Ⅰ 掃描隧道顯微鏡的工作原理結論
在掃描隧道顯微鏡(STM)觀測樣品表面的過程中,掃描探針的結構所起的作用是很重要的。如針尖的曲率半徑是影響橫向解析度的關鍵因素;針尖的尺寸、形狀及化學同一性不僅影響到STM圖象的解析度,而且還關繫到電子結構的測量。因此,精確地觀測描述針尖的幾何形狀與電子特性對於實驗質量的評估有重要的參考價值。 掃描隧道顯微鏡(STM)的研究者們曾採用了一些其它技術手段來觀察掃描隧道顯微鏡(STM)針尖的微觀形貌,如SEM、TEM、FIM等。SEM一般只能提供微米或亞微米級的形貌信息,顯然對於原子級的微觀結構觀察是遠遠不夠的。雖然用高分辨TEM可以得到原子級的樣品圖象,但用於觀察掃描隧道顯微鏡(STM)針尖則較為困難,而且它的原子級解析度也只是勉強可以達到。只有FIM能在原子級解析度下觀察掃描隧道顯微鏡(STM)金屬針尖的頂端形貌,因而成為掃描隧道顯微鏡(STM)針尖的有效觀測工具。日本Tohoku大學的櫻井利夫等人利用了FIM的這一優勢製成了FIM-STM聯用裝置(研究者稱之為FI-STM),可以通過FIM在原子級水平上觀測掃描隧道顯微鏡(STM)掃描針尖的幾何形狀,這使得人們能夠在確知掃描隧道顯微鏡(STM)針尖狀態的情況下進行實驗,從而提高了使用掃描隧道顯微鏡(STM)儀器的有效率。
Ⅱ STM32G030 reboot 配置
STM32G030 reboot配置內部SRAM。
BOOT設置會在SYSCLK的第4個上升沿被鎖存,所以在啟動結束後,可以將BOOT1繼續當做普通IO使用,但是需要注意的是,在STM32退出待機模式後BOOT引腳會重新鎖存,所以在待機模式的時候,應保持為需要的配置。
掃描隧道顯微鏡(Scanning Tunneling Microscope, 縮寫為STM)是一種掃描探針顯微術工具,掃描隧道顯微鏡可以讓科學家觀察和定位單個原子,它具有比它的同類原子力顯微鏡更加高的解析度。STM使人類第一次能夠實時地觀察單個原子在物質表面的排列狀態和與表面電子行為有關的物化性質,在表面科學、材料科學、生命科學等領域的研究中有著重大的意義和廣泛的應用前景,被國際科學界公認為20世紀98年代世界十大科技成就之一。隧道針尖的結構是掃描隧道顯微技術要解決的主要問題之一。針尖的大小、形狀和化學同一性不僅影響著掃描隧道顯微鏡圖像的解析度和圖像的形狀,而且也影響著測定的電子態。針尖的宏觀結構應使得針尖具有高的彎曲共振頻率,從而可以減少相位滯後,提高採集速度。如果針尖的尖端只有一個穩定的原子而不是有多重針尖,那麼隧道電流就會很穩定,而且能夠獲得原子級分辨的圖像。針尖的化學純度高,就不會涉及系列勢壘。例如,針尖表面若有氧化層,則其電阻可能會高於隧道間隙的阻值,從而導致針尖和樣品間產生隧道電流之前,二者就發生碰撞。制備針尖的材料主要有金屬鎢絲、鉑-銥合金絲等。鎢針尖的制備常用電化學腐蝕法。而鉑- 銥合金針尖則多用機械成型法,一般 直接用剪刀剪切 而成。不論哪一種針尖,其表面往往覆蓋著一層氧化層,或吸附一定的雜質,這經常是造成隧道電流不穩、噪音大和掃描隧道顯微鏡圖象的不可預期性的原因。因此,每次實驗前,都要對針尖進行處理,一般用化學法清洗,去除表面的氧化層及雜質,保證針尖具有良好的導電性。
Ⅲ 掃描隧道顯微鏡(STM)是根據量子力學原理中的隧道效應而設計成的,當原子尺度的探針針尖在不到一個納米
由題意,探針針尖在圖2所示的樣品表面以恆定高度做一維勻速掃描,在一個周期內:前半個周期,探針針尖與樣品間的距離均勻增大,由圖(1)知,隧道電流非均勻減小,在後半個內,探針針尖與樣品間的距離均勻減小,由圖(1)知,隧道電流非均勻增大,故C正確. 故選C |
