導航:首頁 > 裝置知識 > 軋機軸向調節裝置畢業設計

軋機軸向調節裝置畢業設計

發布時間:2022-09-17 18:47:52

1. 急求軋機傳動系統設計的資料

第四章 機械原理實驗
第一節 機構運動簡圖測繪實驗
一,實驗目的
1.學會繪制機構運動簡圖的原理和方法.
2.驗證和鞏固機構自由度計算及機構具有確定運動條件等知識.
二,實驗設備及工具
1.縫紉機頭或各種機構模型.
2.鉛筆,直尺,文具及圖紙等.
三,實驗原理及方法
1.機構運動簡圖
機構運動簡圖是研究機構結構分析,運動分析,動力學不可缺少的一種簡單圖形,它表達機構的整體和局部的結構型式,在機械設計初期用以表達設計方案和進行必要的尺寸計算.
由於機構的運動狀態僅與組成機構的構件數目及連接這些構件間的運動副種類和數目及相對 置有關,故可拋開構件復雜的外形,材質和運動副的具體結構用簡單的線條和規定的符號(見表4-1)代表每一個構件和運動副,並按著一定的比例尺准確地將實際機構的運動特徵表達出來,這種簡單的圖形即為機構運動簡圖.
2.測繪方法及步驟
(1)機構運動分析,判別運動副種類.
使機構緩慢運動,仔細觀察機構運動情況.從原動件(連架桿之一)開始,首先判定它與機架之間運動副種類,依次判斷與其相連構件之間運動副種類,直到最終運動輸出構件(亦為連架構件)為止,從而確定組成機構的構件數目,運動副的種類和數量以及連接順序.
(2)合理選擇視圖平面
視圖平面的選擇以最能清楚表達組成機構的構件數量,運動副種類和數量以及各構件間相對運動關系為原則.對平面機構,一般選擇平行於各點運動平面的平面為視圖平面,也可選擇與該平面垂直的平面作為視圖平面.
(3)選擇適當比例尺
選擇機構運動中適當位置並令其停止不動,認真測量各運動副間的距離(構件尺寸),機械工程中常用長度比例尺定義如下:
表4-1 繪制機構運動簡圖常用符號
式中 LAB為構件實際長度,m.
lab為圖上線段長度,mm.
根據構件實際長度和圖紙的尺寸確定合理的比例尺μL,使簡圖與圖紙比例適中.
(4)繪制運動簡圖
計算出各運動副間圖紙上長度,即:
畫出各運動副相對位置,用線條連接各運動副,即得機構運動簡圖(機構運動瞬時各構件位置圖).
機械工程設計中,沒有按准確比例尺畫出的機構運動簡圖稱為機構示意圖,由於作圖簡單,亦能基本表達機構的結構和運動情況,故常用機構示意圖代替機構運動簡圖.
(5)計算機構自由度
根據下面公式計算機構自由度
式中 n為活動構件數;
PL為低副數(移動或轉動副);
PH為高副數.
四,實驗報告要求
1.縫紉機頭機構運動簡圖測繪.
(1)各專用機構運動簡圖和計算.
(2)縫紉機頭總的機構示意圖
2.其它機構運動簡圖
學生在各種機構模型中任選5個以上機構,並畫出機構運動簡圖,格式參考專用機構運動簡圖和計算.
3.思考題
(1)正確的機構運動簡圖應說明那些內容
(2)原動件在繪制機構運動簡圖時的位置為什麼可以任意選定
(3)機構自由度的意義是什麼,原動件數目與機構自由度數的關系如何
第二節 齒輪范成原理實驗
一,實驗目的
1.掌握用范成法加工漸開線齒輪的切齒原理.
2.了解漸開線標准齒輪產生根切現象的原因和避免根切的方法.
3.分析比較漸開線標准齒輪和變位(正)齒輪齒形的異同點.
二,實驗設備及工具
1.齒輪范成儀.
2.圓規,比例尺,鉛筆,剪刀等文具.
3.圓圖紙,Φmin=260mm.
三,實驗原理及方法
1.范成法切齒原理
范成法是加工漸開線齒廓最常用的方法之一.可以用一把刀具加工出模數,壓力角相同而齒數不同的標准和各種變位齒輪齒廓且加工精度高.
范成法是利用一對齒輪互相嚙合時其共軛齒廓互為包絡線的原理來加工齒廓的.加工時,刀具與齒坯之間的運動和一對齒輪(齒條)嚙合傳動相同即保持著固定傳動比的同時(嚙合傳動),刀具還沿著齒坯軸線作切削運動.這樣得到的齒廓就是刀具在各個位置的包絡線,刀具齒廓為漸開線(直線)則其包絡線必為漸開線,標准刀具的節圓(節線)與齒坯分度圓相切時即切出標准齒輪齒廓.由於實際加工時看不到刀具在各個位置形成包絡線的過程,通過齒輪范成儀,用鉛筆將刀具刀刃各瞬時位置描繪在圖紙上,這樣就可清楚地觀察到范成法形成齒廓的全過程.
2.齒輪范成儀
范成儀的工作原理如圖4-1所示,圓盤1繞軸心O 轉動,刀具2利用圓螺母4和托板3固聯,圓盤1的背面固聯一齒輪與與托板3上的齒條相嚙合.當托板3在機架導軌上水平移動時,圓盤1相對托板3轉動,完成范成運動.刀具2參數為:α=20°;m=20mm;ha*=1;c* =0.25.
當刀具中線與齒坯分度圓相切時即可切制出標准漸開線齒廓,移動刀具用鉛筆依次描下刀具瞬時位置,即可包絡出齒廓.
四,實驗步驟
要求切制 z=10的兩個齒輪,其中標准齒輪與正變位(不根切)齒輪各一個.
1.繪制標准齒輪(x=0)z=10
(1)齒坯製作
已知α=20°;m=20mm;ha*=1;c* =0.25;z=10;cos20°=0.94,計算下面數據.
分度圓直徑:d=mz=
齒頂圓直徑:da=d+2ha* m=
齒根圓直徑:df =d-2hf =d-2(ha*+ c*)m=
基圓直徑:db = dcosα=
中心孔直徑:Φ=40mm,Dmax=265mm
(2)將齒坯固定在范成儀上.
(3)對刀,調整刀具位置使其中線恆與齒坯分度圓相切.
(4)范成齒廓.
將刀具推向一邊極限位置依次移動刀具(每次不超過1mm)並用鉛筆描出刀具各瞬時位置,要求范成出2-3個以上完成的齒形即可.
(5)測量分度圓齒厚S和齒間e並與計算值比較.
(6)觀察根切現象.
2.繪制變位齒輪(不根切)z=10
(1)計算變位(移距)系數x和移距X.
標准齒輪:zmin=17
取:x=
則移距X=xm=
(2)分度圓,基圓,齒頂圓,齒根圓尺寸.
分度圓:d=mz=
基 圓:db=dcosα=
齒頂圓:da=d+2ha*m+2z =d+2ha*m+2xm=
齒根圓:df=d-2hf+2xm=
(3)首先對刀,使刀具中線與分度圓相切;松開刀具固定旋扭使刀具中線遠離分度圓X=xm,將刀具推向一邊依次移動刀具,用鉛筆描出刀具瞬時位置,刀具包絡出2-3個完整齒形.
(4)測量分度圓齒厚S和齒間e並與標准齒輪比較.
(5)比較標准齒形與正變位齒形的異同點.
3.繪制負變位齒輪(選作)
五,實驗報告要求
1.齒條刀具的主要參數
模數:m;齒廓角:α;齒頂高系數:ha*;徑向間隙系數c*.
2.分別計算標准齒輪和變位齒輪的尺寸參數並填入表格.
3.思考題
(1)用范成法加工齒輪時齒廓曲線是如何形成的.
(2)試比較標准齒輪與正變位齒輪的齒形有什麼不同,並分析其原因.
(3)影響根切的因素有哪些,在加工齒輪時如何避免根切現象.
(4)簡述正變位齒輪特點.
第三節 齒輪參數測定實驗
一,實驗目的
1.掌握測定漸開線直齒圓柱齒輪基本參數的方法.
2.鞏固並熟悉齒輪的各部尺寸的名稱,參數及漸開線性質.
二,實驗設備及工具
1.各種齒輪(奇數齒,偶數齒,標准齒輪,變位齒輪均有).
2.游標卡尺.
3.文具,紙張等.
三,實驗原理和方法
漸開線直齒圓柱齒輪的基本參數有:齒數z;模數m;分度圓壓力角;齒頂高系數;徑向間隙系數,和變位系數x.除了齒數z可直接查出外其餘均需測量計算,圓整而知.
1.確定模數m(或徑節Dp)和分度圓壓力角
我們採用測基圓齒距加查表的方法一次確定m和.
測量原理如圖4-2所示,由漸開線性質,漸開線的法線恆切於基圓,其長度等於基圓上兩漸開線起點間的弧長跨n個齒的公法線與跨(n+1)個齒的公法線,僅短一個基圓齒距pb,為了保證卡腳與齒廓的漸開線部分相切,對不同齒數規定跨齒數n(表4-2).
若卡尺跨n個齒,其公法線長度為
同理,若卡尺跨n+1個齒,其公法線長度則應為
所以
表4-2 跨齒數n
z
12~18
19~27
28~36
37~45
46~54
55~63
64~72
73~81
n
2
3
4
5
6
7
8
9
又因
所以
雖然m和都已標准化了,但壓力角除20°外尚有其它值,故應分別代入,算出其相應的模數,其數值最接近於標准值的一組和m,即為所求的值.否則應按徑節制計算.
根據測得的基圓齒距pb,利用表4-3可直接查出與測量結果相等或相近的m(或DP)和值.
2.確定變位系數
由前面公式知
又由漸開線性質知,基圓齒厚
由此得
注:若求得x小於1%則認為該齒輪為標准齒輪.
3.確定齒頂高系數,和徑向間隙系數c*
這兩個系數與齒頂圓直徑da 和齒根圓直徑df 有關,測量齒頂圓,齒根圓直徑,即為關鍵.對於尺寸不太大的偶數齒齒輪可用卡尺直接測量,而對於奇數齒則採用轉化法間接測量.
又因為

