英滴管。
石英量筒(杯)10mL、50mL。
硬脂玻璃量筒1000mL。
三角玻璃瓶250mL。
玻璃燒杯3000mL。
水純化系統。
分析天平感量0.00001mg。
酸度計測量精度pH±0.02。
磁力攪拌機。
電熱板(溫度可控)。
超聲波清洗器。
不銹鋼恆溫烘箱<300℃。
高速離心機。
聚乙烯或石英離心管。
乾燥器。
微量取樣器10μL與50μL。
器皿清洗
所有使用的氟塑料與石英器皿,用(1+1)優級純鹽酸和優級純硝酸先後在電爐上於亞沸狀態下各煮2h,去離子水沖洗後又用去離子水煮沸1h,再用超純水一隻只沖洗,超凈工作櫃中電熱板上烤乾。第一次使用的新器皿在用酸煮沸前,需先用洗滌劑擦洗。
試劑與材料
去離子水二次蒸餾水再經Milli-Q水純化系統純化。
超純水去離子水經石英蒸餾器蒸餾。
超純鹽酸用(1+1)優級純鹽酸經石英蒸餾器亞沸蒸餾純化,實際濃度用氫氧化鈉標准溶液標定。進一步用超純水配製為需求濃度。
超純硝酸用(1+1)優級純硝酸經石英蒸餾器亞沸蒸餾純化,實際濃度用氫氧化鈉標准溶液標定。進一步用超純水配製為需求濃度。
超純氫氟酸用優級純氫氟酸經對口氟塑料(F46)雙瓶亞沸蒸餾器制備。
超純高氯酸用優級純高氯酸經石英蒸餾器減壓亞沸蒸餾制備。
丙酮優級純。
無水乙醇分析純。
超純氫氧化銨用高純氫氧化銨在密封乾燥器中平衡法制備。
200~400目AG50×8或Dowex50×8強酸性陽離子交換樹脂,或其他性能相似、性能更好的樹脂。
α-羥基異丁酸(α-HIBA)分析純。
二-2-乙基己基正膦酸(HDEHP,P204)分析純。
P204(HDEHP)萃淋樹脂。
P507(HEHEHP)萃淋樹脂。
聚四氟乙烯粉末。
200~400目AG1×8或Dowex1×8強鹼性陰離子交換樹脂。
鈾試劑Ⅲ(偶氮胂Ⅲ)溶液(wB=0.08%)用分析純固體鈾試劑Ⅲ與超純水配製。
145Nd或146Nd稀釋劑富集145Nd或146Nd同位素的固體氧化釹(Nd2O3)。
149Sm或147Sm稀釋劑富集149Sm或147Sm同位素的固體氧化釤(Sm2O3)。
145Nd(或146Nd)+149Sm(或147Sm)混合稀釋劑溶液溶液配製與濃度標定見附錄86.3A。
普通氧化釹(Nd2O3)光譜純基準物質,保存在乾燥器中。
普通氧化釤(Sm2O3)光譜純,基準物質,保存在乾燥器中。
GBW04419全岩,釤-釹法國家一級標准物質。
實驗室專用薄膜(Parafilm)。
超純硝酸c(HNO3)=3.5mol/L用高濃度超純硝酸和超純水配製。
錸帶規格18mm×0.03mm×0.8mm
試樣分解
操作程序分兩種情況:①釤、釹含量的稀釋法測定(ID)和釹同位素組成(IC)測定,分別稱樣、溶樣。②一次稱樣、溶樣,但是在試樣完全分解後將溶液分成ID和IC兩個分樣。前者適用於均勻性好的試樣,後者多用於均勻性差的試樣。
1)當分別溶樣時,ID測定是在PFA密封溶樣器中稱取0.05g(精確至0.00001g)粉末樣,按最佳稀釋度要求加0.1~0.15g145Nd+149Sm混合稀釋劑溶液(精確至0.00001g),輕微晃動使試樣充分散開,加5mL左右超純氫氟酸和幾滴超純高氯酸;IC測定是在PFA密封溶樣器中稱取0.1~0.2g粉末樣,加5~8mL超純氫氟酸和幾滴超純高氯酸,在大量酸加入前先加入少量,同樣輕微地晃動使試樣充分散開。緊密蓋上溶樣器蓋子,置於電熱板上於150℃溫度下加熱分解,在加熱過程中也需要經常輕微搖動溶樣器,加速試樣分解。當試樣完全分解後打開蓋子蒸干溶液,升高電熱板溫度(180℃左右)趕盡多餘氫氟酸和高氯酸,用2mL6mol/L超純鹽酸淋洗溶樣器內壁,蒸干,再用5mL2.5mol/L超純鹽酸溶解乾涸物,此時溶液很清亮,准備上柱。如果溶液出現渾濁或殘渣需進行離心分離,取上部清液上柱。
2)當ID、IC測定採用一次溶樣時,先稱取0.2g(精確至0.00001g)粉末樣,以後的試樣分解過程與前面程序相同。在試樣完全分解、被處理成5mL左右的清液後,在天平上大致按1∶2的比例將溶液分成ID和IC兩個分樣,分別稱量(精確至0.00001g),再在ID分樣中大約加入0.1g~0.15g145Nd+149Sm混合稀釋劑溶液(精確至0.00001g),輕微晃動放置過夜,准備上柱(IC分樣不加稀釋劑)。
根據岩石化學特徵,當預計試樣中的稀土元素含量較高時(如鹼性岩)可以酌情減少試樣量。超鎂鐵質岩的稀土元素含量一般很低,特別是地幔橄欖岩,釤、釹含量常常在10-7~10-8級。對於這一類試樣的溶樣問題推薦以下程序:採用30mL高壓釜將試樣稱量增大至2~4g,氫氟酸+高氯酸溶樣,蒸干,1mol/L鹽酸溶解乾涸物,加氫氧化銨使稀土元素與氫氧化鐵共沉澱,離心分離除去溶液留下沉澱物,2.5mol/LHCl溶解沉澱物,溶液待上柱。這一程序可以在離子交換分離之前將試樣溶液的體積減小1/10,而釤、釹含量增加了10~20倍(達到10-6級),同時本底沒有明顯增加。