Ⅳ stm的工作原理
STM為一般時分復用,即各信道的信號按時間間隔出現在線路上。 SDH的基本速率是155.52Mb/s 稱為第1級同步傳輸模塊,即STM-1,相當於SONET體系中OC-3的速率。步進電動機是將電脈沖激勵信號轉換成相應的角位移或線位移的離散值控制電動機。這種電動機每當輸入一個電脈沖就動一步,所以又稱脈沖電動機。步進電動機的轉子由軟磁材料或永磁材料製成多極的形式,定子上裝有多相不同連接的控制繞組。它的激勵信號有直流脈沖、方波、多相方波和邏輯序列多種。步進電動機的步距和速度不受電壓波動、環境溫度和負載變化的影響,而僅與脈沖頻率有關。改變脈沖頻率就能在很大范圍內准確調節電動機的速度。因此步進電動機用於開環數字控制,可大大簡化控制系統。步進電動機配以位置檢測元件時也可用於閉環數字控制,常用於列印機、帶讀出器、計數器、繪圖機、數控機床、閥門執行機構、定位平台和數模轉換器等。SDH傳輸業務信號時各種業務信號要進入SDH的幀都要經過映射、定位和復用三個步驟:映射是將各種速率的信號先經過碼速調整裝入相應的標准容器(C),再加入通道開銷 (POH)形成虛容器(VC)的過程,幀相位發生偏差稱為幀偏移;定位即是將幀偏移信息收進支路單元(TU)或管理單元(AU)的過程,它通過支路單元指針(TU PTR)或管理單元指針(AU PTR)的功能來實現;
Ⅳ 什麼是掃描隧道顯微鏡工作原理是什麼
掃描隧道顯微鏡是根據量子力學中的隧道效應原理,通過探測固體表面原子中電子的隧道電流來分辨固體表面形貌的新型顯微裝置。
根據量子力學原理,由於電子的隧道效應,金屬中的電子並不完全局限於金屬表面之內,電子雲密度並不是在表面邊界處突變為零。在金屬表面以外,電子雲密度呈指數衰減,衰減長度約為1nm。用一個極細的、只有原子線度的金屬針尖作為探針,將它與被研究物質(稱為樣品)的表面作為兩個電極,當樣品表面與針尖非常靠近(距離<1nm)時,兩者的電子雲略有重疊,如圖1所示。若在兩極間加上電壓u,在電場作用下,電子就會穿過兩個電極之間的勢壘,通過電子雲的狹窄通道流動,從一極流向另一極,形成隧道電流
i
。隧道電流
i
的大小與針尖和樣品間的距離
s
以及樣品表面平均勢壘的高度
有關,其關系為
,式中a為常量。
如果s以
nm為單位,
以ev為單位,則在真空條件下,a
≈1,
。
由此可見,隧道電流
i
對針尖與樣品表面之間的距離
s
極為敏感,如果
s
減小0.1nm,隧道電流就會增加一個數量級。當針尖在樣品表面上方掃描時,即使其表面只有原子尺度的起伏,也將通過其隧道電流顯示出來。藉助於電子儀器和計算機,在屏幕上即顯示出樣品的表面形貌。
一般說來,掃描隧道顯微鏡由掃描隧道顯微鏡主體、控制電路、控制計算機(測量軟體和數據處理軟體)三大部分組成。掃描隧道顯微鏡主體包括針尖的平面掃描機構、樣品與針尖間距控制調節機構及系統與外界振動的隔離裝置。
常用的stm針尖安放在一個可進行三維運動的壓電陶瓷支架上,如圖2所示,lx、ly、lz分別控制針尖在x、y、z方向上的運動。在lx、ly上施加電壓,便可使針尖沿表面掃描;測量隧道電流
i
,並以此反饋控制施加在lz上的電壓vz;再利用計算機的測量軟體和數據處理軟體將得到的信息在屏幕上顯示出來。
stm有兩種工作方式。一種稱為恆電流模式,如圖3所示。利用一套電子反饋線路控制隧道電流
i
,使其保持恆定。再通過計算機系統控制針尖在樣品表面掃描,即是使針尖沿x、y兩個方向作二維運動。由於要控制隧道電流
i
