導航:首頁 > 裝置知識 > 鑽井液循環模擬實驗裝置

鑽井液循環模擬實驗裝置

發布時間:2022-09-18 18:27:26

Ⅰ 萬米超深孔與連續循環鑽井技術

萬米超深孔面臨著孔底高溫高壓工況(13000m超深孔孔底溫度最高可達360℃,壓力最大可達200MPa),由此帶來泥漿、孔底動力鑽具、井壁穩定性、鑽桿柱等一系列難題。連續循環鑽井系統是世界鑽井界近年來出現的一項新技術和新裝備,該技術在接單根時,仍保持鑽井液的連續循環,可顯著降低鑽孔中溫度,大大提高上述各項技術的適用性,同時,可有效避免接單根時由於停泵和開泵引起的井底壓力波動和岩屑沉降;在整個鑽進期間,實現了穩定的當量循環密度和不間斷鑽屑排出,全面提高了井眼質量和清潔度,可大幅度減少鑽井事故,提高鑽井作業的安全性與經濟性,對萬米超深孔鑽探施工具有十分重要的意義。

連續循環鑽井系統是實現連續循環鑽井技術的關鍵技術,其綜合了機、電、液、控制一體化等多學科技術,主要是利用主機腔體總成閘板的開合,形成和控制主機上下密封腔室的連通與隔離,與分流管匯配合,完成密閉腔室內鑽井液通道的分流切換,實現在接單根中鑽井液的不間斷循環;利用動力鉗、平衡補償裝置和腔體背鉗的協同動作,實現在密封腔室內鑽桿的自動上卸扣操作。

3.1.1 國內外研究現狀

1995年,Laurie Ayling首先提出了連續循環鑽井(CCD)的概念,即在接單根期間保持鑽井液的連續循環,並申請了第一項專利;1999年,荷蘭Shell NAM公司通過定量風險分析得出結論,連續鑽井液循環將使非作業鑽井時間減半,每口井作業成本可節省100萬美元;2000年,連續循環鑽井聯合工業項目開始運行,該計劃由Maris公司管理,並獲得了ITF的資助和由Shell、BP、Total、Statoil、BG和ENI組成的「工業技術聯合組織」的支持;2001年,項目選擇Varco Shaffer作為設備製造與供應商參與研製。2003年,BP公司在美國Oklahoma的陸上井對一種連續循環系統樣機進行了現場測試並取得了成功,隨後開始了工程樣機的設計和製造。2005年,在義大利南部的Agri油田以及埃及海上的PortFouad油田,ENI公司成功實現了連續循環系統的商業化應用。2006年至2008年,Statoil公司在北海油田利用連續循環系統鑽成了6口井,均取得了巨大的成功。經過近10年的發展,目前國外連續循環系統已進入推廣應用階段,在ENI和Statoil公司取得顯著成功後,BP、BG和Shell等公司也正在考慮首次使用此項技術。

國內主要是中石油鑽井工程研究院自2006年起跟蹤這一技術,並展開研究,經過多年的技術攻關,2012年4月9日,在中石油鑽井工程研究院與渤海鑽探鑽井技術服務公司聯合建成的科學試驗井上,該院研發的連續循環鑽井系統樣機模擬試驗過程中,樣機基本動作成功實現,但系統的控制精度、可靠性還存在較大問題,樣機在關鍵技術上還需進一步攻關研究。

3.1.2 關鍵技術

從技術發展的成熟度和現場操作的安全性考慮,研製連續循環系統應該是根據我國萬米深孔鑽探技術特點,發展具有自主知識產權的連續循環鑽井技術。連續循環系統是集機、電、液、控制於一體的先進鑽井技術裝備,要成功實現國產化目標,首先必須對系統的關鍵技術展開深入分析和研究。連續循環系統的關鍵技術及難點主要包括以下幾方面。

(1)高壓動密封技術

在高壓高溫泥漿連續循環和鑽桿運動(軸向、旋轉)工況下,孔口連接系統上半封閘板與鑽桿之間會產生相對轉動和軸向運動,因此閘板的動密封性能是一個關鍵問題,目前國外產品在35MPa壓力下每接40~50次鑽桿就必須更換閘板。

(2)鑽桿精確定位與連接技術

鑽柱與鑽桿接頭在不可直接觀察的壓力腔中完成接、卸操作,鑽桿的位置由頂驅上下運動控制,下部鑽柱的位置則由卡瓦與連接器共同確定,如何保持鑽柱和鑽桿的螺紋接頭處在一個較為合理的位置,便於螺紋對中,是連續循環動作是否能順利完成的關鍵,也是系統提高效率的關鍵。

(3)鑽桿連接螺紋與桿體保護技術

鑽桿本體保護。在上卸扣過程中,極易造成鑽桿本體損傷;尤其是動力卡瓦部分,既要承受鑽柱的重量,又要提供足夠的上卸扣扭矩,使鑽桿本體與卡瓦牙板之間的受力狀態非常復雜,極易引起鑽桿打滑並損傷本體,甚至導致鑽柱滑脫掉入井內。

鑽桿接頭的對接和旋扣均在密封腔內進行,操作人員無法直接觀測到腔內情況,同時腔內的高壓鑽井液使接頭螺紋承受很大的上頂力作用,如果操作不當,極易造成螺紋損傷,因此在接頭對接和旋扣時,必須利用強行起下裝置平衡鑽井液上頂力作用,使螺紋嚙合面上的接觸力保持合適值;另外螺紋潤滑脂必須具有防沖刷能力,避免接頭螺紋發生粘扣。

(4)泥漿切換分流技術

泥漿分流控制的關鍵是保證循環壓力穩定、無擾動,由於立管與旁通管道之間存在壓力差異,因此直接切換容易引起泥漿循環壓力的不穩定,同時高壓泥漿也會對閥件產生沖刷和沖擊作用。因此,在切換前,必須先對低壓一側管道進行充填增壓,消除立管與旁通管道之間的壓力差異,這樣不僅可以保持泥漿循環壓力穩定,同時也消除了對閥件的不利影響,可有效提高閥件使用壽命。

3.1.3 研究內容與簡單方案

實現連續循環鑽井技術的主要裝置是連續循環鑽井系統,連續循環系統控制較為復雜,安全可靠性要求高,在研製過程中必須針對高壓動密封技術、鑽桿精確定位與連接技術、鑽桿連接螺紋與桿體保護技術、泥漿切換分流技術等關鍵技術進行深入分析和研究。

課題的研究可在充分調研國內外研究現狀的基礎上,比較分析典型的連續循環系統的結構,確定項目需開發的連續循環鑽井系統主要由泥漿連接器、分流管匯裝置、鑽桿接卸機械手、控制系統、動力系統等部分組成。

(1)研究內容

主要研究內容如下:①國內外泥漿連續循環技術情報調研與分析;②泥漿連續循環控制流程制定;③泥漿連續循環系統實施方案(包括泥漿連接器、分流管匯裝置、鑽桿接卸機械手、控制系統、動力系統等);④關鍵部件模擬分析研究;⑤樣機的總體設計與各部分設計研究;⑥樣機的製造與加工;⑦樣機室內實驗研究與現場實驗研究;⑧連續循環配套鑽探工藝技術與優化技術研究。

參考設計參數為:工作壓力≤35MPa,鑽桿外徑,最大扭矩9kN· m,泥漿流量≤1200gpm(75.7L/s)。

(2)研究方案

泥漿連接器可由3個類似防噴器的結構組成,每個結構體內部各帶有一個密封板,其中下結構體中的是反向密封閘板,中間的是盲板。最上部和下部的結構體中帶有旁通和閥門,並連接分流管匯裝置,作為接單根時充壓、卸壓和保持鑽井液循環的通路;鑽桿接卸機械手具有旋扣、緊扣及卸扣功能,同時在強行起下裝置的驅動下能夠上下移動,並帶有動力卡瓦用於承受鑽柱懸重,並提供上卸扣反扭矩;控制系統則為系統各執行部分提供動作驅動力與驅動指令,動力系統主要為液壓站,提供驅動動力源。

針對泥漿聯接器與分流管匯裝置的研究可在三重閘板防噴器基本結構的基礎上,進行技術的改造,增加泥漿分流通道,並注重局部細節設計,新材料選型等解決高壓動密封技術難題,設計新型壓力防沖擊結構設計,解決泥漿分流切換的擾動難題。鑽桿接卸機械手部分則通過優選控制元件、改進控制演算法,保證鑽桿與鑽柱的精確定位、對中與連接;通過改善卡瓦牙板接觸條件與材料,改進螺紋潤滑密封,減少螺紋和桿體的傷害。動力系統採用液壓驅動,模塊化設計,並將手動與自動技術相結合,提高操作便利與可靠性。控制系統的邏輯控制信號主要是壓力和位置檢測,其中壓力檢測包括密封腔壓力立管壓力以及各執行機構工作壓力等,而位置檢測則是指閘板開合、泥漿閥開合、鑽桿接頭位置以及各執行機構動作位置等,通過冗餘設計,確保邏輯控制信號的准確性和可靠性。

3.1.4 研究計劃

課題研究努力爭取多方面支持,特別是爭取國家或行業科研立項支持,計劃用5年時間完成連續循環鑽井技術國內外情報調研分析、總體技術實施方案、關鍵技術與技術難點攻關,樣機加工製造與裝配、現場實驗與優化等工作,通過連續攻關,開發出具有我國自主知識產權的、適應萬米超深孔的連續循環鑽井技術,並達到現場中試使用要求。

2013年1月~2013年6月,完成連續循環鑽井系統的國內外情報調研,對比分析,提出連續循環系統開發的基本思路;

2013年7月~2013年12月,完成連循環鑽井控制流程制定,連續循環鑽井系統總體方案初步設計,並完成部分關鍵子系統設計方案初步研究;

2014年1月~2014年12月,完成連續循環鑽井系統總體設計詳細方案,各部分(泥漿連接器、分流管匯裝置、鑽桿接卸機械手、控制系統、動力系統)詳細設計方案(初稿),各關鍵問題、難點問題(高壓動密封技術、鑽桿精確定位與連接技術、鑽桿連接螺紋與桿體保護技術、泥漿切換分流技術等)詳細解決方案(初稿),完成連續循環系統總圖、各部分圖紙、計算等初稿;

2015年1月~2015年6月,完成連續循環鑽井系統關鍵部分的模擬分析研究,完成連續循環鑽井系統總體設計方案(實施稿),完成各分部分設計方案(實施稿),完成並通過總體方案和分部分方案相關的圖紙、計算書(實施稿);

2015年6月~2015年12月,完成連續循環鑽井系統樣機的加工,完成連續循環系統的室內實驗方案設計,完成連續循環系統現場實驗方案設計。

2016年1月~2016年12月,完成連續循環鑽井技術相關室內實驗與現場實驗研究,總結問題,提出新的優化和解決方案,完成連續循環配套鑽探工藝研究;