Sm-Nd化學分離
釤、釹化學分離分兩步進行,第一步分離總稀土元素,第二步分離釤和釹。
1)總稀土元素分離。
a.陽離子樹脂交換柱准備。首次使用的200~400目AG50×8或Dowex50×8陽離子樹脂盛於石英燒杯中(約200g),無水乙醇浸泡24h,傾出乙醇晾乾後用去離子水漂洗,再用(1+1)優級純鹽酸浸泡24h,轉入30mm×400mm大型專用石英柱中,繼續用(1+1)優級純鹽酸淋洗直至無鐵離子[硫氰化銨(NH4CNS)檢驗,洗出液不再顯紅色],最後用超純水淋洗,轉入用於總稀土元素分離的(6mm×300mm)石英柱中,樹脂床高100mm,直徑6mm,待水淋干後依次加30mL6mol/L超純鹽酸淋洗,10mL2.5mol/L超純鹽酸平衡,待用。以後繼續使用時,依次用30mL超純水分多次淋洗交換柱內壁,30mL6mol/L超純鹽酸回洗,10mL2.5mol/L超純HCl平衡。
b.上柱分離。將分解完全的試樣溶液倒入備好的陽離子樹脂交換柱中,待溶液漏完先用5mL2.5mol/L超純鹽酸分多次淋洗管壁,然後加40mL2.5mol/L超純鹽酸淋洗鉀、鈉、鈣、鎂、鐵、鋁等干擾元素,最後用15mL6mol/L超純鹽酸洗脫總稀土元素,下用30mL聚四氟乙烯燒杯接收,電熱板上蒸干,待下步分離。
2)Sm-Nd分離。從總稀土元素中分離釹和釤有離子交換法和萃取色層法等多種方法。
a.α-HIBA離子交換法。本方法是個較老的方法,採用銨化陽離子樹脂,淋洗液為pH值~4.6、濃度為0.23mol/L左右的α-羥基異丁酸(α-HIBA)。
a)陽離子樹脂柱准備。選擇200目~400目AG50×8陽離子樹脂(約300g)於石英燒杯中(Dowex50×8樹脂在粒度均勻性與純度方面較AG50×8為差,如經過篩選也可用,兩者交換性能一樣),無水乙醇和(1+1)優級純鹽酸依次各浸泡24h,轉入大型專用石英柱中(同上),繼續用(1+1)優級純鹽酸淋洗,直至洗盡鐵離子[硫氰化銨(NH4CNS)檢驗,洗出液不再顯紅色],超純水淋洗至中性,完全除去Cl-離子[硝酸銀(AgNO3)檢測,洗出液不再呈現乳白色渾濁物],加稀的超純氫氧化銨淋洗,至洗出液呈鹼性(pH試紙檢驗),表明陽離子樹脂全部銨化。轉入500mL試劑瓶,保存在0.23mol/LpH=4.6左右的α-羥基異丁酸溶液中,供長期使用。
b)α-羥基異丁酸溶液配製與pH值調節。稱取70g固體分析純α-羥基異丁酸於250mL氟塑料燒杯中,加少量超純水微熱溶解,轉入3000mL石英試劑瓶中,超純水稀釋至刻度(3000mL),充分搖勻。此時α-HIBA的量濃度為0.23mol/L,pH值~2.6,通過加超純氫氧化銨,酸度計測量,將溶液酸度調節到pH值~4.6。由於平衡氫氧化銨的濃度難以控制,需要分多次加入,每加一次搖勻後測一次pH值,注意掌握pH遞增規律,最後是逐滴加入,必要時將氫氧化銨稀釋。每次測量pH值是將溶液倒在10mL小燒杯中,測量過的溶液棄去,不再回到大瓶中。將酸度調節好的α-HIBA溶液密封保存,供長期使用。
c)上柱分離。實驗證明在採用本方法時,樹脂粒度、均勻性以及α-HIBA溶液的濃度、pH值等條件變化對釤、釹洗出峰位置的影響十分明顯,而每次處理樹脂和配製α-羥基異丁酸溶液都不可能完全重復,因此當每處理一次樹脂和配製一次α-HIBA溶液後,都需要用標准溶液做一次分離實驗,用ICP或鈾試劑Ⅲ法檢測,得出修正後的新淋洗曲線。這種離子交換分離又分加壓和自然流速兩種,前者的穩定性優於後者。
下面以一個有效流程示例。用滴管從大瓶中吸入少量經過預處理的AG50×8樹脂加到2mm×350mm石英柱中,以自然沉降或加壓方式至樹脂床高320mm,直徑2mm,此時應注意樹脂柱結構的均勻性,不能有分層和氣泡。加5mL0.23mol/LpH4.6的α-HIBA溶液平衡,流干。用幾滴α-HIBA將經過第一次分離的試樣(僅有總稀土元素)溶解,用微量移液管逐滴上柱,流干,再加10mL0.23mol/LpH4.6的α-HIBA,通過光譜純氮氣加壓,控制滴速在1滴/55s±5s左右,液滴計數器計數。對於ID試樣,0~44滴棄去,45~56滴收集釤,57~150滴棄去,151~175滴收集釹;對於IC試樣,0~150滴棄去,151~175滴收集釹。收集液蒸干後不再進一步處理(破壞HIBA),直接進行質譜分析。有的實驗室在收集液蒸干後還要加幾滴高氯酸分解α-HIBA,或再經一次陽離子樹脂分離除去α-HIBA。
經ICP檢測該流程釤-釹分離度(Rs)達到5.00。
b.萃取色層分離。由於使用材料不同,本方法又分HDEHP+聚四氟乙烯粉末、P204萃淋樹脂和P507萃淋樹脂三種。HDEHP(P204)是二-2-乙基己基正膦酸,HEHEHP(P507)是2-乙基己基膦酸單2-乙基己基脂,都是稀土元素萃取劑。