表4-3 基圓齒距的數值
模數m
徑節Dp
1
1.25
1.5
1.75
2
2.25
2.5
2.75
3
3.25
3.5
3.75
4
4.5
5
5.5
6
6.5
7
8
9
1.
11
12
13
14
15
16
18
20
22
25
28
30
33
36
40
45
50
25.400
20.320
16.933
14.514
12.700
11.289
10.160
9.236
8.467
7.815
7.257
6.773
6.350
5.644
5.080
4.618
4.233
3.908
3.629
3.175
2.822
2.540
2.309
2.117
1.954
1.814
1.693
1.588
1.411
1.270
1.155
1.016
0.907
0.847
0.770
0.651
0.635
0.564
0.508
2.902
3.682
4.354
5.079
5.805
6.530
7.256
7.982
8.707
9.433
10.159
10.884
11.610
13.016
14.512
15.963
17.415
18.866
20.317
23.220
26.122
29.024
31.927
34.829
37.732
40.634
43.537
46.439
52.244
58.049
63.584
72.561
81.278
87.07
95.787
104.487
116.098
130.61
145.12
2.952
3.690
4.428
5.166
5.904
6.642
7.380
8.118
8.856
9.594
10.332
11.071
11.808
13.258
14.761
16.237
17.713
19.189
20.665
23.617
26.569
29.512
32.473
35.426
38.378
41.330
44.282
47.234
53.138
59.043
64.947
73.803
82.660
88.564
97.419
106.278
118.086
132.85
147.61
3.053
3.793
4.552
5.310
6.069
6.828
7.586
8.345
9.104
9.862
10.621
11.379
12.138
13.655
15.173
16.690
18.207
19.724
21.242
24.276
27.311
30.345
33.380
36.414
39.449
42.484
45.518
48.553
54.622
60.691
66.760
75.864
84.968
91.04
100.14
109.242
121.38
136.55
151.73
3.014
3.817
4.562
5.323
6.080
6.843
7.604
8.363
9.125
9.885
10.645
11.406
12.166
13.687
15.208
16.728
18.249
19.770
21.291
24.332
27.374
30.415
33.457
36.498
39.540
42.581
45.623
48.665
54.748
60.831
66.914
76.038
85.162
91.25
100.371
109.494
121.66
136.87
152.08
按國家標准值圓整,正常齒:,
短齒:,
四,實驗步驟
1.任選兩個齒數(奇數,偶數各一個)查出齒數z1,z2.
2.分別測出ln,ln+1,,要求每一組尺寸均測三次取其平均值作為測量結果.
3.分別計算查表確定,,,,,,,,,並進行必要的圓整處理.
五,實驗報告要求
1.確定模數和分度圓壓力角
2.測定齒頂圓直徑da和齒根圓直徑df
分別選擇偶數齒和奇數齒實驗.
3.齒輪其它參數確定和尺寸計算
(1)變位系數.
(2)齒頂高系數.
(3)徑向間隙系數.
4.思考題
(1)決定齒廓形狀的參數有哪些
(2)測量時卡尺的卡腳若放在漸開線齒廓的不同位置上對測量的ln,ln+1有無影響,為什麼
(3)齒輪的哪些誤差會影響到本實驗的測量精度
第四節 剛性轉子動平衡實驗
一,實驗目的
1.掌握用動平衡機對剛性轉子進行動平衡的原理和方法.
2.鞏固所學過的轉子動平衡的理論知識.
二,實驗設備和工具
1.閃光式動平衡機.
2.實驗用轉子.
三,實驗原理及方法
1.剛性轉子動平衡
轉子在運轉中產生的不平衡慣性力系將在運動副中產生附加的周期變化的動壓力,對機械的正常工作和使用壽命以至周圍機械工作,廠房建築都會產生到影響甚至破壞,因此,必須設法將構件不平衡慣性力加以消除或減小,即進行機械平衡,由平衡理論可知,對於任何動不平衡的剛性轉子,無論其具有多少個偏心質量,以及分布於多少個回轉平面內,只要在選定的兩個平衡基面內分別各加上或者除去一個適當的平衡質量,即可得到完全平衡,即動平衡(雙面平衡)後靜平衡自然滿足.
2.閃光式動平衡實驗機
實驗機如圖4-3和圖4-4所示,主要由主機和操作箱兩部分組成.主機上有能夠水平擺動的左右兩個支承座2,每個支承座的兩端各有一個鋼支承板與之相固接,而鋼支承板5的另一端固接在底座6上,構成能水平擺動的硬支承.每個支承座都可以利用搬把來"鎖住"或"放開".被測的回轉件水平地放在這兩個支承座的支承處(V型槽中),回轉件通過傳動帶由電機帶動其轉動(傳動帶及電機在圖中未示出)來進行動平衡實驗.感測器1與支承座相連,用來測取振動信號;閃光燈4用來測讀回轉件的不平衡"重點"或"輕點"的方位.感測器和閃光燈的電路均安裝在操作箱內.
圖4-3 主機 圖4-4 操作箱
1―感測器;2―支承座;3―回轉件 8―電源開關;9―"重""輕"點轉換撥鈕;
4―閃光燈;5―支承板;6―底座; 10―微安表; 11―微安表量程調節鈕;
7―不平衡質點; 12―電源指示燈;13―"左","右"轉換撥鈕;
14―衰減調節
3.工作原理
回轉件(實驗件)3,其兩端各具有一個軸頸和一個校正面.兩個軸頸放在兩個支承座2的V型槽中(兩個支承座的V型槽要求平行和同軸).兩個校正面在回轉體兩側的最外端,它們的外圓上刻有等距的順序數(或均勻的刻度),可以用來識別"重點"或"輕點"的方位.當回轉件旋轉時,由於它存在不平衡質點7(進行教學實驗時,可以在實驗用的回轉件的校正平面上人為地加上―定的不平衡重量.顯然,在這種情況下,不平衡重量的方位就是"重點"的方位,而與其相反(相位差180°)的方位就是"輕點"的方位),就產生不平衡離心力,並作用到支承座上.由於回轉件是旋轉的,不平衡離心力將會作用在支承座各圓周方向上,但實驗機的機構限制了支承座在其它各方向的運動,只允許由兩個鋼支承板5支承的支承座2在水平方嚮往復擺動,從而便於對回轉件進行動平衡實驗.
支承座2與感測器1相連,當回轉件轉動時,由於存在不平衡而使支承座擺動,感測器將感受到振動信號,並通過電子線路,一方面在微安表上指示出反映不平衡量大小的微安數,另一方面又分出一路信號,這路信號可用轉換撥鈕9將相應"重點"和"輕點"的相位差為180°信號進行倒相處理,再通過波形轉換和微分處理,使信號成為窄脈沖去觸發閃光發光管4閃光.發光管的閃光照射到校正面外圓上的順序數字或刻度上,由於閃光與支承座振動同步,用人眼觀察時就可以看到似乎停止不動的數字或刻度,這數字和刻度的方位也就是要測定的"重點"或"輕點"的方位.測"重點"時,操作箱上的撥鈕9拔向"重"一側,測"輕點"時則撥向"輕"一側.
測定了"輕","重"的方位後,可以在"輕"點方位的半徑上(最好在最大半徑處的凹槽內)試加一定質量的象皮泥來配重.然後,再開機進行動平衡實驗,可以看到微安表的讀數會比配重前有所減小.再反復配重和動平衡測驗,直到微安表指示達到最小值,就可以認為回轉件已校正到動平衡的要求.
四,實驗步驟
1.實驗前,檢查機械傳動部分是否靈活,在兩軸頸處各滴2-3滴潤滑油.
2.在回轉件的兩個校正平面的任一個半徑上各加一個適當重物(即加入人為的不平衡重量).
3.先讓左端的支承座放開,而將右端的支承座鎖住.
4.接上電源,打開操作箱上的電源開關8,回轉件旋轉.轉換撥鈕13撥向"左".
5.轉動量程調整旋鈕11,使微安表10的電流指示值在60~80μA.如超量程,可適當衰減.
6.將閃光燈4水平地對准在左側支承座一側的回轉體校正面的外徑圓柱面上(刻有順序數或刻度的表面上),將操作箱上的轉換撥鈕9撥向"輕"的一側.這時即可從閃光燈照射處讀到"輕點"的方位指示.同時,記下微安表讀數.