不變,針尖與樣品表面之間的局域高度也會保持不變,因而針尖就會隨著樣品表面的高低起伏而作相同的起伏運動,高度的信息也就由此反映出來。這就是說,stm得到了樣品表面的三維立體信息。這種工作方式獲取圖象信息全面,顯微圖象質量高,應用廣泛。
另一種工作模式是恆高度工作,如圖4所示。在對樣品進行掃描過程中保持針尖的絕對高度不變;於是針尖與樣品表面的局域距離
s
將發生變化,隧道電流i的大小也隨著發生變化;通過計算機記錄隧道電流的變化,並轉換成圖像信號顯示出來,即得到了stm顯微圖像。這種工作方式僅適用於樣品表面較平坦、且組成成分單一(如由同一種原子組成)的情形。
從stm的工作原理可以看到:stm工作的特點是利用針尖掃描樣品表面,通過隧道電流獲取顯微圖像,而不需要光源和透鏡。這正是得名"掃描隧道顯微鏡"的原因。
Ⅵ 誰有原子力顯微鏡(AFM)探針針尖修飾的資料的,就是介紹探針修飾,謝謝!
原子力顯微鏡(atomic force microscope, AFM)是一種具有原子解析度的表面形貌、電磁性能分析的重要儀器。1981年,STM(scanning tunneling micros, 掃描隧道顯微鏡)由IBM-Zurich 的Binnig and Rohrer 發明。1982年,Binnig首次觀察到原子分辨圖Si(7x7)。1985年,Binnig, Gerber和Quate開發成功了首台AFM(atomic force microscope, 原子力顯微鏡)。在表面科學、納米技術領域、生物電子等領域, SPM(scanning probe micros)逐漸發展成為重要的、多功能材的材料表徵工具。
STM 要求樣品表面導電,而AFM可以測試絕緣體的表面形貌和性能。因為STM的基本原理是通過測量探針與樣品表面的隧道電流大小來探測表面形貌,而AFM是測量探針與樣品表面的相互作用力。AFM由四個部分組成:機械運動部分、懸臂偏轉信號光學檢測系統、控制信號反饋系統, 成像和信息處理軟體系統。探針與樣品之間的相互作用力使微懸臂向上或向下偏轉,利用激光將光照射在懸臂的末端,反射光的位置改變就用來測器此懸臂的偏移量,這種檢測方法最先由Meyer 和Amer提出。機械部分的運動(探針上、下以及橫向掃描運動)是有精密的壓電陶瓷控制。激光反射探測採用PSD。反饋和成像系統控制探針和樣品表面間距以及最後處理實驗測試結果。
原子力顯微鏡AFM操作模式
隨著AFM技術的發展,各種新應用不斷涌現。具體包括如下技術:
(1) 接觸模式 (contact mode) 最早的模式,探針和樣品直接接觸,探針容易磨損,因此要求探針較軟,即懸臂的彈性系數小,一般小於1N/m。
(2) 輕敲模式 (tapping mode) 也叫Dynamic Force或者Intermittant-contact。探針在外力驅動下共振,探針部分振動位置進入力曲線的排斥區,因此探針間隙性的接觸樣品表面。探針要求很高的懸臂彈性系數來避免與樣品表面的微層水膜咬死。Tapping mode對樣品作用力小,對軟樣品特別有利於提高解析度。同時探針的壽命也較contact mode的稍長。
以上是最常用的AFM模式,別的模式還有很多:如
Lateral Force Micros(橫向力顯微鏡,檢測樣品表面微區對探針橫向的摩擦力,可以獲得材料的力學性能),
Noncontact mode Force(非接觸模式顯微鏡,與tapping mode基本相同,區別是非接觸模式探針工作在力曲線的吸引區),
Force Molation (力調制顯微鏡,探針對檢測樣品表面微區有很大的力,可以獲得材料微區的彈性系數等力學性能),
CFM chemical force micros