a)HDEHP+聚四氟乙烯粉末。
(a)色層柱准備。將萃取劑HDEHP、聚四氟乙烯粉末、分析純丙酮按1∶10∶100比例置於500mL聚四氟乙烯燒杯中,用磁力攪拌器高速攪拌至丙酮近干,使HDEHP緊密附著在聚四氟乙烯粉末表面,加少量0.20mol/L超純鹽酸調成稀糊狀,轉入6mm×180mm石英柱中自然沉降、壓實,取色層柱高100mm,直徑8mm,上覆一層厚10mm的AG1×8樹脂幫助壓實聚四氟乙烯粉末,30mL6mol/L超純鹽酸淋洗消除本底,超純水淋洗至中性(pH試紙檢驗),5mL0.20mol/L超純鹽酸平衡,待用。
(b)上柱分離。用1mL0.20mol/L超純鹽酸將經過第一次分離的試樣(僅有總稀土元素)溶解,倒入色層柱,再用1mL0.20mol/L超純鹽酸涮洗燒杯後倒入。加8mL0.20mol/L超純鹽酸淋洗鈰,洗出液棄去,流干後加10mL0.20mol/L超純鹽酸洗脫釹,收集於10mL聚四氟乙烯燒杯中。對於IC試樣分離程序到此結束,ID試樣需要繼續加10mL0.20mol/L超純鹽酸淋洗,洗出液棄去,5mL2.5mol/L超純鹽酸洗脫釤,收集於10mL聚四氟乙烯燒杯中。收集液在電熱板上緩慢蒸干,待質譜分析。
(c)色層柱再生。在分離程序全部完成後用30mL6.0mol/L超純鹽酸分2次加入淋洗,再用超純水淋洗至中性。不用時將整個柱子浸在水中,防止色層柱因失水而斷裂。
b)P204萃淋樹脂。採用P204萃淋樹脂分離稀土元素是近30年發展起來的技術,萃淋樹脂實際上是一種含液態萃取劑的樹脂,而P204萃淋樹脂是稀土元素萃取劑HDEHP(P204)與陽離子樹脂的聚合,基於懸浮聚合原理用特殊方法製成。
(a)樹脂柱准備。取20g左右120~200目P204萃淋樹脂於6.0mol/L優級純鹽酸中浸泡24h,以稀糊狀倒入8mm×180mm石英柱中,緩慢沉降至樹脂床高100mm,直徑8mm,上面覆蓋一層10mm厚AG1×8樹脂幫助壓實樹脂床(此時應注意樹脂床中不能有氣泡,樹脂粒度應該均勻),30mL6.0mol/L超純鹽酸淋洗,超純水洗至中性(pH試紙檢驗),5mL0.36mol/L超純鹽酸平衡,待用。
(b)上柱分離。用1mL0.1mol/L超純鹽酸將經過第一次分離的試樣(僅有總稀土元素)溶解,倒入樹脂柱,再用3mL0.1mol/L超純鹽酸分2次涮洗燒杯後倒入。加7mL0.36mol/L超純鹽酸淋洗鈰,洗出液棄去,加10mL0.36mol/L超純鹽酸洗脫釹,收集於10mL聚四氟乙烯燒杯中。對於IC試樣分離程序到此結束,ID試樣需要繼續加10mL0.36mol/L超純鹽酸淋洗,洗出液棄去,5mL2.5mol/L超純鹽酸洗脫釤,收集於10mL聚四氟乙烯燒杯中。收集液在電熱板上緩慢蒸干,待質譜分析。
(c)樹脂柱再生。在分離程序全部完成後用30mL6.0mol/L超純鹽酸分2次加入淋洗,再用超純水淋洗至中性。不用時將整個柱子浸在水中,防止樹脂柱因失水而斷裂。
c)P507萃淋樹脂。P507萃淋樹脂與P204萃淋樹脂屬同一類型。
(a)樹脂柱准備。取20g左右120目~200目P507萃淋樹脂於6.0mol/L優級純鹽酸中浸泡24h,以稀糊狀倒入6mm×300mm石英柱中,緩慢沉降至樹脂床高200mm,直徑6mm,上面覆蓋一層10mm厚AG1×8樹脂幫助壓實樹脂床(此時注意樹脂床中不能有氣泡,樹脂粒度應該均勻),30mL6.0mol/L超純鹽酸分2次淋洗,超純水洗至中性(pH試紙檢驗),10mL0.10mol/L超純鹽酸平衡,待用。
(b)上柱分離。用1mL0.10mol/L超純鹽酸將經過第一次分離的試樣(僅有總稀土元素)溶解,倒入樹脂柱,再用1mL0.10mol/L超純鹽酸涮洗燒杯後倒入。加10mL0.10mol/L超純鹽酸淋洗鈰,洗出液棄去,加10mL0.10mol/L超純鹽酸洗脫釹,收集於10mL聚四氟乙烯燒杯中。對於IC試樣分離程序到此結束,ID試樣需要繼續加20mL0.10mol/L超純鹽酸淋洗,洗出液棄去,5mL2.5mol/L超純鹽酸洗脫釤,收集於10mL聚四氟乙烯燒杯中。收集液在電熱板上緩慢蒸干,待質譜分析。
(c)樹脂柱再生。在分離程序全部完成後用50mL6.0mol/L超純鹽酸分2次加入淋洗,再用超純水淋洗至中性。不用時將整個柱子浸在水中,防止樹脂柱因失水而斷裂。
上述方法分離釤、釹都十分穩定而有效,但是α-HIBA離子交換法流程較復雜,HDEHP+聚四氟乙烯粉末法中萃取劑較容易脫落,P507萃淋樹脂由於比重小裝柱比較困難,因此目前用得較多的是P204萃淋樹脂,該方法釤-釹分離度高,穩定性強,裝好一次柱可以長時間使用而效果不變。由於樹脂床內徑、高度互有不同,不同時間、不同廠家和批次的萃淋樹脂在性能上也會有差異,因此每當處理一次樹脂裝好一批柱子時都需做淋洗曲線,具體確定最佳分離條件。