7.關閉電源開關8,用適量橡皮泥在"輕"點方位的半徑上試配重.
8.再次打開電源開關,開動動平衡實驗機,觀察微安表指示.一般情況下,微安表的讀數會有所降低,但還沒有達到動平衡要求.
9.重復上述6~8各步驟,經過多次配重到微安表指示達到最小值.這時,回轉件左端達到了動平衡要求.
10.放開右端支承座,鎖住左端支承座.
11.重復上述4~9各步驟,使回轉件的右端也達到動平衡要求.
12.至此,回轉件的動平衡實驗即告完成.
五,實驗報告要求
1.簡述左(右)平衡基面平衡過程.
2.思考題
(1)何為動平衡,哪些構件需要進行動平衡
(2)平衡基面如何選擇
第五節 凸輪廓線檢測實驗
一,實驗目的
1.掌握凸輪廓線檢測的原理和方法.
2.鞏固和加深凸輪基本理論.
二,實驗設備及工具
1.凸輪廓線檢測儀.
2.被檢測齒輪.
三,實驗原理和方法
1.檢測儀組成
凸輪廓線檢測儀由機械分度頭,大量程百分表,橫移座,縱移座和工作台等主要部分組成.如圖4-5所示.
被測凸輪由FW-100機械分度頭帶動下轉動並讀取角度.分度頭定數為40,分度手柄轉數n=40/z,z為工件所需的等分數.如利用分度盤上54孔的孔盤,分度手柄轉過一個孔(相當於n=1/54)則工件的等分數z=40×54=2160,即轉過10′.
百分表用來指示凸輪極徑或從動桿位移,量程為30mm,刻度值0.01mm.百分表測桿的端部有不同形式的結構:平底,尖頂,小滾子Φ20mm,大滾子Φ30mm等.
橫向絲桿能調整橫向座的位置,改變導路位置以分別為對心和偏心凸輪機構.調整范圍為±20mm.
其餘絲杠分別調整百分表架高度,以適應不同尺寸(徑向,軸向)凸輪的檢測.
2.檢測原理
凸輪廓線檢測原理一般分為兩類,一是檢測凸輪廓線極坐標圖,二是檢測出凸輪廓線所決定的從動桿位移曲線.
檢測凸輪廓線極坐標圖,無論什麼形式從動桿的盤狀齒輪,一律按對心尖頂直動從動桿盤狀齒輪機構原理進行.通常把極軸取在齒輪廓線上開始有位移點的極徑處,用分度頭帶動凸輪轉動並指示極角,用大量程百分表指示極徑的變化,再利用已知直徑的檢測棒或心軸或塊規就可得出凸輪廓線的極徑值.
檢測凸輪機構的位移曲線就比較復雜了,因為從動件的位移不僅取決於凸輪實際廓線,還與偏心距,從動件結構形狀,滾子半徑大小都有關.只有對心尖頂直動從動件盤狀凸輪機構位移變化量與廓線極徑變化量相等,凸輪轉角與廓線轉角相等,檢測位移曲線與檢測極坐標圖一樣進行.其它形式的凸輪機構,從動桿位移與凸輪廓線極徑,凸輪轉角和廓線極角,檢測位移曲線與檢測極坐標圖等完全不同.上述這些就是凸輪廓線檢測基本原理.
3.實驗內容
(1)用小滾子測頭按對心直動從動桿盤狀凸輪機構原理測從動件位移.
(2)用尖頂測頭按對心直動從動桿盤狀凸輪機構原理測凸輪極坐標圖.
(3)用小滾子測頭按偏置直動從動桿盤狀凸輪機構原理測從動桿位移,偏距e=5mm.
(4)用大滾子測頭按對心直動從動桿盤狀凸輪機構原理測從動桿位移.
(5)用平底測頭按對心直動從動桿盤狀凸輪機構原理測從動桿位移.
為了計算和繪圖方便,測頭(從動桿)在起始位置時百分表讀數置零.從動桿起始位置是測頭與凸輪實際基圓段端點接觸時位置,此時從動桿處於最低位置.將測頭對心安裝,藉助尺寸已知的標准圓盤,心軸或塊規可以測得極徑及基圓半徑的尺寸.
四,實驗步驟
1.安裝找正凸輪,使凸輪軸線與分度頭主軸軸線重合.
2.把百分表裝上小滾子測頭,並調整偏距為零.轉動凸輪找到測量起始位置,旋轉百分表刻度盤將指針置零,再通過標准心軸或塊規測此位置的極徑絕對尺寸――凸輪實際基圓半徑,此基園半徑也可事先測好給出.
3.轉動凸輪,每隔,測一次從動桿位移.
4.將測頭移向操作者方向,調偏心距e為5mm,按偏置直動從動桿原理測從動桿位移.
5.換尖頂測頭,按對心原理測從動桿位移.
6.將測頭換成大滾子,按對心原理測從動桿位移.
7.將測頭換成平底,按對心原理測從動桿位移.
五,實驗報告要求
1.凸輪試件原始數據
凸輪轉向,理論基圓半徑,大滾子半徑,小滾子半徑,升程推程運動角,遠休止角,回程運動角,近休止角,偏心距.
2.記錄測量數據.
3.思考題
(1)測凸輪極坐標圖和測位移有什麼不同,畫出凸輪實際廓線極坐標圖.
(2)擺動從動桿盤狀凸輪的極坐標圖如何檢測
第六節 機械運動參數測試實驗
一,實驗目的
1.通過實驗,了解位移,速度,加速度的測定方法;角位移,角速度,角加速度的測定方法.
2.通過實驗,初步了解"MEC-B機械動態參數測試儀"及光電脈沖編碼器,同步脈沖發生器(或稱角度感測器)的基本原理,並掌握它們的使用方法.
3.通過比較理論運動線圖與實測運動線圖的差異,並分析其原因,增加對速度,角速度,特別是加速度,角加速度的感性認識.
4.比較曲柄搖桿機構與曲柄滑塊機構的性能差別.
二,實驗設備
1.機械動態參數測試儀.
2.曲柄滑塊擺桿組合機構.
三,實驗原理和方法
實驗系統如圖4-6所示,各組成部分說明如下:
1.實驗機構
測試機構為曲柄滑塊機構及曲柄導桿機構(也可採用其他各類實驗機構),其原動力採用直流調速電機,電機轉速可在0~3600r/min范圍作無級調速,機構的曲柄轉速為0~120r/min.
圖4-7所示為實驗機構的簡圖,利用固接在作往復運動的滑塊上齒條推動與齒輪固接的光電脈沖編碼器,輸出與滑塊位移相當的脈沖信號,經測試儀處理後將可得到滑塊的位移,速度及加速度.圖4-7(a)為曲柄滑決機構的結構形式;圖4-7(b)為曲柄導桿機構的結構形式.
2.MEC-B機械動態參數測試儀
MEC-B機械動態參數測試儀的外形結構如圖4-8所示.
測試儀主體的整個測試系統的原理框圖如圖4-9所示.
在實驗機構的運動過程中,滑塊的往復移動通過光電脈沖編碼器轉換出具有一定頻率(頻率與滑塊往復速度成正比)的兩路脈沖,接入測試儀數字通道由計數器計數.也可採用接模擬感測器,將滑塊位移轉換為電壓值,按入測試儀模擬通道,通過A/D轉換口轉變為數字量.
圖4-7實驗機構簡圖
(a)曲柄滑決機構 (b)曲柄導桿機構
l―同步脈沖發生器;2―蝸輪減速器;3―曲柄;4―連桿;5―電機;6―滑塊; 7―齒輪;8―光電脈沖編碼器;9―導塊;10―導桿 圖4-8 機械動態參數測試儀的外型結構
(a)測試儀的正面結構 (b)測試儀的背面結構
測試儀具有內觸發和外觸發兩種采樣方式.當採用內觸發方式時,可編程定時器按操作者所置入的采樣周期要求輸出定時觸發脈沖;同時微處理器輸出相應的切換控制信號,通過電子開關對鎖存器或采樣保持器發出定時觸發信號,將當前計數器的計數值或模擬感測器的輸出電壓值保持.經過一定延時,由可編程並行口或A/D轉換讀入微處理器中,並按一定的格式存貯在機內RAM區中.若採用外觸發方式,可通過同步脈沖發生器將機構曲柄的角位移信號轉換為相應的觸發脈沖,並通過電子開關切換發出采樣觸發信號.利用測試儀的外觸發采樣功能,可獲得以機構主軸角度變化為橫坐標的機構運動線圖.
機構的速度,加速度數值由位移經數值微分和濾波得到.
測試系統測試結果不但可以以曲線形式輸出,還可以直接列印出各點數值.
圖4-9 測試系統的原理框圖
3.光電脈沖編碼器
光電脈沖編碼器又稱增量式光電編碼器,它是採用圓光柵通過光電轉換成電脈沖信號的器件.它由燈泡,聚光透鏡,光電盤,光欄板,光敏管和光電整形放大電路組成.光電盤和光欄板是用玻璃材料經研磨,拋光製成.如圖4-10所示.
在光電盤3上用照相腐蝕法製成有一組徑向光柵,而光欄板4上有兩組透光條紋.每組透光條紋後都有一個光敏管,它們與光電盤透光條紋的重合性差1/4周期.光源發出的光線經聚光燈聚光後,發出平行光.當主軸帶動光電盤3一起轉動時,光敏管5就接收到光線亮,暗變化信號,引起光敏管所通過的電流發生變化,輸出兩路相位差90°的近似正弦波信號,它們經放大,整形後得到兩路相位差90°的主波d和d′.d路信號經微分後加到兩個相位相反的方波信號,分別送到與非門剩下的兩個輸入端作為門控信號,與非門的輸出端即為光電脈沖編碼器的信號輸出端,可與雙時鍾可逆計數的加,減觸發端相連.當編碼器轉向為正時(如順時針),微分器取出d的前沿A,與非門1打開,輸出一負脈沖,計數器作累加計數;當轉向為負時,微分器取出d的另一前沿B,與非門2打開,輸出一負脈沖,計數器作減計數.某一時刻計數器的計數值,即表示該時刻光電盤(即主軸)相對與光敏管位置的角位移量,如圖4-11,圖4-12所示.