EFM electric force micros
KFM Kelvin force micros
MFM magnetic force micros
SThM Scanning thermal micros
SCM Scanning capacitance microscope
SCPM Scanning chemical potential microscope
SEcM Scanning electrochemical microscope
SICM Scanning ion conctance microscope
SKPM Scanning Kelvin probe microscope
SThM Scanning thermal microscope
STOS Scanning tunneling optical spectrometer
各種模式和應用要求性能各異的探針,而探針的性能指標是決定顯微鏡解析度的最關鍵的因素。
二. AFM探針分類及各探針優缺點
AFM探針基本都是由MEMS技術加工 Si 或者 Si3N4來制備. 探針針尖半徑一般為10到幾十 nm。微懸臂通常由一個一般100~500μm長和大約500nm~5μm厚的矽片或氮化矽片製成。典型的硅微懸臂大約100μm長、10μm寬、數微米厚。
利用探針與樣品之間各種不同的相互作用的力而開發了各種不同應用領域的顯微鏡,如AFM(范德法力),靜電力顯微鏡EFM(靜電力)磁力顯微鏡MFM(靜磁力)側向力顯微鏡LFM(探針側向偏轉力)等, 因此有對應不同種類顯微鏡的相應探針。
原子力顯微鏡的探針主要有以下幾種:
(1)、 非接觸/輕敲模式針尖以及接觸模式探針:最常用的產品,解析度高,使用壽命一般。使用過程中探針不斷磨損,解析度很容易下降。主要應用與表面形貌觀察。
(2)、 導電探針:通過對普通探針鍍10-50納米厚的Pt(以及別的提高鍍層結合力的金屬,如Cr,Ti,Pt和Ir等)得到。導電探針應用於EFM,KFM,SCM等。導電探針解析度比tapping和contact模式的探針差,使用時導電鍍層容易脫落,導電性難以長期保持。導電針尖的新產品有碳納米管針尖,金剛石鍍層針尖,全金剛石針尖,全金屬絲針尖,這些新技術克服了普通導電針尖的短壽命和解析度不高的缺點。
(3)、磁性探針:應用於MFM,通過在普通tapping和contact模式的探針上鍍Co、Fe等鐵磁性層制備,解析度比普通探針差,使用時導電鍍層容易脫落。
(4)、大長徑比探針:大長徑比針尖是專為測量深的溝槽以及近似鉛垂的側面而設計生產的。特點:不太常用的產品,解析度很高,使用壽命一般。技術參數:針尖高度> 9μm;長徑比5:1;針尖半徑< 10 nm。
(5)、類金剛石碳AFM探針/全金剛石探針:一種是在硅探針的針尖部分上加一層類金剛石碳膜,另外一種是全金剛石材料制備(價格很高)。這兩種金剛石碳探針具有很大的耐久性,減少了針尖的磨損從而增加了使用壽命。
還有生物探針(分子功能化),力調制探針,壓痕儀探針
Ⅶ s-SNOM應用范圍是什麼
0的-9次方米(10億分之一米)。納米科學與技術,有時簡稱為納米技術,是研究結構尺寸在1至100納米范圍內材料的性質和應用。從具體的物質說來,人們往往用細如發絲來形容纖細的東西,其實人的頭發一般直徑為20-50微米,並不細。單個細菌用肉眼看不出來,用顯微鏡測出直徑為5微米,也不算細。極而言之,1納米大體上相當於4個原子的直徑。 納米技術包含下列四個主要方面:
⒈納米材料:當物質到納米尺度以後,大約是在1—100納米這個范圍空間,物質的性能就會發生突變,出現特殊性能。這種既具不同於原來組成的原子、分子,也不同於宏觀的物質的特殊性能構成的材料,即為納米材料。如果僅僅是尺度達到納米,而沒有特殊性能的材料,也不能叫納米材料。過去,人們只注意原子、分子或者宇宙空間,常常忽略這個中間領域,而這個領域實際上大量存在於自然界,只是以前沒有認識到這個尺度范圍的性能。第一個真正認識到它的性能並引用納米概念的是日本科學家,他們在20世紀70年代用蒸發法制備超微離子,並通過研究它的性能發現:一個導電、導熱的銅、銀導體做成納米尺度以後,它就失去原來的性質,表現出既不導電、也不導熱。磁性材料也是如此,象鐵鈷合金,把它做成大約20—30納米大小,磁疇就變成單磁疇,它的磁性要比原來高1000倍。80年代中期,人們就正式把這類材料命名為納米材料。
⒉納米動力學,主要是微機械和微電機,或總稱為微型電動機械繫統,用於有傳動機械的微型感測器和執行器、光纖通訊系統,特種電子設備、醫療和診斷儀器等.用的是一種類似於集成電器設計和製造的新工藝。特點是部件很小,刻蝕的深度往往要求數十至數百微米,而寬度誤差很小。這種工藝還可用於製作三相電動機,用於超快速離心機或陀螺儀等。在研究方面還要相應地檢測准原子尺度的微變形和微摩擦等。雖然它們目前尚未真正進入納米尺度,但有很大的潛在科學價值和經濟價值。
⒊納米生物學和納米葯物學,如在雲母表面用納米微粒度的膠體金固定dna的粒子,在二氧化硅表面的叉指形電極做生物分子間互作用的試驗,磷脂和脂肪酸雙層平面生物膜,dna的精細結構等。有了納米技術,還可用自組裝方法在細胞內放入零件或組件使構成新的材料。新的葯物,即使是微米粒子的細粉,也大約有半數不溶於水;但如粒子為納米尺度(即超微粒子),則可溶於水。
⒋納米電子學,包括基於量子效應的納米電子器件、納米結構的光/電性質、納米電子材料的表徵,以及原子操縱和原子組裝等。當前電子技術的趨勢要求器件和系統更小、更快、更冷,更小,是指響應速度要快。更冷是指單個器件的功耗要小。但是更小並非沒有限度。 納米技術是建設者的最後疆界,它的影響將是巨大的。
在1998年的四月,總統科學技術顧問,Neal Lane 博士評論到,如果有人問我哪個科學和工程領域將會對未來產生突破性的影響,我會說該個啟動計劃建立一個名為納米科技大挑戰機構,資助進行跨學科研究和教育的隊伍,包括為長遠目標而建立的中心和網路。一些潛在的可能實現的突破包括:
把整個美國國會圖書館的資料壓縮到一塊像方糖一樣大小的設備中,這通過提高單位表面儲存能力1000倍使大存儲電子設備儲存能力擴大到幾兆兆位元組的水平來實現。由自小到大的方法製造材料和產品,即從一個原子、一個分子開始製造它們。這種方法將節約原材料和降低污染。生產出比鋼強度大10倍,而重量只有其幾分之一的材料來製造各種更輕便,更省燃料的陸上、水上和航空用的交通工具。通過極小的晶體管和記憶晶元幾百萬倍的提高電腦速度和效率,使今天的奔騰?處理器已經顯得十分慢了。運用基因和葯物傳送納米級的mri對照劑來發現癌細胞或定位人體組織器官去除在水和空氣中最細微的污染物,得到更清潔的環境和可以飲用的水。提高太陽能電池能量效率兩倍。
什麼是納米科技?
納米科學技術是研究在千萬分之一米(10-8)到億分之一米(10-9米)內,原子、分子和其它類型物質的運動和變化的學問;同時在這一尺度范圍內對原子、分子進行操縱和加工又被稱為納米技術。
納米科技的研究內容
創造和制備優異性能的納米材料
設計、制備各種納米器件和裝置
探測和分析納米區域的性質和現象
什麼是納米?
納米是尺寸或大小的度量單位:
千米(103 )→米→厘米→毫米→微米→納米( 10-9)
4倍原子大小,萬分之一頭發粗細
納米科技研究什麼問題?