2017年1月~2017年12月,根據優化方案進行整改,並結合多次實驗,實現研究目標,撰寫總結報告。

Ⅱ 超高溫高壓流變儀研發設計思路

開發適用於深井、超深井鑽井的抗高溫鑽井液體系,就必須在模擬井下溫度、壓力及環型空間鑽井液上返的動態條件下對鑽井液體系進行室內評價,需要對鑽井液在高溫高壓動態條件下的性能進行科學的評價,才能為深井鑽井液設計及現場鑽井液工藝性能調控提供室內實驗依據。

而目前能夠完全模擬井下條件對鑽井液進行高溫高壓動態性能評價的儀器裝置還不太理想,室內模擬評價實驗條件與井下實際工況差別較大,導致室內研究不能很好地指導現場施工。因此,研製和開發能夠模擬井下工況的實驗裝置是研究的一項重要內容。

擬研製高溫高壓流變儀能模擬泥漿在井下的流變狀態,測定泥漿在高溫高壓的環境中的溫度、壓力、剪切力、剪切應力、稠度等重要的參數,進而計算出水基泥漿在不同模式下的流變參數,為優選水基泥漿體系提供有力的依據。

6.2.1 儀器功能設計

1)動態模擬方式:考慮到井下復雜情況及實驗要求,設計轉速調節范圍應為0~1200r/min。

2)實驗溫度和壓力:為真實模擬井底環境,儀器設計工作溫度需達到300℃以上,工作壓力需達到100MPa以上。而且在低溫、低壓、中溫、中壓、高溫、高壓三種復合溫壓條件下,均能夠對壓力和溫度進行精確控制。

3)儀器功能:根據高溫深井鑽井液測試要求,該儀器應具有高溫高壓動態流變性實驗的功能,能夠在模擬鑽井液旋轉剪切和循環剪切的動態流動條件下,進行高溫高壓流變性測試實驗。

6.2.2 儀器結構

1)主機:支架,外殼,加熱系統(加熱套)。

2)高溫高壓釜體:材質為不銹鋼、哈氏合金,鈦,鉭,鎳等,帶自密封及C環的鉗形閉合方式,簡易安全;軸承:待篩選(寶石);溫度測量:J氏類熱電偶;溫度和壓力實現電腦實時控制(圖6.1)。

3)加壓系統高壓功能。

a.交流伺服機械增壓裝置,採用控制永磁同步電機轉矩的方法,實現對系統壓力的控制(圖6.2)。

b.實驗壓力由一個氣動的高壓(液壓)泵產生,該泵由一個巧妙的後置壓力控制器、高壓閥和壓力感測器來控制。通過液壓泵活塞向密封的測試體泵入液壓油,使其與測試體中的鑽井液液面直接接觸實現加壓(加壓液體充滿測試體的上部,並直接接觸靜止的樣品,位於測試區域內樣品的上方,但接觸面很小以減少液體間的混合),泵壓由SMC電控閥控制,確保了很小的壓力波動。壓力釋放通過耐高壓的氣動閥來實現,具有很高的安全性。入口壓力過濾乾燥調節系統有一個當檢測到有超額的水時利用儀器排壓系統的自動泄壓裝置,當入口剛剛給壓力時,自動排壓被打開,以便產生一個快速的壓力使自動排壓裝置到位。

圖6.1 高溫高壓流變儀主體結構

圖6.2 伺服機械增壓裝置

4)冷卻系統:使用外接冷凝裝置,通過向測試體和加熱套之間的間隙均勻噴射毛細管狀的冷凝液,並由加熱套底部返回冷凝裝置。整個冷凝過程在密閉空間內進行,確保溫度不隨時間波動或者波動小。

5)攪拌系統:機械轉動:採用步進馬達/電機控制技術,在特定范圍內,電機的速度大小可以實現連續的遞增或遞減;庫特同軸圓筒系統,使用傳統的懸錘和轉子測量系統,便於測試數據的轉移和比較。

6.2.3 工作原理

採用旋轉式黏度計原理:被測液體處於兩個同心圓筒間的環形空間內。通過變速傳動外轉筒以恆速旋轉,外轉筒通過被測液體作用於內筒產生一個轉矩,使同扭簧連接的內筒旋轉了一個相應角度,根據牛頓定律,該轉角的大小與液體的黏度成正比,於是液體黏度的測量轉為內筒轉角的測量。反映在刻度盤的表針讀數,讀取600r/min 和300r/min的讀數,通過計算即為液體黏度、切應力。

電磁圈:同軸圓筒式黏度計是用電動機或手搖柄作動力的旋轉式儀器。鑽井液放在兩個圓筒之間的環形空間內,外筒或轉筒以某個恆定的轉速旋轉。轉筒在鑽井液中的旋轉產生一個作用於內筒或吊錘的扭矩,一個扭矩彈簧將抑制此運動。如圖6.3所示。通常是附著在吊錘上的表盤來只是吊錘的偏轉。

圖6.3 旋轉式原理

Ⅲ 海洋鑽井噴射下導管模擬實驗研究

張 輝 柯 珂 王 磊

(中國石化石油工程技術研究院,北京 100101)

摘 要 水力參數是影響深水鑽井表層噴射下導管作業安全順利施工的重要因素之一。本文設計和建立了噴射下導管模擬實驗系統,選取與海底淺層土性質接近的土樣,對噴射下導管作業進行室內模擬實驗。通過改變噴嘴直徑和排量等參數,研究水力參數對導管承載力的作用規律。通過對實驗結果分析發現,當作業排量和射流速度等水力參數超過某臨界值時,水射流對導管壁外側區域的土體產生過度擾動,使導管的豎向和橫向承載力均發生較為明顯的突降。因此在實際作業中,應當在控制水力參數提高破岩效果的同時,避免為增大導管的下入速度而使用過大的水力參數。

關鍵詞 深水鑽井 噴射下導管 模擬實驗 水力參數 承載力

Simulation Experiment Research for Jetting Conctor

in Offshore Drilling Operation

ZHANG Hui,KE Ke,WANG Lei

(Research Institute of Petroleum Engineering,SINOPEC,Beijing 100101,China)

Abstract Hydraulic parameter is one of the most important influence factors for the successful operation of jetting conctor in offshore drilling.The simulation experiment system is designed and built.With the soil sample that has the similar properties with shallow seabed soil,the laboratory experiments are performed to simulate the jetting conctor operation.By using the different jet diameters and different displacements,hydraulic parameters are changed in experiments to research the influence regulators of hydraulic parameters on bearing capacity of conctor.As is shown in experiment results,both of the horizontal and vertical bearing capacities are significantly reced when the jet velocity or replacement is beyond the critical value.The reason is that the soil outside of the conctor is severe disturbed by the jet.The reasonable hydraulic parameters should be selected in jetting conctor operations to increase the efficiency of rock breaking while to avoid the severe disturbance to the soil outside of conctor.

Key words deepwater drilling;jetting conctor;simulation experiment;hydraulic parameters ;bearing capacity

噴射下導管技術是解決海洋鑽井表層作業難題的特色技術之一。使用噴射方法下入導管,對於深水作業是一項經濟有效的技術措施,不僅能夠節約作業時間和成本,同時能夠降低深水作業風險。近年來,隨著國內深水及超深水油氣資源勘探開發活動的不斷增加,噴射下入導管技術在我國南海海域得到廣泛應用。目前,中海油及Husky 、Devon、Chevron等國內外石油公司在中國南海區域所鑽的深水及超深水井絕大多數採用噴射方法下入導管。

在噴射下導管作業過程中,水射流破土在導管下部地層破碎過程中起到重要作用。射流參數過小,導管下部土體無法得到充分破碎,將使導管的下入阻力增大;射流參數過大,對導管外部土體過度擾動,將影響導管下入後承載能力的恢復。因此,本文通過室內模擬實驗,研究射流參數對導管噴射下入過程及導管承載力的影響規律,為噴射下導管水力參數設計提供依據。

1 噴射下導管作業介紹

噴射下導管作業過程中,將底部鑽具組合置於導管內部,通過送入工具與導管相連,並由送入管柱送達海底。導管到達泥線處時,在依靠重力作用進入地層的同時,開泵驅動馬達使鑽頭旋轉,對導管內的土體進行破壞,並循環鑽井液將岩屑從導管與鑽柱的環空返出。導管下入過程中,靠鑽頭旋轉與水力作用聯合破岩,並在導管自重及送入工具的重力作用下克服導管的下入阻力進入地層。導管到達設計深度後,經過一定時間的靜止,在導管與地層土之間建立足夠的膠結強度,保證導管在後續作業中有足夠的承載能力。

噴射下導管技術將鑽井與下導管兩項作業 「合二而一」 進行,一趟鑽完成了鑽井眼與下導管兩項作業,並省去了固井環節。將這項技術應用於深水鑽井導管下入作業,不僅節約了在上千米深水中多次起下鑽的作業時間,同時避免了常規下導管時,容易受到深水海域環境載荷的影響而找不到井口的風險和復雜情況,以及深水海底低溫帶來的固井質量差等技術難題[1~4]

2 噴射下導管作業室內模擬實驗

2.1 實驗總體思路

用金屬管作為模擬導管,沿金屬管軸向設置應變片,用小型水泵模擬導管的噴射下入過程,並記錄導管的下入速度。導管下入後靜置一定時間,測試導管的豎向和橫向承載力。採用不同的排量、噴嘴尺寸等參數,重復進行實驗,最終得出導管承載力隨排量、射流出口速度等水力參數變化的規律。

2.2 模擬實驗系統設計

2.2.1 實驗系統整體組成

噴射下入導管室內模擬實驗系統示意如圖1所示,主要包括土箱、管柱系統、循環系統、載入系統、測量系統等組成部分。

2.2.2 載入系統

載入系統包括對模擬導管的豎向載入和橫向載入。通過千斤頂對導管施加豎向上拔力及橫向推力(圖2,圖3),並通過壓力感測器實時採集載入過程中的壓力變化值。

圖1 噴射下導管模擬實驗系統示意圖

圖2 豎向載入系統

圖3 橫向載入系統

2.2.3 測量系統

測量系統主要對載入過程中導管頂部的豎向和橫向位移進行實時測量。通過在導管上部的鐵盒處連接位移百分表(圖4,圖5),測量導管頂部的位移隨載入載荷變化的規律。

2.3 實驗參數

實驗採用表1中的排量及噴嘴尺寸組合,得到不同的水力參數,分別實現:

1)保持噴嘴射流出口速度為23.58m/s,改變排量。

2)保持排量為1.07m3/h,改變噴嘴射流出口速度。

圖4 豎向位移測量系統

圖5 橫向位移測量系統

表1 實驗參數

2.4 實驗步驟

實驗按照以下步驟逐組進行:

1)將導管直立吊起至實驗土層上方、土箱中間位置處。

2)控制大鉤使管柱勻速緩慢下沉入泥,管柱入泥的前1m不開泵。

3)管柱入泥1m後開泵。開泵時先用小排量,逐漸增大至設計排量值。

4)緩緩釋放大鉤,使管柱在自重及射流聯合作用下逐漸下沉。下放過程中保持勻速,並保證管柱的垂直性。

5)管柱到達標記位置後,停泵,並用大鉤吊住管柱靜止20min。

6)釋放大鉤,觀察管柱是否發生沉降。

7)靜置管柱恢復4h之後,對管柱進行承載力測試。

8)在導管頂部中心位置處施加豎向上拔力,以位移40mm作為標准,記錄導管頂部的豎向位移量。

9)在導管頂部固定位置處施加橫向推力,以位移40mm作為標准,記錄導管頂部的橫向位移量。

10)拔出導管,重新整理土樣,更換實驗參數,重復實驗。

2.5 實驗結果及分析

2.5.1 實驗現象

實驗過程中,觀察到的實驗現象如下:

1)導管能夠在自重及輔助壓載作用下下入指定深度。導管下入時,可見泥漿從管內返出的現象,如圖6所示。初始返漿位置多在導管下入1.5 ~2m位置左右。

圖6 泥漿從管內返出

2)導管下入到指定深度後吊住靜止20min,釋放大鉤,多數情況下能夠保持在下入位置。在少數排量較大的情況下,發生了導管下沉3~10cm的情況。

通過上述實驗現象,證明本實驗可近似模擬噴射下入導管現場作業過程。

2.5.2 實驗結果分析

1)射流出口速度保持在23.6m/s不變的情況下,導管的豎向及橫向承載力隨排量的變化曲線如圖7所示。從圖7中可以看出,管柱的豎向及橫向承載力隨排量的增大而降低。在射流出口速度為23.6m/s的條件下,曲線上對應於排量為1.07m3/h(噴嘴尺寸為2mm)時,管柱的豎向及橫向承載力均發生較為明顯的突變。

圖7 射流出口速度不變,排量對管柱承載力的作用規律(砂土中)

2)排量保持在1.07m3/h不變的情況下,導管的豎向及橫向承載力隨射流出口速度的變化曲線如圖8所示。

圖8 排量不變,射流出口速度對管柱承載力的作用規律

從圖8中可以看出,管柱的豎向及橫向承載力隨射流出口速度的增大而降低。在排量為1.07m3/h的條件下,曲線上對應於射流出口速度為23.65m/s(噴嘴尺寸為2mm)時,管柱的豎向和橫向承載力均發生較為明顯的突變。

3 實驗結果與理論計算對比

當水力噴射破碎地層的范圍恰好達到導管壁位置處時,對應的射流出口速度稱為射流破土的臨界射流出口速度,對應的排量稱為臨界排量。根據淹沒水射流特性、土體在射流作用下的破壞條件以及鑽頭水眼的位置、傾角等參數,可以計算得到在實驗條件下射流破土的臨界排量和臨界射流出口速度隨不同噴嘴尺寸的變化曲線[5~10],如圖9所示。

圖9 實驗條件下的臨界排量和臨界射流出口速度

從圖9(a)中可以看出,在實驗中所用射流出口速度為23.6m/s的情況下,臨界曲線上所對應的噴嘴直徑為2mm,恰好為圖7中承載力曲線上發生突變的位置;從圖9(b)中可以看出,在實驗中所用排量為1.07m3/s的情況下,臨界曲線上所對應的噴嘴直徑為2mm,恰好為圖8中承載力曲線上發生突變的位置。

上述實驗結果說明:當排量和射流出口速度超出理論計算得到的射流破土臨界排量及臨界射流出口速度時,射流將對管壁外側的土體產生很大擾動,從而使管柱在下入後一定時間內的承載能力發生明顯下降。

4 結論

1)本研究設計的噴射下入導管室內模擬實驗裝置,能夠較好地模擬噴射下導管作業過程,有助於研究水力參數對導管承載力等性能的作用規律。

2)通過實驗結果可以看出,排量、射流出口速度等參數都對導管的承載能力有很大影響,提高射流排量和出口速度,能夠提高射流的破土能力,增加對導管壁附近區域地層的擾動,從而使得導管承載能力降低。

3)對照實驗結果與理論計算結果可以發現,當噴射下入導管作業的水力參數達到或接近射流破土的臨界水力參數時,將對導管壁周圍的地層產生嚴重擾動,使導管的承載能力發生比較明顯的突降。

4)在實際作業過程中,應當控制水力參數小於射流破土的臨界水力參數,防止導管承載力發生嚴重下降,避免為提高導管的下入速度而使用過大的水力參數。

參考文獻

[1]徐榮強,陳建兵,劉正禮,等.噴射導管技術在深水鑽井作業中的應用[J].石油鑽探技術,2007,35(3):19~22.

[2]張俊斌,韋紅術,蘇峰,等.流花4-1油田深水表層套管噴射下入研究[J].石油鑽采工藝,2010,32(6):42~44.

[3]劉書傑,楊進,周建良,等.深水海底淺層噴射鑽進過程中鑽壓與鑽速關系[J].石油鑽采工藝,2010,32(6):42~44.

[4]汪順文,楊進,嚴德.深水表層導管噴射鑽進機理研究[J].石油天然氣學報,2012,34(8):157~160.

[5]沈忠厚.水射流理論與技術[M].第1版.東營:石油大學出版社,1998.

[6]Chu Eu Ho.Turbulent fluid jet excavation in cohesive soil with particular application to jet grouting[D],麻省理工大學,2005.

[7]李范山,杜嘉鴻,施小博.射流破土機理研究及其工程應用[J].流體機械,1997,25(2):26~29.

[8]馬飛,宋志輝.水射流動力特性及破土機理[J].北京科技大學學報,2006,28(5):413~416.

[9]馬飛,張文明.淹沒水射流土層擴孔方程[J].北京科技大學學報,2005,28(5):413~416.

[10]高大釗.土力學與基礎工程[M].第1版.北京:中國建築工業出版社,1998.

Ⅳ 鑽井液固相控制系統

3.2.1 國內超深井泥漿泵、固控設備基本情況

3.2.1.1 泥漿泵

1)四川勞瑪斯特高勝石油鑽采設備有限公司。泵型號:LGF-1300、LGF-1600。

2)寶雞石油機械有限責任公司。F-2200HL泥漿泵,主要配套9000m以上超深、特深井鑽機以及海洋鑽機。F-1300、F-1600泥漿泵,具有與LTV公司同類FB系列泵相同的製造技術要求和質量。

3)青州石油機械廠。SL3NB-1600,QF-1300、QF-1600系列鑽井泥漿泵為卧式三缸單作用活塞泵。

4)勝利油田高原石油裝備有限責任公司。泵型號:HL3ZB-1600、HL3ZB-1300、HL3ZB-1000。

5)勝利山東長青石油液壓機械有限公司。泵型號:3NB系列鑽井泵、F系列鑽井泵等,如:CQ3NB-1300。

6)德州聯合石油機械有限公司。泵型號:DTF-1600,DTF-1300等。

現在石油一般用青州石油機械廠生產的3NB-1600較多。

3.2.1.2 固控設備

固控循環系統,它按照振動篩、除砂器、除泥器、除氣器、離心機、剪切泵等五級凈化設備配置而設計,它能夠滿足鑽井液的循環、泥漿加重、剪切及特殊情況下的事故處理等工藝要求。

1)天津大港油田集團中成機械製造有限公司。ZJ70/4500D鑽機固控系統:振動篩型號GW-2;真空除氣器型號ZCQ2/6;除砂器型號ZQJ300×2-1.6×0.6;除泥器型號ZQJ300×2-1.4×0.6;中速離心機型號LW450-1000-N1;砂泵型號;剪切泵型號 WJQ5"×6"-10"。

2)華北石油管理局固控裝備製造配套中心(華北石油太行鑽頭廠)。大港ZJ70D鑽機鑽井液固相控制系統:振動篩、除氣器、除砂清潔器、除泥清潔器、離心機等五級凈化設備。振動篩(美國)型號DERRICK 2E48—90F-3TA;除氣器型號ZCQ1/4;除砂清潔器型號NCS300×2;組合式旋流器(1台)包括除砂器和除泥器,除泥清潔器型號ZCNQ-120×8;離心機(1台)(美國)型號BRANDT HS3400。

3)中國石油化工股份有限公司華北分公司。四級凈化設備配備,包括振動篩2台、除砂器1台、除泥器1台、離心機1台。振動篩型號ZS2×1.15×2/3P;除砂器型號NCJ-227;除泥器型號NJ-861;離心機型號LW355。

4)其他生產廠家還有:唐山澳捷石油機械設備、唐山冠能機械設備有限公司、西安天瑞石油機械設備有限公司、寶雞翌東石油機械有限公司、鉑瑞特機械設備有限公司、唐山市通川石油鑽采設備有限公司等。

固控系統根據鑽井要求配備,一般現在石油的五級固控系統就能滿足萬米超深井鑽探的要求。

3.2.2 常用的固相控制方法

常用的固相控制方法包括機械清除、化學絮凝、沉澱除砂和稀釋法。

3.2.2.1 機械清除法

通過機械設備來清除鑽井液中的固相,常用的固控設備有振動篩、旋流除砂(泥)器和離心機等。

3.2.2.2 化學絮凝法

在鑽井液中加入適量的絮凝劑(如部分水解聚丙烯醯胺),使細小的固相顆粒聚結成較大顆粒。其中包括全絮凝和選擇性絮凝,全絮凝就是講鑽井液中全部固相。選擇性絮凝則是保留泥漿中的有用固相(膨潤土蒙脫石),絮凝掉泥漿中的無用固相(岩粉)。一般說來,選擇性絮凝很難達到理想的效果。對於繩索取心來說,絮凝物呈紊狀團塊,密度小,沉降時間長,很多絮凝塊可能又被送入孔內,為鑽桿內壁提供了大量的結垢顆粒。

3.2.2.3 沉澱除砂法

就是通過現場沉澱池和循環槽,利用液流流速驟降,顆粒自重下降,清除掉鑽井液中較大顆粒的岩屑。

3.2.2.4 稀釋法

用清水或新的漿液直接稀釋或替換一部分性能惡化的鑽井液,使固相含量降低。稀釋法雖然操作簡單、見效快,但會使鑽井液成本顯著增加,替換出的鑽井液的排放還可能會污染環境。

3.2.3 鑽井液固相控制系統的核心——鑽井液固控離心機

3.2.3.1 技術原理及計算

鑽井液離心機的工作原理及設計思想如下:

離心機主要清除鑽井液中大小為5~40μm的固相顆粒。離心機的工作原理如圖3.1所示,主電動機通過滾筒上的皮帶輪帶動轉鼓高速旋轉,同時帶動行星差速器外齒圈旋轉;輔驅動電動機通過行星差速器中心輪帶動螺旋推進器旋轉。滾筒與推進器轉向相同,但推進器轉速比滾筒轉速略低,使推進器與滾筒之間形成轉速差。由於滾筒高速旋轉,固相顆粒在離心力的作用下貼附於滾筒內壁,被推進器的葉片刮下並推到底流孔排出,經過分離的液相則由溢流孔排出,達到固液分離的目的。