Sm、Nd同位素分析
Sm、Nd同位素分析操作以雙帶源MAT261為例,其他型號質譜計類同。
1)裝樣。燈絲錸帶預處理,將錸帶用無水乙醇清洗,點焊機將錸帶點焊在燈絲支架上,將已點好錸帶的支架依次插在離子源轉盤上,整體放進燈絲預熱裝置中,待真空抽至n×10-5Pa後,按預設程序給錸帶通電,在4~6A電流和1800℃溫度下,每組帶預燒15min,以除去錸帶上雜質。
將離子源轉盤上已燒好的錸帶初步整形,依次取下電離帶。兩小滴3.5mol/L超純硝酸將試樣溶解,用微量取樣器將溶液逐滴加在蒸發帶中央,給蒸發帶通電流,強度1A左右,使試樣緩慢蒸干,以後逐步加大電流至帶上白煙散盡,進一步升溫至錸帶顯暗紅後迅速將電流調至零,轉到加下一個樣。當試樣全部裝好後按原位置插上電離帶,進一步給錸帶整形,要求蒸法帶與電離帶兩者彼此平行靠近,但又絕不能碰到一起,兩帶間距離以0.7mm為宜。裝上屏蔽罩,送入質譜計離子源中,抽真空。
2)Sm、Nd同位素分析。
a.未加稀釋劑試樣的143Nd/144Nd比值(IC)測定。測定對象為金屬離子流Nd+。當離子源真空達到5×10-6Pa時打開分析室隔離閥,電離帶與蒸發帶通電流緩慢升溫,注意在加大電流過程中試樣排氣和真空下降情況,避免真空下降過快。在真空達到2×10-6Pa以上,電離帶電流在4~6A,蒸發帶電流2.5A左右,燈絲溫度達到1700℃~1800℃時,將測量系統處於手動狀態,調出引導峰146Nd(或142Nd、145Nd),小心調節峰中心和帶電流,使Nd+離子流強度達到n×10-11A(高壓10kV,高阻1011Ω)並保持穩定。採用多接收器自動採集同位素比值143Nd/144Nd、145Nd/144Nd、146Nd/144Nd和147Sm/144Nd等數據,均取6位有效數字,其中147Sm/144Nd監測釤-釹分離情況,145Nd/144Nd監測測定值准確性,146Nd/144Nd用於質量分餾效應校正。每個試樣至少採集10組(block)數據,每組數據由8~10次掃描組成,最後取143Nd/144Nd比值的加權平均值並給出標准偏差,必要時增加採集數據流程。
b.試樣+稀釋劑混合物的Sm、Nd同位素比值(ID)測定。分兩種情況:
a)ID分樣經過二次分離,此時釤、釹完全分開,它們的同位素比值是分別裝樣、分別測定的。系統抽真空、通帶電流升溫、調出引導峰使離子流強度達到最大等操作程序同未加稀釋劑試樣,僅僅在測釤同位素時離子源溫度稍低。採用多接收器,當使用145Nd+149Sm混合稀釋劑時,釹、釤分別採集143Nd/145Nd、146Nd/145Nd和147Sm/149Sm、154Sm/149Sm兩組數據(根據多接收系統中法拉第杯的配置情況可以做相應調整,此外如果使用146Nd、147Sm等稀釋劑取值也應做相應改變),均取6位有效數字。由於釤、釹都有多個同位素,因此應同時採集兩組以上比值用於質量分餾效應校正,這樣可以將濃度(147Sm/144Nd)的測定精度提高1~2個數量級。具體辦法有多種:①與數據採集同步,根據現場測出的兩組以上比值及時計算濃度,當兩個結果在誤差范圍內一致時為最佳測定值。②聯立方程法(見下節)。③迭代法,該方法適用於平行測定較多的情況。
b)ID分樣僅進行一次總稀土元素分離,釤、釹未單獨分開。通過一次裝樣、測定,同時完成釤、釹同位素分析。該方法利用了145Nd、146Nd和147Sm、149Sm分別是釹、釤的特型同位素,不存在同質異位素干擾的特性。系統抽真空、通帶電流升溫、調出引導峰使離子流強度達到最大等操作程序同未加稀釋劑試樣。採用多接收器採集146Nd/145Nd與147Sm/149Sm2組數據。該方法優點是節省工作量,縮短了流程,缺點是混合物的單個同位素比值不能進行質量分餾效應校正,此外雜質元素增多也影響離子流的發射和穩定性,總體上測定精度沒有釤、釹經過二次分離的高。
H. 鐵、銅、鋅同位素測定
鐵、銅、鋅同位素多接收器等離子體質譜法測定
自然界中Fe有4個穩定同位素,分別為54Fe、56Fe、57Fe和58Fe;Cu有2個穩定同位素,分別為63Cu和65Cu;Zn有5個穩定同位素,分別為64Zn、66Zn、67Zn、68Zn和70Zn。目前,國際上通用的Fe同位素標准物質為IRMM-014,Cu同位素標准物質為SRM976。目前還沒有經過嚴格同位素組成定值的Zn同位素標准物質,不同實驗室有自己的內部標准,使用最多的是「里昂標准」。「里昂標准」是一種JMC生產的Zn單元素標准溶液,批號為3-0749L。
多接收器等離子體質譜儀(MC-ICPMS)的誕生使得精確測試Fe、Cu、Zn同位素組成成為可能。MC-ICPMS的優勢主要是離子化效率高以及測定精度高。