2. 急 我是四輥冷軋機學徒 我想了解一下四輥軋機的原理和初學者的相關知識 請專業人士幫忙啊

四輥冷軋機,屬於冷軋機械技術領域。它包括機架、上、下支承輥、上、回下工作輥,上答支承輥安裝在所述機架的工作窗口的上方,下支承輥則安裝在機架的工作窗口的下方,上、下工作輥安裝在工作窗口的中部,並且共同位於上、下支承輥之間,其中,上工作輥分別與上支承輥和下工作輥輥面接觸,而下工作輥與下支承輥輥面接觸
四輥軋機:工作輥直徑較小,傳遞軋制力矩,軋延壓力由直徑較大的支承輥承受。這種軋機的優點是相對剛度高、壓下量大、軋延力小,可軋制較薄的板材。有可逆和連軋兩種,廣泛用作中厚板軋機、板帶熱軋或冷軋機以及平整機等。

3. 萬能軋機的萬能軋機的組成及結構特點

下面以國內外最常用的短應力線機型作簡單闡述。
型式:短應力線萬能軋機
結構組成:萬能軋機主要由水平輥壓下、水平輥輥系、立輥輥系、支架裝配、立輥側壓裝置、橫移小車及地腳板等組成。萬能軋機如下圖所示。
1--水平輥壓下裝置 2--水平輥輥系 3--液壓螺絲
4--橫移小車 5--立輥側壓裝置 6--支架裝配
7--地腳板裝配
――水平壓下用來調整水平輥輥縫,採用液壓馬達傳動,蝸輪蝸桿減速機減速,壓下位置的檢測由壓下箱體上的絕對值編碼器反饋,並配有刻度盤及手動裝置。
――水平輥的徑向力由四列圓柱滾子軸承承受,四列圓柱滾子軸承可承受較大的徑向力並可實現軋輥的快速更換,水平輥的軸向力由操作側的雙列推力圓錐滾子軸承承受。水平軋輥為復合結構,由輥軸與輥環組成,這樣輥軸可重復使用。為保證上下水平輥輥環沿軋輥軸線方向的相對位置,在操作側設有水平輥手動軸向調整裝置。
――萬能軋機的立輥採用雙列圓錐滾子軸承承受軋件腿部的變形抗力,立輥安裝在立輥箱體中,立輥箱體可在萬能軋機支架組成的滑道內前後滑動。萬能軋機左右立輥的位置可單獨調整,由立輥側壓裝置上的液壓馬達通過蝸輪蝸桿機構傳動立輥側壓螺絲並帶動立輥箱體來實現。立輥開口度由側壓螺絲尾部的磁致位移感測器來檢測,並配有刻度盤及手動調整裝置。
――萬能軋機的支架裝配是用來支撐輥系部件、立輥及其側壓裝置的。它是由四個單獨的支架通過前後的橫梁及立輥側壓橫梁連接起來的,支架裝配通過液壓螺絲固定在橫移小車上,橫移小車在傳動側萬向軸下的液壓缸作用下可在地腳板上移動。
――萬能軋機上所有的介質管路均通過快速組合板集中在橫移小車的傳動側,換輥時由傳動側的換輥液壓缸將整個軋機推出軋線或拉入軋線,所有介質管路可自動斷開或接通,不需要人工拆卸管路,可縮短換輥時間,降低勞動強度。
――萬能軋機的傳動由直流電機通過硬齒面聯合減速機、萬向聯軸器傳動水平輥,立輥是被動的。