圖3.1 鑽井液離心機結構示意圖

3.2.3.2 離心機處理量與處理粒徑的關系計算

以柱形轉鼓為例進行計算:

固相重力沉降速度:vo=d2Δρg/18μ;

固相在重力場中沉降速度:v=voFr,其中分離因數Fr2r/g;

圖3.2 粒子在柱形轉鼓中運行軌跡

如圖3.2所示,固相從自由液面至轉鼓壁所需時間:

科學超深井鑽探技術方案預研究專題成果報告(上冊)

假定粒子在轉鼓的軸向速度不變,則固相在轉鼓軸向所走沉降區所需時間:

科學超深井鑽探技術方案預研究專題成果報告(上冊)

根據分離條件t1≤t2,可求得離心機的生產能力為:

科學超深井鑽探技術方案預研究專題成果報告(上冊)

將按級數展開,其中r2-r1=h為液層厚度,令,D=2r2變換上式得到

科學超深井鑽探技術方案預研究專題成果報告(上冊)

式中:∑稱為當量沉積面積,又稱為離心機能力指數。由於∑=FrA,而A與Fr均隨r變化,因此取二者乘積的平均值:

科學超深井鑽探技術方案預研究專題成果報告(上冊)

根據上公式計算出的處理量偏大,需要乘以一個修正系數:

科學超深井鑽探技術方案預研究專題成果報告(上冊)

當離心機的結構參數確定的情況下上式可以轉換為:

科學超深井鑽探技術方案預研究專題成果報告(上冊)

當上式計算出來的值小於流態臨界值時(處理量隨顆粒變化,理想狀態),則離心機符合要求。

當離心機處理量一定時,則的固相會被清除。

影響鑽井液離心機處理量與處理粒徑的參數比較多,並且相互影響、相互制約。此處只是通過理論計算分析了離心機處理量與處理粒徑之間的關系式,為設計確定離心機結構參數提供了一些理論原則。由於在整個鑽井過程中,鑽井液密度、黏度和固相含量是不斷變化的,因此,離心機結構參數的優化,還有很多工作要做,這樣才能使離心機發揮最佳工作性能,貼近鑽井工藝的要求。

3.2.3.3 速度關系計算

行星齒輪差速器是離心機最重要的部件之一,保證主機通過差速傳動實現螺旋推進器與滾筒的差轉速,從而實現了對物料的分離和推料。圖3.3是二級行星齒輪差速器的工作原理圖。下面通過計算分析雙電機驅動與單電機驅動兩種模式下的轉速差與差速比的關系。

圖3.3 二級行星齒輪差速器原理圖

(1)雙電機驅動

根據周轉輪系傳動比公式,可得

科學超深井鑽探技術方案預研究專題成果報告(上冊)

ω80,ω35=ω,ω47代入式(3.2),可得

科學超深井鑽探技術方案預研究專題成果報告(上冊)

將式(3.3)代入式(3.1),可得

科學超深井鑽探技術方案預研究專題成果報告(上冊)

式中:ω1為第一級太陽輪轉速;ω0為第二級系桿與螺旋推進器的轉速;ω為差速器第一、第二級內齒圈及滾筒的轉速;z1,z3,z4,z6分別為第一級太陽輪、第一級內齒圈、第二級內齒圈和第二級太陽輪齒數;z5,z7分別為第二級內齒圈和第二級太陽輪齒數。

當主驅動電動機未啟動而輔驅動電動機啟動時,則有傳動比

科學超深井鑽探技術方案預研究專題成果報告(上冊)

若令Δω0=ω-ω0為滾筒轉速與螺旋推進器轉速的轉速差,Δω1=ω-ω1為滾筒轉速與差速器輸入轉速的轉速差:則有

科學超深井鑽探技術方案預研究專題成果報告(上冊)

(2)單電機驅動

電機驅動轉鼓,並將原輸入軸固定,即ω1=0。

科學超深井鑽探技術方案預研究專題成果報告(上冊)

可見單電機驅動離心機可通過改變驅動電動機的轉速,來改變滾筒與螺旋推進器的轉速差,從而改變固體顆粒排出速度。

3.2.4 鑽井液固相控制系統選型

以天津大港油田集團中成機械製造有限公司生產的ZJ70/4500D鑽機固控系統為例。

3.2.4.1 概述

ZJ70D鑽機固控循環系統,它按照振動篩、除砂器、除泥器、真空除氣器、中速離心機、剪切泵等五級凈化設備配置而設計,它能夠滿足鑽井液的循環、泥漿加重、剪切及特殊情況下的事故處理等工藝要求。

該系統是綜合了國內外鑽井液循環凈化系統優點的基礎上,結合鑽井工藝的實際需要而設計的新產品,它採用了許多成熟的新工藝、新技術,同時充分考慮了使用過程中的一些細節問題,具有設計合理、安裝使用方便的特點。

鑽井液凈化系統符合SY/T 6276、ISO/CD14690《石油天然氣工業健康、安全與環境管理體系》,固控系統所有交流電機及控制電路符合防爆要求。工藝流程和設備符合API 13C及相關的標准和規范。

該系統由於採用了集成模塊化,裝卸方便,既滿足公路及鐵路運輸的要求,又滿足吊車裝卸也可用專用搬家車搬運,並能在井場內拖拉。

3.2.4.2 主要技術參數

(1)罐體數量

鑽井液循環罐6個;泥漿材料房1個;泥漿儲備罐2個;原油儲備罐1個;冷卻水罐1個;補給罐1個(固控系統流程布置圖見圖3.4,平面布置圖如圖3.5所示)。

圖3.4 固控系統流程布置圖

圖3.5 固控系統平面布置圖

(2)系統容積(表3.1)

表3.1 固控系統容積

(3)外形尺寸(表3.2)

表3.2 固控系統外形尺寸

(4)安裝方式

鑽井液凈化罐雙排安裝,即1號、2號、3號罐、4號罐為一排,直線排列;冷卻水罐、5號、6號罐為一排,直線排列在井場內側;泥漿材料房安裝在4號罐、5號罐一端;泥漿儲備罐跟4、5號罐擺在一條直線上;原油儲備罐在3號罐後;補給罐放在1號罐前面。

3.2.4.3 固控系統與鑽機連接尺寸及主要配套設備

(1)連接尺寸

1)井口中心至1號罐側壁的距離5m;

2)井口中心至1號罐一側罐壁的距離16m;

3)井口中心至1號鑽井泵中心距離22m;

4)三台鑽井泵(型號F-1600)的中心距4.5m。

(2)泥漿凈化設備及調配設備

主要包括:振動篩、真空除氣器、除砂清潔器、除泥清潔器、離心機、砂泵、灌注泵、加重系統、剪切混合系統。

(3)主要配套設備(表3.3)

表3.3 固控系統主要配套設備

續表

3.2.4.4 鑽井液罐的組成及工作原理

(1)一號罐

一號罐為4個倉,分別為補給倉、沉砂倉、一號除氣倉、二號除氣倉(表3.4)。

表3.4 一號罐組成及容積

一號罐前倉為補給倉,沉砂倉底座放置一台11kW補給泵和一台30kW砂泵。補給泵布置1條吸入管路、1條輸出管路,補給倉內的泥漿來自中壓泥漿管線,可由加重泵提供,為凈化處理後的泥漿,在起鑽過程中可以用補給泵補給泥漿。下鑽過程中泥漿從井口到分配器至補給倉管線流回補給倉。沉砂倉上部裝有振動篩三台,一號除氣倉上部裝有真空除氣器一台,真空除氣器吸入一號除氣倉泥漿,30kW砂泵吸入二號除氣倉泥漿接噴射漏斗,除氣器處理後的泥漿經過噴射漏斗排至二號除氣倉。二號除氣倉裝有15kW攪拌器一台。補給倉、一號除氣倉和二號除氣倉各裝有旋轉式泥漿槍1套。

(2)二號罐

二號罐為3個倉,分別為除砂倉﹑除泥倉和離心機吸入倉(表3.5)。

表3.5 二號罐組成及容積

二號罐罐面裝有除砂器、除泥器、離心機供液泵各1台和15kW卧式攪拌器3台、旋轉式泥漿槍3套。罐右端(從井口方向看)底座裝有除砂泵和除泥泵各1台,可分別向除砂器和除泥器供液。

(3)三號罐

三號罐分為2個倉,分別為凈化倉和剪切葯品倉(表3.6)。

表3.6 三號罐組成及容積

三號罐裝有2台15kW卧式攪拌器、旋轉式泥漿槍2台。罐面配有1個2.5m3葯品罐。罐面裝有1個泥漿化驗房。

(4)四號罐

四號罐分為3個倉。分別為儲備倉、重泥漿倉和剪切葯品倉(表3.7)。

表3.7 四號罐組成及容積

四號罐儲備倉和重泥漿倉裝有15kW攪拌器1台、旋轉式泥漿槍1台。剪切葯品倉裝有15kW攪拌器1台。罐面留有洗眼台的位置。

(5)五號罐

五號罐分為1個倉,為加重預混倉(表3.8)。

表3.8 五號罐組成及容積

五號罐加重預混倉裝有15kW攪拌器2台、旋轉式泥漿槍2台。罐左端(從井口方向看)底座裝有55kW加重泵2台,罐面裝有2套混合漩流裝置,罐外地面裝有地面加重直噴漏斗1套。

(6)六號罐

六號罐分1個倉,為鑽井泵吸入倉(表3.9)。

表3.9 6號罐組成及容積

六號罐鑽井泵吸入倉裝有2台15kW卧式攪拌器,2套旋轉式泥漿槍。

(7)1號和2號泥漿儲備罐組成及容積

1號和2號泥漿儲備罐均分為一個倉(表3.10)。

表3.10 1號及2號泥漿儲備罐組成及容積

(8)原油儲備罐組成的容積

原油儲備罐分為一個倉(表3.11)。

表3.11 原油儲備倉容積

3.2.4.5 固控循環系統流程操作

(1)工藝流程特點(圖3.6)

圖3.6 固控循環系統流程

1)工藝流程設計滿足泥漿五級凈化及泥漿調配要求;

2)井口返出泥漿經凈化設備處理及沉澱後,供鑽井泵吸入,也可使用加重系統和剪切混合系統調配泥漿。

3)三台鑽井泵吸入口,鑽井泵可吸入3號罐、4號罐、5號罐和6號罐各倉泥漿。

4)加重系統可以從3號罐、4號罐、5號罐、6號罐以及泥漿儲備罐任意倉吸入泥漿,並可將加重混合後的泥漿輸送到上述罐任意倉中。

5)剪切混合系統利用4號罐所分隔出的13.4m3剪切葯品倉,進行葯品混合,剪切混合後的葯品可通過輸送管線直接輸送至3號罐上2.5m3葯品罐,可通過泥漿槽加入2號罐、3號罐、4號罐、5號罐、6號罐以及泥漿儲備罐各倉。