自20世紀90年代末期以來,Fe、Cu、Zn同位素研究受到了廣泛的關注並且被快速地應用於宇宙化學、地球化學和生物作用過程領域,成為國際地球科學和生命科學領域一個新興的研究方向。這些新的同位素體系為了解地球各圈層中的相互作用提供一種嶄新的地球化學示蹤手段。各國學者對不同的樣品進行了Fe、Cu、Zn同位素分析,其中包括:地外物質、火成岩、沉積岩、各種礦物、海水、河水、地下水、生物體等。δ56Fe的變化范圍為-2.96‰~0.44‰(Anbar,etal.,2007);δ65Cu的變化范圍為-3.70‰~5.74‰(Anbar,etal.,2007);δ66Zn的變化范圍為-2.65‰~3.68‰(Luck,etal.,2005;Wasson,etal.,1999)。
隨著研究和應用工作的進一步深入,Fe、Cu、Zn同位素勢必將成為地球科學和生命科學研究中的一種重要的地球化學手段。
方法提要
採用酸溶法將天然樣品中的Fe、Cu、Zn提取出來,使用AGMP-1陰離子樹脂對Fe、Cu和Zn進行分離和純化,製成分別含Fe、Cu、Zn的溶液。使用MC-ICPMS進行Fe、Cu、Zn同位素組成的測定。
儀器和裝置
多接收器電感耦合等離子體質譜儀(Nu Plasma、Nu PlasmaHR、Nu Plasma1700、Ne ptune、Iso Probe)。
自動進樣器。
膜去溶裝置。
超凈化學實驗室。
雙瓶亞佛蒸餾器。
電子分析天平。
水純化系統。
高精度移液器。
超聲波洗滌器。
試劑與材料
超純鹽酸由優級純鹽酸經聚四氟乙烯雙瓶亞沸蒸餾製得。用於銅同位素分析需亞沸蒸餾2次。
超純硝酸由優級純硝酸經聚四氟乙烯雙瓶亞沸蒸餾製得。
超純氫氟酸由優級純氫氟酸經聚四氟乙烯雙瓶亞沸蒸餾製得。
超純水自來水經預純化、初級純化、高級純化三級純化系統(如Millipore、Elga等水純化系統)獲得,電阻率18.2MΩ·cm。
雙氧水優級純。
Fe、Cu、Zn單元素標准溶液光譜純試劑配製鹽酸或硝酸介質。
聚四氟乙烯器皿溶樣杯、洗瓶、試劑瓶、廣口瓶等。
IRMM-014鐵同位素標准物質,SRM976銅同位素標准物質。
高純度液氬。
AGMP-1陰離子樹脂。
離子交換柱的制備採用聚乙烯材料交換柱(規格:6.8×43mm)。AGMP-1樹脂首次用前先以水浸泡,棄去上浮顆粒,濕法裝柱。先以0.5mol/LHNO3和H2O交替洗數次,再以7mol/LHCl+0.001%H2O2平衡。
器皿清洗實驗用器皿需經嚴格的清洗才能滿足超凈化學實驗要求,基本清洗步驟如下:①優級HNO3加熱浸泡24h後,用超純水清洗3遍;②超純HNO3加熱浸泡24h後,用超純水清洗3遍;③超純水加熱浸泡24h後,再用超純水清洗3遍。
分析步驟
(1)試樣消解
a.硅酸鹽試樣的消解。根據試樣中鐵、銅、鋅的含量,稱取一定量的粉末試樣,放入聚四氟乙烯溶樣罐中,加入適量HNO3和HF,加熱至120℃,恆溫至試樣完全消解;蒸干後再用HNO3蒸干數次,去除氟化物;再用HCl蒸干數次,轉化為氯化物形態。
b.碳酸鹽試樣的消解。根據試樣中鐵銅鋅的含量,稱取一定量的粉末試樣,放入聚四氟乙烯溶樣罐中,加入適量2mol/LHCl,加熱至120℃,恆溫24h,取出上清液;殘渣用HNO3-HF混合酸消解後蒸干,再用HNO3蒸干數次,去除氟化物;再用HCl蒸干數次,轉化為氯化物形態後,與先前取出的上清液混合,蒸干。
c.硫化物試樣的消解。根據試樣中鐵、銅、鋅的含量,稱取一定量的粉末試樣,放入聚四氟乙烯溶樣罐中,加入2mol/LHNO3,加熱至120℃,恆溫24h,取出上清液;將上清液蒸干後再用HCl蒸干數次,轉化為氯化物形態後,與先前取出的上清液混合,蒸干。
d.磁鐵礦、赤鐵礦、自然銅等試樣的消解。將稱取的磁鐵礦、赤鐵礦、自然銅等單礦物試樣放入聚四氟乙烯溶樣罐中,加入6mol/LHCl,加熱至120℃,恆溫24h,將上清液取出、蒸干。
(2)化學分離
離子交換純化。試液以0.5mL7mol/LHCl上柱後,用6mL7mol/LHCl+0.001%H2O2(加H2O2以抑制鐵被還原),去除基體元素,再以相同試劑22mL淋洗接收Cu。以20mL2mol/LHCl接收Fe。最後以11mL0.5mol/LHNO3接收Zn(圖87.32)。
圖87.32 Cu、Fe、Zn淋洗曲線m(Cu)=2μg,m(Fe)=200μg,m(Zn)=20μg
該方法的優點是使用同一離子交換柱實現Cu、Fe、Zn的依次分離。在7mol/LHCl介質條件下,Cu和Co的洗脫曲線重迭(唐索寒等,2006),當試液中Co的含量較高時,會影響Cu同位素比值的准確測定(蔡俊軍等,2006)。在6mol/LHCl介質條件下,可以進行Cu和Co的有效分離(唐索寒和朱祥坤,2006)。另外,如果只對試液進行Fe或Zn同位素分析,可適當改變HCl的酸度,減少試劑用量,降低本底。
(3)質譜測定