4. 軋鋼的發展趨勢

世界軋鋼技術最新進展
縮短生產工藝流程;實現各工序的連續化和緊湊化始終是鋼鐵工業中包括軋鋼技術發展的方向和主流。主要目的是為了節約能源、提高金屬收得率、縮短生產周期和降低生產成本,最終提高產品的市場競爭力。
熱軋帶鋼
近年來,熱軋帶鋼逐漸向薄規格(厚度小於2mm)和特薄規格(厚度為0.8-1.2mm,將來可發展至0.6~0.8mm)的方向發展。薄規格熱軋帶鋼不僅在作為冷軋原料時可以減少冷軋軋制道次,降低生產成本,而且可以為熱軋帶鋼開拓新的用途和新的市場,部分產品可取代冷軋帶鋼,給生產廠家和用戶帶來巨大的經濟效益。但隨著帶鋼厚度的減薄,生產中所遇到的主要問題是受到最大軋制速度以及精軋溫度和卷取溫度的限制。為確保帶鋼頭部安全地穿過輸出輥道並順利喂入卷取機,帶鋼的速度就不能超過某個極限值。由於超薄帶鋼生產過程中溫降極快,再加上上述最大軋制速度的限制,使得到達精軋機的帶鋼難於滿足精軋溫度要求。針對以上問題,近幾年開發出如下幾種超薄帶鋼生產用新工藝和新技術,以下詳細介紹幾種熱軋帶鋼生產中的新工藝和新技術。
薄板坯連鑄連軋生產線
薄板坯連鑄連軋生產線生產薄規格和特薄規格熱軋帶鋼較傳統熱帶軋機有其特殊優勢:主要是經過隧道爐均熱和升溫的薄板坯其溫度可達1100~1150℃,高於傳統熱帶軋機中間坯的溫度,且薄板坯沿寬度方向和長度方向上的溫度都很均勻,而這正是薄規格帶鋼生產的重要前提條件。
德國蒂森•克虜伯鋼公司在總結希爾薩公司和其它一些公司生產線的經驗基礎上,在杜伊斯堡廠建成新一代薄板坯連鑄連軋生產線。該生產線於1999年4月投產運行,生產線年產能力為200萬t,產品規格為寬900-1600mm、厚1.0-6.35mm(日後還可生產更薄規格產品),鋼種為碳素鋼,該廠除採用間斷式生產工藝(即連鑄機生產的薄板坯切成47m長,分塊進入隧道式均熱爐、均熱後再分塊進入軋機)外,還為採用半無頭軋制和無頭軋制工藝留有餘地,並積極創造條件以新工藝進行生產。所謂半無頭軋制即用長的薄板坯例如200m長,經隧道爐均熱後送軋機軋制,在卷取機前設置一台飛剪將其按需要卷重進行剪切。所謂無頭軋制將是連鑄拉速和軋制速度完全配合,從澆鑄到軋成所需規格帶鋼全部連續進行,該生產線中所採用的連鑄機為立彎式板坯連鑄機、結晶器為漏斗型,設有液面自動控制設施和液芯壓下裝置,鑄坯厚度為48-63mm,最大拉速為6m/min;為適應半無頭軋制需要,隧道爐爐長設計為240m;軋機採用7機架精軋機,最大軋制速度可達20m/s。各機架工作輥直徑不一樣,F1和F2為950/820mm,以便咬入較厚板坯,加大壓下量,F1和F4為750/660mm,F5、F6、F7"為620/540mm。軋機板型控制手段除液壓彎輥外,還在F2-F5機架採用了CVC,在F6-F7機架采川軸向中動工作輥裝置。
以下介紹另一種薄板壞連鑄連軋生產線,盡管其與上述生產線有許多相似之處,但其也採用了熱軋工藝中許多新技術,現概括介紹如下:該生產線以生產最小板厚1.Omm、年產量130萬t為目標。其主要設備包括薄板坯連鑄機、隧道爐、2機架粗軋機、中間冷卻裝置、5機架精軋機、急速冷卻裝置、高速帶鋼剪切機及高速卷取機。每種設備具有如下關鍵技術:一薄板坯連鑄機所澆鑄的鑄坯厚度70m、鑄速達6m/min,鑄壞最長可達300m,這相當於粗軋壞焊接方式下精軋前的長尺坯;如果採用間歇式軋制,用隧道爐前的擺式剪,將鑄坯切成合適的長度;一隧道爐全長310m,能均勻加熱、保溫最長300m的板坯;一粗軋機和精軋機都是4輥軋機,特別是R2、F1-F5均採用了具有高凸度控制能力的動態PC(成對交叉輥)軋機,這是為適應長尺板坯軋制時熱凸度控制以及極薄材軋制時的行走板厚度變更。這是本工藝實現的關鍵;一中間冷卻裝置:為使精軋機入口側的鋼板溫度達到規定溫度,在必要的場合下其用於冷卻精軋後的坯。另外,急速冷卻裝置設置在輸出輥道上,將鋼板冷卻到所需要的卷取溫度,但該設備與傳統設備比距離縮短;一高速Carrousel卷取機用於連續卷取由高速帶鋼剪切機剪斷的帶卷。如用地下卷取機卷取時需2台,本工藝用Carrousel卷取機只需1台,從而使成本降低。另外,該卷取機設備緊湊,卷取溫度不變,可生產均勻的帶卷。
對於傳統熱帶軋機,通過焊接精軋前的粗軋坯,實現穩定軋制超薄熱帶鋼的無頭軋制技術傳統熱帶軋機所能生產的產品最小厚度為1.2mm,其中原因是多方面的,包括超薄規格中間坯傳輸過程中溫降過大,帶鋼頭尾通過精軋機時的穿料問題等。為從根本上解決端頭、端尾的喂入問題,川崎鋼鐵公司首次開發出無頭軋制技術即薄板坯在精軋機入口端進行焊接,然後連續送入精軋機軋制。這種無頭軋制技術已在其千葉廠3號熱帶軋機上實現,帶鋼最小厚度從1.2mm擴展到0.8mm,超薄熱帶的厚度精度可達±30цm。力學性能與傳統熱軋帶鋼相當,該廠主要採用以下先進技術:厚度控制技術:千葉廠3號熱帶軋機後幾個機架上都安裝了測厚儀表,在沒有安裝測厚儀表的前幾個機架上配備了厚度自動控制系統,該系統可實現厚度的精確控制,而且使厚度公差控制不再集中於特定機架上。