6)各罐及各個倉之間有泥漿渡槽或連通管線連接,並裝有可控制液面調節裝置。

7)3號罐、4號罐、5號罐、6號罐以及泥漿儲備罐各倉泥漿的倒換可用加重泵實現。

(2)工藝流程描述

1)鑽井液凈化大循環。

井口出來的泥漿通過管線可分別或同時輸送到3台振動篩,經過振動篩處理後進入沉砂倉,從沉砂倉出來的泥漿經過泥漿渡槽進入除氣倉,真空除氣器除氣後的泥漿經泥漿渡槽進入除砂倉,除砂泵吸入除砂倉的泥漿,將泥漿通過管線輸送至除砂器,除砂器處理後的泥漿經過泥漿渡槽進入除泥倉,除泥泵吸入除泥倉中的泥漿,將泥漿通過管線輸送至除泥器,除泥器處理後的泥漿經過泥漿渡槽進入中速離心機倉,中速離心機的供液泵吸入中速離心機倉中的泥漿,離心機處理後的泥漿經過泥漿渡槽進入凈化倉,鑽井泵可將其吸入並輸送至井口。

2)加重流程(參考附圖ZJ70D泥漿循環及凈化系統流程圖)。

5號罐為泥漿加重罐,設有兩台加重泵。

兩台加重泵都可以吸入3號罐、4號罐、5號罐、6號罐以及泥漿儲備罐各倉的泥漿,並通過旋流器漏斗加重後,經加重輸送管線將加重後的泥漿送至3號罐、4號罐、5號罐、6號罐以及泥漿儲備罐各個倉。

在泥漿材料房裝有地面加重直噴漏斗1個,3號罐、4號罐、5號罐、6號罐和泥漿儲備罐也可通過地面加重漏斗進行加重。

兩台加重泵可實現互為備用,即有一台加重泵出現故障,則另一台通過轉換吸入和輸出閥門便可代替其工作(流程圖中加重泵吸入閥1~9為加重泵吸入各倉的罐底閥,加重泵輸送閥1~9為加重泵排入各倉閥門)。

(3)鑽井泵吸入流程

鑽井泵可吸入3號罐、4號罐、5號罐、6號罐各倉泥漿。無須調撥泵調撥(流程圖中鑽井泵吸入閥1~8為鑽井泵吸入各倉的罐底閥)。

(4)灌注流程

每個鑽井泵的左側安放一台灌注泵可以直接從3號罐、4號罐、5號罐、6號罐各倉吸入泥漿,為3台鑽井泵進行泥漿灌注。

(5)剪切混合流程

剪切泵從4號罐所分隔出的13.4m3剪切倉內吸入泥漿,可進行反復剪切混合,剪切混合後的葯品可通過輸送管線輸送至3號罐上2.5m3葯品罐,葯品罐葯品可通過泥漿槽加入2號罐、3號罐、4號罐、5號罐、6號罐以及泥漿儲備罐各倉。

(6)泥漿補給流程

一號罐前倉為補給倉,補給倉前擺放一個補給罐,沉砂倉底座放置一台11kW補給泵(1號),補給罐中也安裝11kW補給泵(2號)一台。補給泵配有吸入、輸出管路,補給倉和補給罐內的泥漿來自中壓泥漿管線,可由加重泵提供,為凈化處理後的泥漿,在起鑽過程中可以用補給泵補給泥漿。下鑽過程中泥漿從井口到分配器至補給罐管線流回補給倉。1號補給泵可以從補給倉中將泥漿打到補給罐中,另外,在沉砂倉清砂前,1號補給泵可通過另一條通至沉砂倉的吸入管線,將沉砂倉中的泥漿倒至補給倉或補給罐。

Ⅳ 急!請問標準的鑽井液(泥漿)實驗室需要哪些設備

比重稱、漏斗粘度計、泥漿失水量儀、泥漿固相含量測定儀、泥漿含砂量測定器、六速旋轉粘度計、PH廣泛試紙、氣壓失水量儀、高速攪拌機、低速電動攪拌機、搪瓷量杯、量杯、量筒、燒杯等、維卡儀、流動度儀、微型壓力儀、天平等。

Ⅵ 鑽井液、完井液引起儲層損害評價新方法——高溫高壓岩心動態損害評價系統的研究

余維初1,2,3蘇長明1鄢捷年2

(1.中國石化石油勘探開發研究院,北京100083;2.中國石油大學(北京),北京102249;3.長江大學,荊州434023)

摘要 高溫高壓岩心動態損害評價系統是石油勘探開發中評價儲層損害深度與程度的新的評價實驗方法與實驗儀器,它可以測量岩心受入井流體損害前各分段的原始滲透率值,然後不需取出岩心,就可以直接在模擬儲層溫度、壓力及流速條件下,用泥漿泵驅替高壓液體罐中的入井流體,在岩心端面進行動態剪切損害。損害過程完成後,也不需取出岩心,而是通過換向閥門改變流體的流動方向,再由平流泵驅替液體,測量儲層岩心受損害後各段的滲透率值。通過對比岩心各分段的滲透率變化情況,即可確定岩心受入井流體損害的深度和程度,從而優選出滿足保護油氣層需要的鑽井液與完井液。目前「評價系統」及配套智能化軟體已在多個油田企業投入使用,並取得了良好的應用效果。

關鍵詞 岩心 儲層保護 動態損害 評價系統 鑽井液與完井液

A New Method Used to Evaluate Formation Damage Caused by Drilling & Completion Fluids——Investigation of the HTHP Core Dynamic Damage Evaluation Testing System

YU Wei-chu1,2,3,SU Chang-ming1,YAN Jie-nian2

(1.Exploration & Proction Research lnstitute,SlNOPEC,Beijing100083;2.China University of Petroleum,Beijing102249;3.Yangtze University,Jingzhou434023)

Abstract The HTHP Core Dynamic Damage Evaluation Testing System is newly developed a new method and apparatus used for evaluation of the extent of formation damage caused by drilling and completion fluids in petroleum exploration and development.It can be used to measure the original permeability of each section of the core sample before contamination by the drilling or completion fluid.Then,the core does not need to be taken out and the process of dynamic damage can be directly concted by flushing with the drilling or completion fluid using mud pump under the conditions of the simulated formation temperature,pressure and flow rate.After the damaged process is completed,the core is still kept in the holder and the permeability of each section of the core sample after damage can be measured by altering the flow direction with the reversal valve and flushing a fluid(cleaning water or kerosene)by the constant flow-rate pump.By comparing the permeability data that occur at each section of the core sample,the damage level and invasion depth can be determined,and the drilling and completion fluids that meet the requirements of formation protection can be selected.Currently,the new evaluation method,the testing system and associated software for formation damage inced by drilling fluid and completion fluids were applied in several oilfields widely,and favorable results have been obtained.

Keywords core formation protection dynamic damage testing system drilling and completion fluids

隨著世界石油生產的不斷擴大與發展,油層傷害與保護的問題日益為各國石油工程師們所關注。油層傷害一旦產生,其補救措施需要付出昂貴的代價。因此,國外早在20世紀40~50年代就開始了油層傷害與保護的室內試驗研究。我國也在20世紀70~80年代開始著手研究油層傷害問題,並建立了相應的儲層損害評價實驗方法及相關儀器。然而隨著油氣田勘探與開發逐步轉向深層,原有的儲層損害評價方法已不能適應。因此,要想在油氣層保護技術領域取得突破性成果,有必要建立一套完整的、能夠適應更深的地層勘探開發的儲層損害評價新方法和與之相配套的評價手段,既可以測量岩心各段的原始和損害後滲透率,又能模擬儲層溫度、壓力及泥漿上返速度等條件對岩心進行動態損害評價的新方法、新儀器。

本文主要介紹了該「評價系統」的設計思路、設計原理、技術性能指標、實驗參數計算方法及其應用情況。

1 「評價系統」 的設計思路和工作原理

1.1 設計思路

(1)該「評價系統」首先要能夠測量岩心各段的原始滲透率(Koi)和受損害後滲透率(Kdi)。根據本項目組的專利技術滲透率梯度儀(專利號:91226407.1)的工作原理和設計思路,由達西定理公式便可很方便地計算出岩心各段損害前後的滲透率參數。

(2)根據本項目組專利技術新型智能高溫高壓岩心動態失水儀(專利號:ZL200420017823.7)的工作原理和設計思路,在模擬地層溫度、壓力、井眼環空泥漿上返速率的條件下對岩心某個端面進行動態剪切污染損害實驗。

(3)根據本項目組專利技術高溫高壓岩心動態損害評價實驗儀(專利號:200410030637.1,ZL200420047524.8)在滲透率測量完成後,不需取出岩心,而是在模擬地層溫度、壓力、井眼環空泥漿返速的條件下對岩心進行動態污染實驗。在對岩心進行動態損害時,利用相關閥門,關閉岩心多段滲透率的測量機構,採用特製泥漿泵,在模擬地層溫度、壓力和井眼環空泥漿上返速度的條件下,對岩心的某個端面進行動態剪切污染,動態污染採用端面循環剪切式結構。實現一次裝入岩心就可以在模擬地層溫度、壓力、井眼環空泥漿返速的條件下對岩心進行動態污染,以及污染前後岩心多項滲透率參數測試的評價實驗研究。

(4)在多段滲透率測試過程中「評價系統」的重要組成部分使用了本項目組的專利技術高壓精密平流泵(專利號:ZL02278357.1)首次實現恆流、恆壓以及無脈動微量液體的輸送技術。

(5)「評價系統」的核心部分使用了本項目組的專利技術岩心夾持器(專利號:ZL93216048.4)首次採用金屬骨架硫化技術、「O」型密封圈技術以及橡膠的自封原理,打破了老型產品的擠壓式密封結構,順利地實現了沿岩心軸向建立多測點技術。

該「評價系統」的一個突出特點是將岩心損害前後各段滲透率變化測試和對岩心端面的動態污染損害機構有機地結合起來,從而順利地實現了設計目的。

1.2 儀器的組成結構及工作原理

為了實現在同一台儀器上完成岩心的多段滲透率測試和模擬井下條件對岩心的動態損害,從而准確高效地評價鑽井液保護油氣層的效果,根據鑽井工藝要求和上述設計思路,把高溫高壓岩心動態損害評價系統設計成如圖1所示的工藝流程,它主要由精密平流泵、泥漿泵、液體罐、端面動循環並帶多個測壓點的岩心夾持器、流量計、電子天平、氣源、壓力感測器、溫度感測器、環壓泵、回壓控制器、加熱系統、數據採集與處理系統等部分組成。

圖1 高溫高壓岩心動態損害評價系統流程

1—氣源;2—高壓減壓閥;3—高壓液體罐;4—泥漿泵;5—流量計;6—電子天平;7—回壓控制器;8—環壓泵;9—端面循環的多測點岩心夾持器;10—閥門;11—壓力感測器;12—精密平流泵;13—排污閥;14—數據採集器;15—數據處理系統(計算機、列印機);16—加熱體