a.進樣方式。純化後的試液以0.2mol/LHCl或HNO3介質進樣。試液通過蠕動泵進入霧化器,形成氣溶膠經霧室進入炬管,這就是所謂的「濕等離子體」(wetplasma);或通過膜去溶裝置,將溶劑加熱揮發穿過半透膜被吹掃氣帶走,載氣將溶質以干氣溶膠形式送入炬管,這就是所謂的「乾等離子體」(dryplasma)。
與濕等離子體相比,乾等離子體技術可以降低揮發性組分產生的干擾信號或噪音,提高信號的靈敏度。對於NuPlasmaHR,在乾等離子體工作條件下,Fe的進樣濃度約為5×10-6,Cu、Zn的進樣濃度約為2×10-7。
為防止交叉污染,在試樣-標樣或不同試樣測量之間需用與進樣介質相同的酸對進樣系統進行清洗,使待測元素的信號強度降低到可以忽略的程度後進行下個試樣或標樣的測定。為了提高清洗效果,可首先用較高酸度的酸(一般為2mol/L)清洗,然後用與進樣介質相同酸度的酸清洗。
b.數據採集。同位素信號用法拉第杯接收。信號接收前需進行背景值測定,背景值的測定一般有3種模式:①峰位模式(onpeakmode):在不進樣的情況下測定各個同位素峰位的背景值。②半峰位模式(half-peakmode):在不進樣的情況下測定與待測同位素有半個原子質量數差的位置的雜訊,以此作為峰位的背景值。③ESA偏轉模式(ESA-offsetmode):在進樣的情況下偏轉EAS電壓,阻止信號進入磁場和接收器,測定儀器雜訊,以此作為峰位的背景值。
上述3種背景值測定方法各有利弊。峰位模式是最直接的測定方式,但由於在實際操作過程中難以做到試樣測試之間對進樣系統的徹底清洗,這種方法得到的背景值實際上含有一定程度的試樣信號。ESA偏轉模式測得的是儀器的電子雜訊,是嚴格意義上的背景值;在試樣測試過程中,實際背景值不僅包括電子雜訊,還包括各種離子的散射對待測信號的影響。利用半峰模式進行背景值測定的原理是假定在遠離待測同位素峰半個質量數的位置沒有實際試樣的信號,並且背景值的分布是均一的;實際上散射離子的分布並不一定均一,由於一些雙電荷離子的存在可能在某些半個質量數位置存在一定的信號峰。
完成背景值測定之後即進行試樣測定,試樣的實際信號等於測量信號減去背景值。這一過程可以由計算機在線直接完成,也可以根據需要離線操作。
信號採集在計算機的控制下自動進行。在進行Fe、Cu、Zn同位素測量時,如果每個數據點的積分時間為10s,每組(block)數據採集10~20個數據點即可。
(4)儀器質量分餾校正與數據表達
a.儀器質量分餾校正。與TIMS相比,MC-ICPMS同位素分析可以產生較大的儀器質量歧視(instrumental mass discrimination)。在正常儀器工作條件下,Fe、Cu、Zn同位素質量范圍的儀器質量歧視為3%u-1。原則上,用MC-ICPMS進行同位素比值測定時儀器的質量歧視可以通過元素外標法(element doping method)、標樣-試樣交叉法(standard-sample-bracketing method)或雙稀釋劑法進行校正。
標樣-試樣交叉法。在儀器調試穩定後,進行標樣-試樣的交叉測定。以試樣前後兩次標樣結果的平均值為標准,計算試樣的同位素組成相對與標樣的偏差。該方法的最大優點是操作簡便,但要求化學純化過程的回收率達到99%以上,以避免純化過程中可能造成的同位素分餾。運用標樣-試樣交叉法進行儀器質量歧視校正的前提,是儀器對於標樣和試樣的質量歧視在測試誤差范圍內相同。在實際操作過程中,標樣的同位素比值是通過試樣測定前後兩次標樣測定值的內差獲得,因此該方法允許測試過程中存在相對均勻的質量分餾飄移。
元素外標法。在試樣和標樣溶液中加入與待測的元素的質量數相近的至少具有兩個同位素的元素(進行Cu同位素測定時一般以Zn為外標元素,進行Zn同位素測定時一般以Cu為外標元素,進行Fe同位素測定時可以Ni為外標元素),對這兩個元素的同位素進行同時測定,選擇符合所用儀器的質量分餾規律,以外標元素為標准計算質量分餾因子,假定待測元素的同位素的質量分餾因子與外標元素的相同,計算試樣和標樣的待測元素的同位素「真值」,再根據此「真值」計算試樣的同位素組成與標樣的偏差。應當指出,運用元素外標法進行同位素測定時,仍需按標樣-試樣交叉法的程序進行。與單純的標樣-樣品交叉法相比,該方法有可能在一定程度上提高試樣的測試精度。
雙稀釋劑法。除了上述兩種方法外,進行Fe同位素測定時還可用雙稀釋劑法。該方法在樣品處理前定量加入已知同位素比值的兩種Fe同位素(一般為57Fe和58Fe),選擇適合所用儀器的質量分餾規律,對試樣和標樣測試過程中的質量分餾進行校正,獲得試樣和標樣同位素組成的「真值」。該方法的優點是對試樣化學處理的要求相對較低,並且可以避免測試可能存在的基質效應。該方法操作繁瑣,並且不能對試樣所有Fe同位素進行測定。
b.標准物質與數據表達。樣品的Fe、Cu、Zn同位素組成以相對於標准物質的千分偏差或萬分偏差表示:
岩石礦物分析第四分冊資源與環境調查分析技術
岩石礦物分析第四分冊資源與環境調查分析技術
當前,國際上通用的鐵同位素標准物質為IRMM-014,銅同位素標准物質為SRM976。對於鋅同位素,由於目前還沒有經過嚴格同位素組成定值的標准物質,不同實驗室有自己的內部標准,使用最多的是「里昂標准」。里昂標準是一種JMC生產的Zn單元素標准溶液,批號為3-0749L。
(5)同質異位素干擾運用MC-ICPMS進行Fe、Cu、Zn同位素測定時可能存在一系列的同質異位素干擾(表87.29)。概略地講,這些同質異位素干擾可以分為兩類:一類與試樣的成分有關,如54Cr+對54Fe+、64Ni+對64Zn+的干擾;另一類與測試方法有關,如[14N40Ar]+對54Fe+、[16O40Ar]+對56Fe+的干擾。與試樣有關的干擾可以通過化學純化解決(唐索寒等,2006;唐索寒和朱祥坤,2006),而與測試方法本身有關的干擾則需要通過改變工作條件、干擾信號扣除等方法克服。
表87.29 Fe、Cu、Zn同位素測定過程中潛在的干擾信號
a.低解析度模式下同質異位素干擾的評估。對於絕大多數試樣而言,經過化學純化後可以有效地去除可能的干擾元素,滿足MC-ICPMS進行Fe、Cu、Zn同位素測定的要求(唐索寒等,2006;唐索寒和朱祥坤,2006)。
對於Cu、Zn同位素測定,化學純化後的試樣產生的同質異位素干擾信號非常低,加之運用標樣-試樣交叉法進行儀器質量分餾校正可以抵消部分干擾信號,干擾信號一般可忽略不計。應當注意的是,由於Na無處不在,進行Cu同位素測定時應特別注意可能的Na污染問題,經常性地對試劑中的Na含量進行檢測。正常工作條件下,一般應保持試液中的23Na/63Cu<0.01。進行Zn同位素測定時,化學純化後的試液幾乎沒有對64Zn+和66Zn+的干擾信號,但有可能存在一定程度的對67Zn+和68Zn+的干擾(表87.29)。對該問題的一種有效的評估方式是,以一定濃度的Zn溶液為標樣,對含不同濃度的Zn的溶液進行測定,檢測Zn同位素組成的測定值隨濃度的變化情況(李世珍等,2008),並由此得出試液的Zn濃度相對與標樣的允許變化范圍。如果質量數為67和68的干擾信號難以控制到忽略不計的程度,可只報道66Zn/64Zn比值。
與Cu、Zn同位素不同,在低分辨模式下進行Fe同位素測定時存在較強的同質異位素干擾(表87.29),必須對干擾信號的強度進行詳細評估,並通過一系列操作,抑制干擾信號強度,提高信號-干擾比。具體地講,這些操作過程包括以下幾個方面:①通過膜去溶裝置進樣,去掉溶液中的揮發性組分,降低干擾信號強度。②改變RF輸出功率。干擾信號的強度可隨RF功率的改變而改變,為了最大限度地降低干擾信號的強度,在低解析度模式下運行時,需要在1100~1600W尋找RF的最佳輸出功率。③降低儀器靈敏度。離子信號通過特製的低靈敏度進樣錐進入質譜儀,在降低信號強度的同時,該進樣錐可有效地抑制[40Ar14N]+、[40Ar16O]+和[40Ar17O]+等干擾信號的產生。④增加試液濃度。在降低儀器靈敏度的同時,增大試液濃度,提升信噪比,從而降低干擾信號的影響。⑤扣除干擾信號。經過上述操作後對仍存在的干擾信號的大小進行評估,在測得的離子信號中扣除相應的干擾信號。⑥試液與標樣的濃度匹配。如上所述,儀器的質量歧視校正通過試液-標樣交叉法進行,Fe同位素比值的測定結果以試液相對於標樣的千分偏差表示,見公式(87.35)、公式(87.36)。因此,在理想狀態下(即干擾信號的波動可以忽略不計),如果標樣與試液的濃度完全相同,通過與標樣的歸一化,干擾信號的影響將被抵消。
b.高解析度模式下同質異位素干擾的分離。進行Fe同位素測定的主要干擾信號是ArN+、ArO+離子(表87.29)。嚴格地講,這些離子和與之相對應的Fe同位素間存在微小的質量差異,利用這一差異,可以在高分辨下實現Fe同位素和對應的ArN+、ArO+離子的有效分離。圖87.33為NuPlasmaHR型質譜儀在高分辨模式下將多原子干擾信號與待測信號分開的圖解,其中左邊標有54、56、57的為真正試液的Fe信號,而中間3線重疊處為干擾信號與試液信號的疊加,右邊為干擾信號。取無干擾處的Fe信號就可得到試液真正的Fe信號,從而有效地將干擾去除。
圖87.33 高分辨下Fe同位素與干擾峰的分離54Fe+、56Fe+和57Fe+譜圖的疊加
與低分辨相比,儀器在高分辨模式下運行時,信號損失約為90%。在高分辨模式下,採用正常的進樣錐,所需試液濃度與低分辨模式下相近。
(6)基質效應與濃度匹配