無頭軋制使整個帶卷保持恆定張力,實現穩定軋制。但恆定張力並不適用於第一條帶的頭部和最後一條帶的尾部,因此其仍有與傳統軋制一樣的穿料問題。正由於此,鋼帶的頭尾部分僅軋制到傳統熱帶軋機的最小厚度1.2mm。
軋制時帶鋼厚度由1.2mm降至0.9mm,厚度變化為25%。在超薄熱帶生產過程中快速改變厚度時,必須對軋製表做大的改動,且軋製表的改動不集中在某個機架上,但快速厚度調節系統的問世以及在所有機架上安裝快速響應液壓下裝置和交流電機,實現了軋製表的恰當設定以及輥縫的快速調整和軋輥速度的控制。
板形控制技術:超薄熱帶生產中很容易使帶鋼平直度下降,而且無頭軋制時,數個帶卷連續通過軋機,軋輥過度熱膨脹也導致帶鋼平直度下降。為防止帶鋼平直下降,工作輥和支撐輥的交叉角和彎輥力的設置依據輥形而定,而且其利用形狀返饋技術或獲得良好的平直度。
高速穿帶技術:超薄帶鋼生產過程中溫度下降很快,因此進行高速穿料。無頭軋制解決了精軋機和熱軋輸出輥道上的高速穿料問題。高速穿料設備安裝在輸出輥道上方,裝配有氣室。利用來自空氣室的空氣射流減少噴嘴與鋼帶間的壓力將鋼帶向上拉,使其懸福這種牽拉與懸浮作用降低了穿料阻力,帶鋼中心線向上拱起,提高了鋼帶的剛性,從而實現穩定穿料。
Pony Mill軋機實現傳統熱帶的鐵素體軋制,從而使傳統熱帶軋機生產超薄帶鋼成為可能在鐵素體相軋制生產熱軋超薄帶鋼的技術在最近幾年得到深入研究。目前由奧地利奧鋼聯工程技術公司開發的Pony MillTM技術可在不降低生產率和產能的條件下實現熱帶的鐵素體軋制。Pony Mill軋機配置於傳統熱帶軋制生產線外且距軋機很近。其所用原料為連鑄坯經7架機熱帶軋機軋制而成的1.5mm厚熱軋帶卷,經其一道次鐵素體軋制將其厚度降至成品帶鋼厚度0.8mm。Pony Mill軋機為單機架4輥軋機,並在入口區配備開卷機和夾送輥以及在出口區配有卷取機。該設備所需要的投資費用為3500萬美元,投資回報期預計少於2.5年。目前該技術正處於試驗階段。
義大利達涅利設備公司開發出超薄熱軋帶鋼生產新設備f2CR以無頭或半無頭形式生產超薄熱軋帶鋼時由於軋制時間長,加到工作輥上的熱應力和機械應力大,所以對帶鋼凸度和平直度控制標准提出了更嚴格的要求。為此,義大利達涅利設備公司經過多年研究,成功開發出一種軋機機架的新概念,即靈活凸度和自由軋制機架(f2CR)。這種機架使軋輥在軋制操作過程中能夠交叉移動,以便在極寬的范圍內連續調整帶鋼凸度和獨立控制工作輥的磨損。
該生產線由電爐、薄板坯連鑄機、單機架粗思機、帶有f2CRTM輥的6輥單機架精軋機、輸出輥道上的強製冷卻系統以及帶有卷取機的高速剪切機組成。f2CR精軋機配有如下先進技術對板型和平直度進行控制:①工作輥和支撐輥成一定角度交叉,並能動態控制交叉角;②工作輥正、負彎曲和工作輥移動系統;③交叉和移動是獨立進行的,即軋輥交叉用於帶鋼凸度控制,工作輥移動用於工作輥磨損控制。
EUROSTRIPR帶鋼連鑄直軋生產線
自80年代後期以來,歐洲有多家公司產項對帶鋼連鑄技術進行開發研究。其中包括於齊諾爾和蒂森領導下的MYOSOTIS工程項目以及特爾尼特殊鋼公司(AST)和義大利鋼鐵研究院(CSM)領導下的Terni工程項目。1995年,奧地利設備製造商奧鋼聯工程技術公司加入Terni工程項目。為了推動帶鋼連鑄技術加速走向市場,1999年9月上述5家公司決定將各自的技術、財力和人力資源集中在一起,於是合並成立了名為EUROSRIP的合資企業,共同地帶鋼連鑄技術進行開發。該合資企業的帶鋼連鑄設備分別位於德國克虜伯•蒂森尼洛斯塔不銹鋼公司(KTN)克虜雷菲爾德廠和義大利特尼爾特殊鋼公司特尼爾尼廠。
克雷菲爾德廠:1999年底,該廠新型帶鋼連鑄機順利對AISI304不銹帶鋼(1130mm寬)進行試生產。之後90t鋼包實現連續澆鑄並在後序加工廠中獲得滿意結果,特別是帶鋼幾何尺寸公差、邊緣外觀、清潔度、各向同性以及耐磨蝕性能等同於或更優於傳統工藝生產的帶鋼。為進一步改善帶鋼質量,2001年5月,該廠在帶鋼連鑄機後安裝了在線軋制機架。從2001年初,該廠所能生產的不銹鋼帶鋼寬度已增至1430mm寬,這是目前世界上採用該技術所能生產的最寬頻鋼
特爾尼廠:特爾尼實驗廠由於其靈活性一直被作為研究與開發工作的先行者。自1999年以來,該廠的研發已轉向生產不同種類的炭鋼和電工鋼,而且在其帶鋼連鑄設備後也安裝了在線軋制機架,該機架允許對EUROSTIP技術的各種工藝參數和潛力進行調查研究。在線軋制機架的壓下量可高達46%,從而證明EUROSTRIP技術有能力生產小於1mm厚的超薄熱帶鋼,以替代冷軋產品。今後,該廠帶鋼連鑄將對不同合金含量的碳鋼進行開發。
EUROSTRIP設備同其它熱帶生產線相比,具有如下優勢:單位投資成本可降低50%,這就意味著40-50萬t/a的生產規模就可能贏利;設備的場地要求也減少了一半;從鋼水到熱軋卷的時間可縮短到15min以內,這就是說可實現即時交貨,從而可對短期訂單迅速作出反應。簡而言之,該生產線大大提高了生產靈活性以應對地方市場的需求。