其主要工作原理是:當關閉泥漿泵及相關閥門時,由精密平流泵驅替可進行岩心損害前後滲透率的測試;而當打開泥漿泵、流體管路及相關閥門時,可對液體罐中的鑽井液或完井液在實際儲層條件下進行循環,從而實現對儲層岩心端面進行動態損害模擬。軟體界面如圖2右上角所示。

「評價系統」由兩大部分組成:鑽井過程的動態損害模擬系統和多段滲透率測試系統。在動態損害模擬系統中(如圖2左邊部分),氮氣瓶給泥漿罐加壓,泥漿循環泵控制流量,使鑽井液以一定的壓力和流量從泥漿罐里泵出,通過岩心夾持器與岩心的端面接觸,對岩心端面進行高溫高壓動態損害評價實驗,最後流回泥漿罐,形成密閉循環。在壓力作用下,泥漿中的液體經過岩心而濾失,其動態失水經過管線流到電子天平稱重,就可以測量出岩心的動失水速率等多項實驗參數。

在滲透率測試部分(如圖2右邊部分),精密平流泵驅動實驗液體進入岩心,經過岩心流至電子天平。另外,多個壓力感測器實時採集岩心各測壓點的壓力值,根據達西定理進而可以算出岩心損害前後各分段的滲透率參數。

圖2 高溫高壓岩心動態損害評價系統軟體界面

1.3 數據採集與控制原理

1.3.1 硬體設計的總體思路

該「評價系統」控制部分硬體設計應具備以下主要功能:①溫度控制,模擬井下高溫工況;②流量控制,能夠根據流量設定值准確地控制磁力泵的排量,從而控制岩心端面鑽井液的流速,以模擬鑽井作業過程中實際泥漿環空返速;③圍壓監測,岩心夾持器圍壓通過步進電機控制,儀器能夠根據設定值自動控制並監測壓力,實時顯示在人機交互界面上;④儀器工作壓力監測,泥漿循環的工作壓力由氣源調節給定,同時受泥漿溫度的影響,軟體儀器自動檢測壓力參數;⑤動濾失量計量,鑽井液對岩心的損害是否已經完成,主要是看動濾失速率,當損害已充分時,動濾失速率曲線上升趨於平衡,不再變化或變化微小,說明鑽井液對岩心的動態損害實驗已經完成,這個過程一般需要150min,濾紙的動靜濾失速率道理也是一樣。

1.3.2 軟體部分

該「評價系統」控制軟體的人機交互、數據處理等功能由PC機完成,藉助PC機強大的繪圖、數據處理功能為用戶提供一個實時性好、穩定性強、界面直觀、使用方便的操作管理平台。用戶可通過計算機軟體非常清晰地掌握整個儀器運行的情況,可方便、及時地對實驗過程中的各項參數進行調整,並對數據進行分析。為研究人員提供友好、便捷的人機交互全中文界面及數據處理環境,同時實現數據的存儲,實驗曲線的繪制,數據報表的輸出和歷史數據的查詢等功能,其中包括流體通過岩心的孔隙體積倍數,岩心各段的滲透率、滲透率損害率、滲透率恢復率、鑽井液與完井液通過岩心時的動濾失速率等實驗參數,並且由計算機直接列印出實驗數據報表,「評價系統」控制軟體的人機交互主界面見圖2所示。

1.4 主要技術指標

該「評價系統」的主要技術性能指標如下:(1)鑽井液與完井液污染壓力:0~10MPa,測量岩心滲透率流動壓力最大可達60MPa;(2)工作溫度:室溫~150℃(最大可達230℃);(3)岩心端面流體線速度:0~1.8m/s;(4)實驗岩心規格:人造或天然儲層岩心,其尺寸為φ25×25-90;(5)測壓精度:±2‰;(6)鑽井液用量:2~3L;(7)滲透率測量范圍:(1~5000)×10-3μm2;(8)電源:220V,50Hz(要求使用穩壓電源)。

與其他油氣層損害評價實驗裝置相比,該「評價系統」無論在工作壓力和工作溫度方面,還是在岩心的滲透率測量范圍方面,均具有明顯優勢。不難看出,它適用於各種滲透性儲層,以及出現異常高壓或異常低壓的儲層,還適用於在井底溫度超過150℃的深井中應用。

2 實驗參數及計算方法

2.1 V的計算

在鑽井過程中,鑽桿和鑽鋌處的環空返速可用下式進行計算:

油氣成藏理論與勘探開發技術

式中:Q為鑽井現場泥漿泵排量(L/s);D1,R分別為鑽頭直徑和半徑(in);D2,r分別為鑽桿或鑽鋌的直徑和半徑(in);

為泥漿在環空處的上返速度(m/s)。

岩心端面處剪切速率的大小通過使用變頻器調節泥漿泵的轉速來實現,選擇合理排量的泥漿泵就可以任意模擬鑽井現場泥漿泵的排量。在鑽井過程中,根據泥漿環空水力學計算結果,當鑽桿或鑽鋌處環形空間泥漿的上返速度

推薦值為0.5~0.6m/s時,才能形成平板型層流,從而滿足鑽井工藝的要求[4]

2.2 岩心動濾失速率的計算

根據鑽井液動濾失方程,鑽井液或完井液通過岩心時的動濾失速率可使用下式計算:

油氣成藏理論與勘探開發技術

式中:fd為動濾失速率(mL/cm2·min);Δθ為Δt時間內的動濾失量(mL);Δt為滲濾時間(s);A為岩心端面滲濾面積(cm2)。

2.3 動態污染損害前後岩心各段滲透率的計算

在一定壓差的作用下,流體可在多孔介質中發生滲流。一般情況下,其流動規律可用達西定律來描述。因此,在動態污染前後,岩心各段滲透率參數的計算可通過應用達西定律公式來實現。由於是多點測試,可以將達西定律公式寫成:

3 實施效果

該項目技術產品已在江漢、江蘇、大慶、大港、吉林、中原、南方勘探公司、克拉瑪依、塔里木等各油田單位推廣了五十多台套,大量的實驗研究表明,使用效果良好,它可以測量出岩心沿長度方向的非均質性,並能判斷同一岩心在受鑽井、完井液損害前後各段滲透率和損害深度程度,也可評價各種增產措施的效果,優選鑽井、完井液體系配方、優化增產措施,達到保護油氣層的目的,並認識了油氣層特性,提高了油氣田的勘探和開發效率。上述各油田通過該「評價系統」篩選出的優質鑽井、完井液,起到了保護油氣層的效果,既降低了生產成本,又提高了油氣井產量,已經取得了巨大的經濟效益和社會效益。該成果的推廣應用為保護油氣層技術研究和油氣田評價工作的開展提供了全新的評價手段和評價方法,還使得其在理論和實驗技術上獲得了重大突破,其實驗研究結果對油氣田勘探與開發方案的科學決策、油氣田的發現、提高油氣井產量、延長油田的開發周期以及保護油氣層領域的科學研究將起到十分重要的指導作用。

該評價新方法以及相關技術產品使科研成果及時轉化為生產力,填補了我國在相關實驗技術領域裝備製造上的空白,具有同類技術的國際先進水平。

參考文獻

[1]李淑廉等.JHDS-高溫高壓動失水儀的研製.江漢石油學院學報[J],1988,10(1):32~35.

[2]余維初,李淑廉等.滲透率梯度測試儀的研製.石油鑽采工藝[J],1995,17(5):82~86.

[3]樊世忠.《油氣層保護與評價》[M].北京:石油工業出版社.1988.

[4]Bourgoyne A T,et al.,Applied Drilling Engineering.SPE Textbook,1991.

[5]岩石物性滲數測試裝置CN2188205Y全文1995.1.25.

[6]一種岩心物性能自動檢測裝置CN2342371Y,1999.10.6.

[7]Joseph Shen J S,Brea,Calif Automated Steady State Relative Permeability Measurement System US4773254M1988.9~27.

[8]Appartus and method for measuring relative permeability and capillary pressure of porous rock.US5297420,1994.3~29.

Ⅶ 高溫鑽井液檢測儀器國內外發展現狀

3.3.1 高溫高壓流變儀

高溫流變性是高溫鑽井液的重要參數之一,直接影響鑽速、泵壓、排量、懸浮及攜帶岩屑、井眼清潔、井壁穩定、壓力波動及固井質量等,因此國內外非常重視高溫流變儀的研發。典型生產商為美國Fan公司、OFI公司、Grace公司等。其典型產品有如下。

3.3.1.1 OFITE1100高溫加壓流變儀

美國OFI公司研製生產的OFITE1100高溫加壓流變儀是一個全自動測試系統,能夠根據剪切力、剪切速率、時間、壓力、溫度等參數來准確測試壓裂液、完井液、鑽井液、水泥漿的流變特性,並實時顯示和同步記錄剪切應力、剪切率、轉速、壓力、容池和樣品溫度。可以在實驗室使用也可以在野外使用,可選擇防水移動箱,帶輪子,移動方便。OFITE高溫高壓流變儀壓力可達到18MPa,溫度可到260℃,最低0℃。另外還有冷卻系統,冷卻樣品(圖3.1)。

圖3.1 OFITE 1100高溫加壓流變儀

獨特的ORCADA(OFITE R(流變儀)C(控制)and D(數據)A(採集)),軟體簡單。全新的KlikLockTM快速鏈接技術與重新設計的樣品杯相結合,便於拆卸和維修。全新的SAFEHEATTM系統是一個安全、精確、環境友好、高效的空氣傳輸加熱系統,使得操作更安全簡單,清洗更快速。

3.3.1.2 OFITE高溫高壓流變儀

根據剪切力、剪切速率、時間和壓力直到207MPa和溫度最高至260℃條件,全自動系統准確測定完井液、鑽井液、水泥漿的流變特性。選配冷水系統後,可使測試系統適應於需要冷卻的測試樣品,進一步增加了儀器的應用范圍(圖3.2)。

圖3.2 OFITE高溫高壓流變儀

使用羅盤來測定扭矩附件頂部磁鐵的轉動。如果沒有對儀器進行補償,防護罩內動力驅動磁鐵的影響。地球磁場的影響、防護罩磁性的影響、彈簧非線性的影響、實驗室磁場和材料的影響、非理想流體流動的影響、產品結構微小變化的影響等綜合結果使測定角度顯示非線性關系。計算機可以容易地完成這些影響的補償。

3.3.1.3 Ceast毛細管流變儀

毛細管流變儀分為單孔型和雙孔型,應用於熱塑性聚合物材料的質量控制和研發工作。在CeastVIEW平台下,通過VisualRHEO軟體控制儀器。可實現以任意恆剪切速率或活塞桿速度測量。雙孔料筒結構獨立採集分析每個孔所測得的試驗數據。可選各種專用的軟體。可選配多種測量單元:熔體拉伸試驗、口模膨脹、狹縫口模。PVT、半自動清洗等。Rheologic系列:最大力50kN;速度比1∶500000;活塞速度0.0024~1200mm/min。工作溫度50℃~450℃(選配500℃),有兩個PT100感測器控制。可快速更換的載荷感測器(范圍:1~50KN),壓力感測器范圍3.5~200MPa(圖3.3)。