生物科學技術、信息科學技術、納米科學技術是下一世紀內科學技術發展的主流。生物科學技術中對基因的認識,產生了轉基因生物技術,可以治療頑症,也可以創造出自然界不存在的生物;信息科學技術使人們可以坐在家中便知天下大事,網際網路幾乎可以改變人們的生活方式。
納米科學是研究在千萬分之一米(10-8)到億分之一米(10-9米)內,原子、分子和其它類型物質的運動和變化的學問;同時在這一尺度范圍內對原子、分子進行操縱和加工又被稱為納米技術。
還原論:把物質的運動都還原到原子、分子這一層面上。原子論和量子力學取得了巨大的成功。有機合成;分子生物學;轉基因食品、克隆羊;原子光譜和激光;固體電子論和IC;幾何光學到光纖通訊。
宏觀世界上經典物理、化學、力學的巨大成就:計算機和網路、宇宙飛船、飛機、汽車、機器人等改變了人們的生活方式
科學技術有認識上的盲區或人類知識大廈上的裂縫。裂縫的一邊是以原子、分子為主體的微觀世界,另一岸是人類活動的宏觀世界。兩個世界之間不是直接而簡單的聯結,存在一個過渡區--納米世界。
例:分子合成 ≤1.5nm, →活體
微電子技術在0.2μm,
顯微外科只能連接大、小、微血管
≤ PM10和PM1.5的微粒
50年代,錢老「物理力學」是企圖連接兩個世界的前驅工作之一
圖中顯示用掃描隧道顯微鏡
的針尖在銅表面上搬運和操
縱48個原子,使它們排成圓
形。圓形上原子的某些電子
向外傳播,逐漸減小,同時
與相內傳播的電子相互干涉
形成干涉波。
幾十個原子、分子或成千個原子、分子「組合」在一起時,表現出既不同於單個原子、分子的性質,也不同於大塊物體的性質。這種「組合」被稱為「超分子」或「人工分子」。「超分子」性質,如熔點、磁性、電容性、導電性、發光性和染、顏色及水溶性有重大變化。當「超分子」繼續長大或以通常的方式聚集成大塊材料時,奇特的性質又會失去,像真是一些長不大的孩子。
在10nm尺度內,由數量不多的電子、原子或分子組成的體系中新規律的認識和如何操縱或組合及探測、應用它們---納米科學技術的主要問題。
原子和分子的微觀世界和宏觀世界的過渡區內的新現象和新規律
探測納米長度內物理、化學生物信息的新原理和新方法
新概念和新理論:強關聯、強場、快過程、少粒子的量子體系
應用
新科學還是老理論的翻版?
歷史悠久的新科學技術
西漢銅鏡和黑漆鼓
徽墨
漆器
催化劑材料
感光材料和彩色膠片
含有高嶺土顆粒的輪胎
WHY?不清楚
近十年,計算機和材料設計;探測技術STM、AFM、SNOM;IC和生命科學的推動;制備技術發展;理論的發展
高強度和高韌性、可自修復、有智能、可再生→新一代納米材料
為什麼小尺寸會有如此重要的影響?
表面效應
小尺寸效應
量子限域效應
研究目標和可能的應用
材料和制備:更輕、更強和可設計;長壽命和低維修費;以新原理和新結構在納米層次上構築特定性質的材料或自然界不存在的材料;生物材料和仿生材料;材料破壞過程中納米級損傷的診斷和修復;
微電子和計算機技術:2010年實現線條為100nm的晶元,納米技術的目標為:納米結構的微處理器,效率提高一百萬倍;10倍帶寬的高頻網路系統;兆兆比特的存儲器(提高1000倍);集成納米感測器系統;
醫學與健康
快速、高效的基因團測序和基因診斷和基因治療技術;用葯的新方法和葯物'導彈'技術;耐用的人體友好的人工組織和器官;復明和復聰器件;疾病早期診斷的納米感測器系統
航天和航空
低能耗、抗輻照、高性能計算機;微型航天器用納米測試、控制和電子設備;抗熱障、耐磨損的納米結構塗層材料
環境和能源
發展綠色能源和環境處理技術,減少污染和恢復被破壞的環境;
孔徑為1nm的納孔材料作為催化劑的載體;MCM-41有序納孔材料(孔徑10-100nm)用來祛除污物;納米顆粒修飾的高分子材料
生物技術和農業
在納米尺度上,按照預定的大小、對稱性和排列來制備具有生物活性的蛋白質、核糖、核酸等。在納米材料和器件中植入生物材料產生具有生物功能和其他功能的綜合性能。,生物仿生化學葯品和生物可降解材料,動植物的基因改善和治療,測定DNA的基因晶元等