5. 軋機液壓系統有什麼用

軋機液壓系統作用:為了更有效的控制帶鋼縱向厚度公差,提高成品帶鋼質量。
軋機液壓系統特點:
(1)慣性小,反應快,截止頻率高,系統對外來干擾跟隨性好,調節精度高:
(2)由於系統響應快,因此對軋輥偏心引起的輥縫發生高頻周期變化的干擾能進行有效清除。
(3)可實現軋機剛度系數調整,可依據不同的軋制條件選擇不同的剛度系數,獲得更高成品質量。

6. 關於軋機動力設施,你了解多少

軋機是實現金屬軋制過程的設備。泛指完成軋材生產全過程的裝備﹐包括有主要設備﹑輔助設備﹑起重運輸設備和附屬設備等。據說在14世紀歐洲就有軋機,但有記載的是1480年義大利人 達·芬奇(Leonardo da Vinci)設計出軋機的草圖。軋機是實現金屬軋制過程的設備。泛指完成軋材生產全過程的裝備﹐包括有主要設備﹑輔助設備﹑起重運輸設備和附屬設備等。 實現金屬軋制過程的設備。泛指完成軋材生產全過程的裝備,包括有主要設備、輔助設備、起重運輸設備和附屬設備等。但一般所說的軋機往往僅指主要設備。據說在14世紀歐洲就有軋機,但有記載的是1480年義大利人 達·芬奇(Leonardo da Vinci)設計出軋機的草圖。1553年法國人布律列爾(Brulier)軋制出金和銀板材,用以製造錢幣。此後在西班牙、比利時和英國相繼出現軋機。圖1為1728年英國設計的生產圓棒材用的軋機。

英國於1766年有了串列式小型軋機,19世紀中葉,第一台可逆式板材軋機在英國投產,並軋出了船用鐵板。1848年德國發明了萬能式軋機,1853年美國開始用三輥式的型材軋機,並用蒸汽機傳動的升降台實現機械化。接著美國出現了勞特式軋機。1859年建造了第一台連軋機。萬能式型材軋機是在1872年出現的;20世紀初製成半連續式帶鋼軋機,由兩架三輥粗軋機和五架四輥精軋機組成。中國於1871年在福州船政局所屬拉鐵廠(軋鋼廠)開始用軋機;軋制厚15mm以下的鐵板,6~120mm的方、圓鋼。1890年漢冶萍公司漢陽鐵廠裝有蒸汽機拖動的橫列雙機架2450mm二輥中板軋機和蒸汽機拖動的三機架橫列二輥式軌梁軋機以及 350/300mm小型軋機。隨著冶金工業的發展,現已有多種類型軋機,由軋輥、軋輥軸承、機架、軌座、軋輥調整裝置、上軋輥平衡裝置和換輥裝置等組成。

7. 軋鋼機有哪些調整裝置

上輥調整裝置:實現使上輥壓下或抬起。常見的有三種型式:a 手動壓下,有齒輪螺桿結構,主要用於型鋼軋機。B電動壓下,有電動上輥調整結構,也有通過一級蝸輪蝸桿和兩級圓柱齒輪進行調整結構。一般初軋機、鋼板機等採用電動上輥調整結構。C液壓壓下。
下輥調整裝置,實現下輥的抬起或落下。常用的形式有兩種:a齒輪螺桿下調整結構;b斜塊螺桿下調整結構。
中滾調整結構:三輥式型鋼軋機一般是固定不變的,但由於輥頸和軸瓦的磨損,中輥會有較大的松動,使下軋制線孔型發生較大的變化 ,所以要用中輥調整結構來保證中輥位置固定。
軸向調整裝置:實現軋輥演軸向移動。常用的結構形式有兩種:a側壓板,是目前使用最多的一種軸向調整結構;b勾頭螺栓。

8. 六輥軋機原理示意圖

如圖所示:

HC軋機是日立於1972年研製成功的一種新型六輥軋機。它是在四輥軋機工作輥與支撐輥之間增加了兩個可依靠安裝在軋機傳動側軸承座的液壓機構作軸向移動的中間輥所組成。

由於這種軋機增加的中間輥的軸向移動裝置,與工作輥的彎輥裝置配合起來具有特殊的彎輥效能,並能在軋制過程中控制工作輥凸度,從而可軋出高精度的橫向厚差和良好板型的帶鋼。因此稱這種軋機為高性能板型控制軋機(High Crown rolling mill)簡稱HC軋機。

(8)軋機軸向調節裝置畢業設計擴展閱讀

早期是用二輥軋機軋制板帶材的。因為軋制板帶材時軋制壓力很大, 為了保證有足夠的剛性,則要求軋輥直徑足夠大。但隨著軋輥直徑的增大,軋輥的彈性壓扁也隨之增大,故二輥軋機只能軋制比較厚的窄帶材。

為了軋制薄而寬的帶材, 克服二輥軋機的不足而出現了四輥軋機。四輥軋機由於採用了小直徑的工作輥,顯著地減小了軋制壓力,並可使最小可軋厚度減小,即可軋出更薄的帶材。

而剛度則由兩個大直徑的支撐輥加以保證因而四輥軋機對於軋制薄帶材獲得良好的板形是非常有效的,這是軋制設備和技術的一大進步,故在相當一段時間內四輥軋機被認為是軋制板帶材比較理想的軋機,獲得很大發展。

應指出的是,為了補償軋制壓力引起的軋輥彈性變形(彎曲和壓扁)以及軋制過程中形成的熱凸度,通常將軋輥配置一定的原始凸度通常稱輥型。

合理的輥型設計,對取得高精度的橫向厚差和良好板形,具有重要作用並且隨著科學技術的發展,計算機板形最優控制、液壓彎輥及板形自動控制技術或的發展及應用,使得板形控制技術日益發展。