運用標樣-試液交叉法進行儀器質量分餾校正的前提是,在誤差范圍內,測試過程中儀器的質量分餾對於試樣和標樣是相同的。如果在測試過程中因試樣與標樣化學成分的不同而導致儀器質量分餾的變化,將會使運用標樣-試樣交叉法進行儀器質量校正後的數據偏離真值,這就是所謂的基質效應(matrixeffects)。在運用MC-ICPMS進行同位素測定時,基質效應是個值得重視的問題。例如,在進行Fe同位素測定時,當純化後的試樣中Al的含量大於Fe含量的2%時,Fe同位素的測量值就有可能偏離真值(朱祥坤等,2008)。
基質效應的另一種表現形式是酸度對儀器質量分餾的影響。李津等(2008)發現在HNO3介質條件下進行Cu、Zn同位素測定時,儀器的質量分餾對酸度非常敏感,而在HCl介質中,酸度的影響則小得多。
基質效應的一種特殊表現形式是濃度效應,也就是說,儀器的質量分餾受溶液中待測元素的濃度影響。Zhuetal.(2002)在研究Ti同位素測定方法時首先發現了這一現象,進一步的研究表明,在進行Fe同位素測定時需將樣品相對於標樣的Fe的濃度偏差保持在15%以內(朱祥坤等,2008)。
綜上所述,基於基質效應和測試過程中一定程度的干擾信號的影響,在運用MC-ICPMS進行Fe、Cu、Zn等同位素測定時,必須保持試樣和標樣中待測元素的濃度以及介質的酸度相匹配。二者間允許的偏差可能與具體儀器和工作條件有關。因此,在Fe、Cu、Zn進行方法移植時,需對相關問題進行細致的調查,進而確定出針對所用儀器的酸度和試樣濃度的允許變化范圍。
方法的重復性
運用標樣-樣品交叉法進行儀器質量分餾校正時,Fe、Cu、Zn同位素的測試結果的長期重現性(即外部精度,2SD)一般好於0.05‰每原子質量數。
參考文獻和參考資料
蔡俊軍,朱祥坤,唐索寒,等.2006.多接收電感耦合等離子體質譜Cu同位素測定中的干擾評估[J].高校地質學報,12:392-397
李津,朱祥坤,唐索寒.2008.酸度對多接收器等離子體質譜法Cu、Zn同位素測定的影響[J].分析化學,36(9):1196-1200
李世珍,朱祥坤,唐索寒,2008.多接收器等離子體質譜法Zn同位素比值的高精度測定[J].岩石礦物學雜志,27(4):273-278
唐索寒,朱祥坤,蔡俊軍,等.2006.用於多接收器等離子體質譜銅鐵鋅同位素測定的離子交換分離方法[J].岩礦測試,25:5-8
唐索寒,朱祥坤.2006.AGMP-1陰離子樹脂元素分離方法研究[J].高校地質學報,12:398-403
朱祥坤,李志紅,趙新苗,等.2008.鐵同位素的MC-ICPMS測定方法與地質標准物質的鐵同位素組成[J].岩石礦物學雜志,27 (4) : 263-272
Anbar A D,Rouxel O.2007.Metal stable isotopes in paleoceanography [J].Annu.Rev.Earth Planet Sci.,35:717-746
Luck J M,Ben Othman D,Albaréde F.2005.Zn and Cu isotopic variations in chondrites and iron meteorites: early solar nebula reservoirs and parent-body processes [J].Geochimica Cosmochimica Acta, 69(22) : 5351-5363
Wasson J T, Lange D E, Francis C A, et al.1999.Massive chromite in the Brenham pallasite and the ractionation of Cr ring the crystallization of asteroidal cores [J ].Geochim Cosmochim Acta,63: 1219-1232
Zhu X K,Makishima A,Guo Y,et al.2002.High precision measurement of titanium isotope ratios by plasma source mass spectrometry [J].Intenational Journal of Mass Spectrometry,220: 321-329
I. Faraday Cup是怎樣的一種裝置
那是法拉第杯
質譜儀常用的檢測器有法拉第杯(Faraday Cup)、電子倍增器及閃爍計數器、照相底片等。
Faraday杯是其中最簡單的一種,其結構如圖21-12所示。Faraday杯與質譜儀的其他部分保持一定電位差以便捕獲離子,當離子經過一個或多個抑制柵極進入杯中時,將產生電流,經轉換成電壓後進行放大記錄。Faraday杯的優點是簡單可靠,配以合適的放大器可以檢測≈10-15A的離子流。但Faraday杯只適用於加速電壓<1kV的質譜儀,因為更高的加速電壓使產生能量較大的離子流,這樣離子流轟擊入口狹縫或抑制柵極時會產生大量二次電子甚至二次離子,從而影響信號檢測。