圖3.3 毛細管流變儀

3.3.1.4 Haake RV20/D100高溫高壓黏度儀

Haake RV20/D100該高溫加壓旋轉黏度計的使用上限為203kPa(1400psi)和300℃,它由兩個固定在加熱器上的同軸圓筒組成。外筒用螺栓固定在加熱器(高壓釜)的頂部,內筒支承在滾珠軸承上(外筒通過軸承將內筒托住)。內筒或轉筒靠磁耦合與一個Rotovisco RV 20相連接。內筒作為轉子,釜外的驅動機構通過電磁耦合帶動內筒轉動;內筒通過電磁耦合將其所受的轉矩傳遞給釜外的驅動機構,使其轉過一個角度(圖3.4)。

圖3.4 Haake RV20/D100剪應力測試原理

可用計算機控制來自動描繪流變曲線。該儀器在0s-1~1200s-1范圍內可連續變化,並且自動進行數據分析。施加在轉軸上的扭矩可被反應靈敏的電扭力桿測得。測量電扭力桿扭轉的角度即為所施加的扭矩值。剪切應力可由扭矩值通過合適的剪切應力常數來計算得出。

3.3.1.5 美國Grace公司專利產品MODEL 7400/M7500

M7400流變儀包含250mL的漿杯總成,安裝在儀器加壓的測試釜體內,漿杯易於取出,方便漿杯裝樣和清洗。流變儀可配備不同的內筒/轉子(外筒)組合,提供了不同的測量間隙尺寸。轉子(外筒)按需要的速度圍繞內筒轉動,由於內筒和轉子(外筒)之間的環型區域內的液體被剪切,傳導到內筒上的扭矩用一個應力表類型的扭矩感測器測量(圖3.5)。

圖3.5 M7400流變儀

儀器加壓用一個空氣驅動液壓泵,礦物油作為壓力介質,連接到高壓泵上的可編程壓力控制器控制壓力的升壓和保壓,漿杯下的葉輪循環流動壓力油改善溫度控制效果,葉輪也用於提供均勻的樣品加熱效果,溫度控制採用一個連接到內部4000W加熱器和熱電偶的溫度控制器控制,漿杯中心內筒頂部的熱電偶用於測量實際樣品溫度,馬達驅動轉子(外筒)在一定速度范圍內轉動,樣品黏度根據測量出來的剪切應力和剪切速率計算出來。

M7500是專為復雜樣品進行簡單測試而設計的高溫、超高壓、低剪切、自動、數字流變儀。該儀器專利的測量機構設計消除了昂貴和易損的寶石軸承,可以進行大范圍的測量。由於它獨特的設計,使其便於維護並大大簡化了操作流程。基於微軟資料庫作為支持友好的用戶界面,測試結果自動化的壓力,速度和溫度控制,使實驗結果更加精確和一致,標準的API實驗可由觸摸式LCD屏幕或者在計算機上單擊滑鼠來實現(表3.5)。

表3.5 M7500技術參數

M7500與其他同類產品相比,測試時間短且更容易操作;它不含有易碎和昂貴的精密軸承,維修成本低;最先進的速度控制使得低剪切率測試成為可能,自動剪切應力校準在很大程度上簡化了操作程序。

3.3.1.6 Fann流變儀

(1)Fann稠度儀

Fann稠度儀是一種高溫高壓儀器,試驗的泥漿在套筒內承受剪切,其最高工作壓力和溫度分別為140MPa和260℃,其測量原理見圖3.6。它通過安裝在樣品釜兩端的兩個交替充電的電磁鐵產生的電磁力,使軟鐵芯作軸嚮往復運動。存在於運動鐵芯與樣品釜釜壁之間的環形間隙內的泥漿受到剪切,泥漿黏度越高,鐵芯運動越緩慢,從一端運行到另一端所用的時間也就越長,泥漿的相對黏度就用鐵芯的運行時間來衡量。Fann稠度儀不能測量絕對黏度,通常將其結果作為相對黏度。這是因為電磁鐵施加給鐵芯的是一個不變的力,使鐵芯在被測泥漿中從速度為零加速至終速度,在常用的泥漿中鐵芯不能總是勻速運動,因此不能按不變的或確定的環空剪率進行分析。在實際使用中,常用於測量水泥漿的稠度。

圖3.6 Fann稠度儀原理圖

(2)Fann 50C高溫高壓流變儀

Fann50C高溫高壓流變儀是高溫高壓同軸旋轉式黏度計,其最高工作壓力和溫度為7MPa和260℃,其剪應力測量原理如圖3.6。泥漿裝在兩個圓筒的環狀間隙里,外筒可用不同轉速旋轉。外同在泥漿中旋轉所形成的扭矩,施加在內筒上,使內筒轉過一個角度。測量這一角度,即可確定其剪應力值。測量數據用X-Y記錄儀以曲線形式輸出。其轉速可在1~625r/min范圍內無級調速。

Fann 50C早期產品由壓力油提供壓力,適合於作水基泥漿的高溫高壓流變性測試,壓力油對油基泥漿試驗結果影響較大。Fann 50C中期產品有兩種形式,既可由壓力油提供壓力,也可由高壓氮氣或空氣提供壓力。近期產品則只有由高壓氣源提供壓力一種形式。採用氣壓形式後,就不存在壓力油對泥漿污染和對測試結果的影響。

(3)Fann 50SL高溫流變儀

50SL是Fann 50C的改進型產品,它在Fann50C原有結構基礎上,新增加了壓力感測器,冷卻水電磁閥和遠程式控制制器(RCO),是一款高精度的同軸旋轉型黏度計,該儀器具有廣泛的通用性,可解決多種黏度測試問題或完成許多程序測試,Fann 50SL(圖3.7)可以測試特殊剪切速率下的流體的流變特性,如賓漢塑性流體和假塑性流體(包括冪律流體)和膨脹性流體,觸變性和膠凝時間也可以測試出來,實驗可以在剪切率、溫度和壓力精確控制的狀態下進行。

該黏度計可以測試出剪切力-剪切率值,也可得到在流變狀態下的剪率特性,通過選擇合適的扭簧、內筒和外筒可得到很寬的黏度測量范圍(量程從50到64000dyn/cm2之間的剪力范圍)。

最高溫度260℃,壓力7MPa(1000psi)條件下的測試。使用該儀器必須在連接遠程式控制制器和一台合適的電腦的條件下,其控制操作由儀器將感測器信號通過介面傳送到計算機,計算機再把正確的控制信號輸出給Fann 50SL。加熱、施壓和轉子速度的控制由專門軟體的輸入來控制。在各種剪切速率下的表觀黏度、時間依賴性、連續剪切和溫度效應引起的變化等可快速而准確地測定。50SL是一般流變特性,包括鑽井液高溫穩定性測定的理想儀器。唯一不足的是該控制軟體中不具備將曲線在列印機上輸出的功能。

(4)Fann 75流變儀

主要用來測量不同溫度、壓力和剪切速率下鑽井液的剪切應力、黏度。最高測量溫度為260℃,最高測量壓力為138MPa,儀器如圖3.8所示。

該儀器同其他「旋轉」式流變儀工作原理一樣,轉子/浮子組合如圖所示。

(5)Fann IX77流變儀

范氏IX77型全自動泥漿流變儀(圖3.9)是第一台在高壓(30000Psi)和高溫(316℃)的極端條件下測量流體流變性的全自動流變儀。另外,如果配上一個軟體控制的製冷器可以使實驗在室溫以下的溫度進行。

圖3.7 Fann 50SL高溫流變儀

圖3.8 Fann 75流變儀

該儀器是同軸圓筒測量系統,它使用一個精密的磁敏角度感測器來檢測內嵌寶石軸承的彈簧組合的角度,感測器系統可以校準到±1℃。電機轉速實現了0~640r/min無級調速的全自動控制。

儀器的特點在於藉助內嵌微電腦和巧妙的機械及電路設計而帶來的非常安全的傳動機構。它的軟體使儀器的操作、數據採集、輸出報告和報警功能自動進行,最大限度的擴展其應用范圍,給操作帶來較大的靈活性。

IX77禁止用於測試具有赤鐵礦、鈦鐵礦、碳酸鐵成分的或者含有磁性的活亞鐵成分的混合物、溶液、懸浮液和試劑的樣品。

其他高溫高壓流變儀如Chandler 7400(工作極限條件:140MPa和205℃)和Huxley Burtram(105MPa和260℃)與以上類型工作原理相似。

圖3.9 Fann IX77 流變儀

3.3.2 高溫高壓濾失儀

泥漿在鑽井時向地層滲濾是一個復雜的過程,影響因素較多,它包括在泥漿液柱壓力和儲層壓力之間的壓差作用下,發生的靜止濾失。包括在該壓差下,泥漿在流動狀態下的動濾失,這種流動是由泥漿循環時的返流和鑽柱旋轉時的旋流所引起,它對井壁過濾面產生沖刷作用,影響了滲濾的過程。

高溫高壓濾失儀是一種在模擬深井條件下,測定鑽井液濾失量,並同時可製取高溫高壓狀態下濾失後形成的濾餅的專用儀器。溫度和壓力在濾出液控制中起著很大的作用。

3.3.2.1 海通達高溫高壓濾失儀

(1)GGS系列(圖3.10;表3.6)

圖3.10 GGS-71型高溫高壓濾失儀

表3.6 GGS系列儀器參數

其中GGS42-選用單孔單層活網鑽井液杯,濾網目數50。

GGS42-2和GGS71-A使用不銹鋼外殼,添加特殊保溫層,熱傳遞效率高,選用通孔單層活網鑽井液杯,濾網目數50;GGS42-2A和 GGS71-B使用不銹鋼外殼,添加特殊保溫層,熱傳遞效率高,選用通孔單層活網鑽井液杯,濾網目數60,有獨立溫度控制系統,採用國外先進的電子溫控器。

(2)HDF-1型高溫高壓動態濾失儀

HDF-1型高溫高壓動態濾失儀克服了靜態濾失儀的不足,使測試結果更加接近井下實際情況。該儀器由電機驅動的主軸帶動杯體內的螺旋葉片對鑽井液進行攪拌。通過SCR控制器控制變速電機,數字顯示主軸轉速(表3.7;圖3.11)。

表3.7 儀器的主要技術參數

圖3.11 HDF-1型濾失儀

3.3.2.2 OFI公司高溫高壓動態全自動失水儀

OFITE高溫高壓動態失水儀在動態鑽井條件下測量濾失特性。馬達驅動裝配有槳葉的主軸在標准500mL HTHP泥漿池中旋轉,轉速設置范圍為1~1600r/min,模擬鑽井液高溫高壓池中以層流或紊流形式流動。測試方式完全和標準的高溫高壓濾失儀一樣,唯一的差異為濾出物收集時鑽井液在高溫高壓池中流動循環。由於濾失介質為普通的圓盤(disk)材質,因此測定結果跟別的或以往的有充分的可比性,該儀器能夠和電腦相連,並自動畫出曲線。最高壓力8.6MPa,最高溫度260℃(圖3.12)。

圖3.12 OFI高溫高壓動態濾失儀

技術特徵:①一款分析轉動中鑽井液的真正循環濾失儀;②變速馬達,1/2Hp永久磁鐵,直流;③池頂帶蓋得以輔助管路連接,移去堵頭,可以添加額外的鑽井液添加劑;④安全校正的防爆片,保證過壓安全;⑤馬達和轉動主軸轉動轉速操作保證1∶1;⑥可調螺旋槳改變到濾失介質距離;⑦可調熱電偶溫度38~260℃;⑧可選的濾失滲透性濾片;⑨500mL容積的不銹鋼高壓池。

3.3.2.3 美國Fann高溫高壓動態全自動失水儀

Fann90高溫高壓動態失水儀使用人造岩心濾筒,濾液從岩心濾筒側壁濾出,能很好地模擬鑽進過程中鑽井液從井壁濾失的過程,不但能測試在一段時間內累積的濾液量,而且可以繪制濾液隨時間變化的濾失曲線。Fann90的最高工作壓力可達17.2MPa,最高工作溫度260℃。該儀器可與電腦和列印機連接,自動化程度高,操作方便,是當前最先進的高溫高壓動態失水儀(圖3.13)。

圖3.13 Fann90 高溫高壓動失水儀

3.3.2.4 LH-1型鑽井液高溫高壓多功能動態評價實驗儀

「抗高溫高密度水基鑽井液作用機理及性能研究」的多功能動態評價實驗儀,是一種鑽井液用智能型多功能動態綜合評價實驗儀。該儀器能模擬鑽井過程中的井下情況評價鑽井液性能,並將鑽井液多項高溫高壓性能評價實驗集於一體,達到一儀多用的目的(圖3.14)。

圖3.14 鑽井液多功能動態綜合測試儀實物圖

該儀器可以進行高溫高壓靜/動態濾失、高溫高壓鑽屑分散、高溫高壓動態老化等若干項實驗,採用電腦工控機控制實驗過程,實時顯示實驗狀態、自動採集、處理、顯示實驗數據,實現智能化實驗操作。

儀器主要技術指標:工作溫度0~300℃;工作壓力0~40MPa;轉速0~1200r/min,無級調速;釜體容積800mL;冷卻速率200℃~室溫/10min。

3.3.3 高溫滾子爐

溫度的影響對鑽井液在鑽井內的循環是非常重要的。熱滾爐的作用是評定鑽井液循環與井內時溫度對鑽進的影響。

高溫滾子爐包括爐體、滾筒及滾筒帶動的陳化釜。陳化釜設有一釜體,釜體上部設有釜蓋,釜體與釜蓋之間設有密封蓋,釜蓋上垂直於釜蓋設有壓緊螺栓,將密封蓋與釜體壓緊。密封蓋與釜體之間設有密封環,所述的密封環為四氟乙烯材質。覆蓋上設有排氣閥,排氣閥穿過密封蓋與釜腔相通,排氣閥兩端設有O型密封圈,密封圈為四氟乙烯材質。釜蓋與釜體上設有支撐環,支撐環為四氟乙烯材質,爐門邊緣設有密封墊,密封墊為四氟乙烯材質。該滾子爐耐高溫、密封效果好,而且體積小、安全系數高,便於使用。

3.3.3.1 青島海通達XGRL-4高溫滾子爐

滾子爐是一種加熱、老化裝置。採用微處理器智能控制技術,直接設定,數字面板顯示,並可進行偏差指示。適用范圍為50~240℃,滾子轉速為50r/min(圖3.15)。

圖3.15 XGRL-4型高溫滾子爐

該滾子爐採用鋼架結構、硅酸鋁保溫層、不銹鋼外殼;滾筒採用優質金屬材料滾筒和框架、四氟石墨軸承,重量輕、轉動平穩;其加熱系統採用兩根700W加熱管加熱;動力系統由大功率調速電機鏈帶動滾子轉動,傳動平穩可靠、噪音低;溫控部分採用智能儀表設定、顯示和讀出,恆溫准確,溫度超限自動斷開加熱電源,並發出聲光報警。定時部分定時關機。

3.3.3.2 OFFIE 滾子爐

美國OFI公司,五軸高溫滾子爐。適用范圍為50~300℃,滾子轉速為50r/min(圖3.16,圖3.17)。

圖3.16 OFFIE滾子爐

圖3.17 老化罐

3.3.3.3 Fann 701滾子爐

美國Fann公司的Fann 701型五軸高溫滾子爐,適用范圍為50~300℃,滾子轉速為50r/min(圖3.18)。

圖3.18 Fann滾子爐

3.3.4 其他高溫高壓評價儀器現狀

3.3.4.1 高溫高壓堵漏儀

高溫高壓堵漏儀主要是用來模擬高溫高壓條件下進行堵漏材料實驗,對一套泥漿系統既可以做填砂床實驗又可以做縫板實驗,還可以做岩心靜態污染實驗以及測量堵漏層形成後抗反排壓力的大小。如:JHB高溫高壓堵漏儀由加壓部分、加溫部分、縫板模擬部分等組成。參看圖3.19~圖3.22。

圖3.19 高溫高壓堵漏儀實物圖

圖3.20 高溫高壓堵漏儀結構圖

圖3.21 實驗縫板實物圖

圖3.22 實驗用滾珠及套筒實物圖

3.3.4.2 高溫高壓膨脹儀現狀

膨脹儀是評價黏土礦物膨脹性能的重要試驗儀器,主要用於防塌泥漿及處理劑的研究方面。通過電腦回執曲線可准確測定泥頁岩試樣在不同條件下的膨脹量和膨脹率。用以評價不同的防塌處理對頁岩泥水化的抑制能力,並針對不同的地層及不同組分的泥頁岩選擇適用的處理劑,以控制、削弱泥頁岩的水化膨脹進而防止可能出現的坍塌、卡鑽等事故的發生。

常溫常壓膨脹儀不能模擬井下條件下黏土的膨脹情況和加入黏土抑制劑後對黏土的防膨脹效果。

(1)HTP-C4高溫高壓雙通道膨脹儀

HTP-C4型高溫高壓單通道膨脹量儀,能較好模擬井下溫度(≤260℃)和壓力(≤7MPa)條件下,測試頁岩的水化膨脹特性,為石油鑽井井壁穩定性研究、評價和優選防塌鑽井液配方提供了一種先進的測試手段。HTP-C4型頁岩膨脹儀採用非接觸式高精度感測器,電腦監控記錄,性能穩定,測試范圍大,無漂移,通電即可使用,兩個樣品可同時測量(表3.8;圖3.23)。

表3.8 儀器的主要技術參數

圖3.23 HTP-4型高溫高壓單通道膨脹儀

(2)JHTP非接觸式高溫高壓智能膨脹儀

高溫高壓膨脹儀雖然能模擬井下溫度和壓力條件,但其使用的是接觸式線性位移感測器,這種接觸式感測器受膨脹腔結構的影響,在高壓密封和位移之間產生矛盾,使黏土的線性膨脹量不能得到真實的反映,因為增大了試驗誤差。

圖3.24是一種非接觸式高溫高壓智能膨脹儀結構圖。它由加熱體、實驗腔體、腔蓋、腔體、腔身、圓鐵餅、非接觸式位移感測器、試驗液體加入口、加壓孔、前置器、數據採集器及輸出設備組成。它是利用非接觸式位移感測器與圓鐵餅之間的距離隨黏土餅膨脹時提高變化而變短,而改變感測器的輸出電壓,使數據採集器得到實驗參數,達到在室內評價黏土礦物的膨脹性能。克服了現有膨脹儀不能真實和准確地描述井下條件黏土的膨脹情況、實驗誤差大、加入抑制劑後對黏土的防膨脹效果不能預計的問題。結構簡單,操作方便,實驗數據准確。

圖3.24 JHTP非接觸式智能膨脹儀結構

3.3.4.3 高溫高壓黏附儀

該儀器可測定鑽井液在常溫中壓(0.7MPa)及在常溫高壓(3.5MPa)條件下濾失後形成濾餅的黏附性能,同時還可測試鑽井液樣品在高溫(~170℃)高壓(3.5MPa)條件下濾失後形成濾餅的黏附性能。黏附盤加壓方式為氣動(圖3.25)。

3.3.4.4 高溫高壓腐蝕測定儀

OFI高溫高壓腐蝕測試儀是用於測試金屬試樣在高溫高壓動態條件下對各種腐蝕液體的反應速率。該系統主要由壓力釜、控制儀表及閥門、樣品支架和試樣玻璃器皿組成。

壓力釜採用特製的合金鋼材料,最大工作壓力34.5MPa,最高溫度可達204.4℃。壓力釜及內部樣品由熱電偶加溫。加熱速率范圍為2.5℉/min到3℉/min。機箱內包括一個馬達用以搖動測量支架,一台高壓泵用於提供系統壓力。系統設有安全裝置,包括安全警報等。

圖3.25 GNF-1型黏附儀

Ⅷ 鑽井中常用的固控設備有哪些,每種設備能

鑽井中常用的固控設備:泥漿振動篩,泥漿清潔器,真空除氣器,除砂器,除泥器,中速離心機,高速離心機,泥漿攪拌器,泥漿攪拌罐,射流混漿器,砂泵及其他泵類等。

每種設備承擔的任務不同,可以簡單理解為,越靠前的固控設備過濾大顆粒的物體,越靠後的固控設備則處理的顆粒粒徑越小。通過多級固控,使得泥漿達到井場能用的目標。

鑽井固控系統

閱讀全文

與鑽井液循環模擬實驗裝置相關的資料

熱點內容
為什麼突然投屏找不到設備 瀏覽:406
直線軸承座uu代表什麼 瀏覽:251
消防器材計入管理費用怎麼算 瀏覽:124
肋夾玻璃幕牆配套五金件 瀏覽:356
錄音有什麼攜帶型設備 瀏覽:764
機床皮帶跑偏怎麼調 瀏覽:986
上海新建高檔五金電器批發市場 瀏覽:195
戰斧機械鍵盤怎麼樣 瀏覽:863
天水商用廚房設備哪裡有 瀏覽:666
samp工具箱手機下載 瀏覽:775
熒光筆怎麼開安全閥門 瀏覽:114
數控車床後軸承怎麼緊 瀏覽:218
設備日常檢查注意哪些 瀏覽:646
煤礦井下設備三證一標志是什麼 瀏覽:111
鑄造企業土地使用稅怎麼計算 瀏覽:780
管道蝶形閥門 瀏覽:703
家用燃氣閥門怎樣安裝 瀏覽:906
閥門銘牌的壓力是什麼壓力 瀏覽:406
軸承代號LF代表什麼意思 瀏覽:822
手動控制噴泉用什麼閥門 瀏覽:148