9. 軋機、軋鋼機的壓軋工藝流程是什麼

軋制過程

一般單機架二十輥冷軋機的軋制過程可分為上料及穿帶、可逆軋制;卸料及重卷3個階
段。二十輥軋機,特別是森吉米爾二十輥軋機,是採用大張力進行軋制的;軋制過程是從鋼
帶在軋機前後的卷取機/開卷機施加張力之後才開始的,這之前即是上料及穿帶階段。
上料及穿帶階段:一般用上料小車將鋼卷送到開卷機捲筒上;開卷多採用浮動開卷機,
以保證鋼帶始終處在軋機中央位置;浮動開卷機由光電對中裝置通用液壓缸來進行控制;開
卷後鋼帶經矯直機(三輥直頭或五輥矯直機)進行矯直;部分軋機設有液壓剪可以進行切頭;鋼帶用上擺式導板台跨過機前卷取機,直接送到二十輥軋機;然後開卷機繼續往前送出鋼帶穿過軋機一直送到機後卷取機鉗口,鉗口鉗住鋼帶帶頭並在捲筒上纏繞2—3圈後停止送帶,穿帶結束。
可逆軋制階段:穿帶結束後,首先安放好上、下工作輥(穿帶時,工作輥已取下),然後調准軋制線,關閉軋機封閉門,機前壓板壓下,出口側擦拭器壓緊鋼帶,軋機工藝潤滑冷卻系統啟動供液,軋機帶鋼壓下,卷取機轉動給鋼帶前張力,機前後測厚儀、測速儀進入軋制線,機組運轉開始第一道次的軋制。
軋制過程中,如果發現鋼帶邊部有缺陷將影響到高速軋制,則當缺陷部位經過軋輥時;
操作工按一下操作台上的按鈕,將其缺陷位置信號輸入AGC系統。軋制將結束時軋機減速,當鋼帶尾部到達機前卷取機位置時,機組停車,第一道次結束。測厚儀、測速儀退出軋制
線,軋機壓下抬起,鋼帶張力解除,冷卻潤滑劑停止供給,壓板抬起。
第二道軋制時,鋼帶反向運動,機前機後位置互換。第二道次工作開始時機後卷取機反
向運行將機前鋼帶頭部送人機前卷取機捲筒鉗口,鉗口鉗住帶頭後,機前卷取機轉動將鋼帶
在捲筒上纏繞2—3圈;然後,軋機供給冷卻潤滑液,軋機壓下,機前後卷取機傳動給出後
張力,機前後測厚儀、測速儀進入軋制線,機組運轉開始第二道次的軋制。
從第二道次開始,軋制就在機前後卷取機和二十輥軋機之間往返進行。當軋機的自動厚度控制(ACC)系統投入工作時可以實現全自動控制。當軋制過程中鋼帶有缺陷的部位過軋輥時,軋機會自動減速。軋制終了,軋機會自動停車。
一般可逆式軋機軋制奇數道次,但是在機前後卷取機為脹縮式捲筒時,可以軋制偶數道
次,即在軋機開卷機一側也可以卸卷。
一般在成品道次軋制前,需要更換工作輥,以獲得高質量的及有特殊要求的鋼帶表面質
量。在成品道次軋制後,軋機停車,壓下拾起,測厚儀、測速儀退出軋制線,軋機停止冷卻潤滑液供給,卷取機的壓輥壓下,或者將卸卷小車升起用小車座輥頂住鋼卷,避免鋼卷松卷卷取機轉動將鋼帶尾部全部卷到捲筒上。至此可逆軋制過程結束。
卸卷及重卷階段:對於脹縮式捲筒卷取機,卸卷比較簡單。首先用捆紮帶在鋼卷徑向捆
扎一道,卸卷小車升起頂住鋼卷,卷取機捲筒收縮,鉗口打開,鋼卷便被卸卷小車托住,卸卷小車和卷取機的輔助推板同步移動,便將鋼卷從卷取機上卸下,卸卷小車繼續移動將鋼卷送到鋼卷存放台上。
對於軋機前後為實心捲筒的卷取機,鋼卷不能夠從捲筒上直接卸下,只有將鋼卷重新卷
到一台脹縮式捲筒卷取機上,才能將鋼卷卸下來。森吉米爾二十輥軋機、森德威二十輥軋機,採用實心捲筒卷取機時,機組一般設有重卷機構,將成品鋼卷及實心捲筒一起從卷取位置轉移到重卷開卷位置i然後將鋼卷從開卷機往重卷機上重新卷取一次,由於重卷過程是在軋機軋制區域之外的位置進行的,所以重卷和軋制可以同時進行,互不影響。
軋制工藝

1 壓下制度
軋機的壓下制度,應根據軋機的技術參數、軋制材料的力學性能、產品的質量要求來制
定,同時還要考慮軋機生產能力要高,消耗要低。
用二十輥軋機軋制優質碳素鋼,相對來說是非常容易的,使用二十輥軋機的目的是追求
產品的高質量,有高的尺寸精度、板形和表面質量,獲得更薄的產品。
碳素鋼,特別是低碳軟鋼,在二十輥軋機上,一個軋程的總壓下率能達到95%以上,道次壓下率可以達到66%。
對於可逆式冷軋機,由於各道次是在同一-架軋機上軋制,所以道次壓下率分配是用等壓力軋制原則來確定壓下規程。一般第一道第二道的壓下率最大,隨著被軋鋼帶的加工硬
化,道次壓下率逐漸減小,以使各道次的軋制壓力大致相等。
為了提高軋機的生產能力,在充分利用軋機及機前後卷取機主傳動功率的前提下,要盡
可能地加大道次壓下率以減少軋制道次。但是,有時為了獲得良好的板形及表面質量,減少
鋼帶縱向的厚度偏差,也可以適當地增加軋制道次,在總壓下率相同的情況下,採用較多的軋制道次能使鋼帶的強度略有提高。成品道次的壓下率對板形的影響較大,一般採用10%
左右。
2 張力制度
冷軋鋼帶的一個特點是張力軋制;沒有張力就無法進行鋼帶的冷軋。張力可以降低軋
制壓力,改善板形,穩定軋制過程。張力制度對於鋼帶冷軋非常重要。
採用小直徑工作輥軋制的二十輥軋機(及多輥軋機),軋制過程的工藝特點則是採用大
張力軋制。
必須採用大的單位張力,是由於被軋制材料具有物理—力學性能各向異性現象,或在小
變形弧長度內工作輥具有不大的歪斜,這樣沿帶材寬度出現壓下和延伸的不均衡性。在壓
下量小的區域內重新分布張力時,張力達到屈服極限,井可能使帶材寬度方向的延伸均衡。
實際上,在多輥軋機上軋制時,金屬的變形是依靠軋輥壓下和卷取機建立的帶材張力共同完
成的。
多輥軋機中採用的單位張力的大小取決於材料的物理—力學性能及冷加工硬化程度、帶
材厚度及其邊部質量。一般單位張力為20%一70% 。
為了實現穩定軋制過程所必須的大的單位張力及總張力,要求在多輥軋機中設置具有
大功率傳動的卷取機。一般二十輥軋機卷取機電機功率達到軋機主傳動功率的70%一
80%,有的甚至達到100%。
各道次張力按如下方法確定。一般來說,第一道次軋制時,由於酸洗機組的卷取張力較
小,為了避免造成鋼帶層間錯動而擦傷表面,第一道的後張力根小,小於酸洗機組卷取張力。
為了增加第一道軋制的後張力,二十輥軋機入口側設有壓板來增加軋制後張力;前張力可以
根據工藝要求自由決定。在以後的軋制道次中,根掘軋制鋼帶品種、規格,或者採用前張力
大於後張力,或者後張力大於前張力。一般採用將前一道次的軋制前張力作為本道次的後
張力,單位前張力大於單位後張力。成品道次的前張力(卷取張力)有兩種情況。對於脹縮式捲筒卷取機,由於在卷取機上可以直接卸卷並且鋼卷直接進罩式爐進行緊卷退火,為防止在退火中產生粘結,卷取張力應減小,卷取張力小於50Mpa時,退火粘結的幾率就很低了,但卷取張力低會影響軋機生產能力;對於實心捲筒卷取機,由於需要進行重卷,重卷時可以
採用較小的張力(10—40Mpa),因此軋制時能夠採用大張力,可以提高軋機生產能力。
道次的張力還應根據板形隨時進行調整,特別是軋制帶材較薄時。當材料中部有波浪時,應減小張力防止拉裂帶邊或斷帶;當帶材產生邊浪時,可以適當增加張力。
3 速度制度
軋制速度的確定,應根據設備的能力,在軋機允許使用的速度范圍內盡可能採用高的軋
制速度,以提高軋機的生產能力;同時,當軋制速度增加時,軋制壓力相應有所減小。
一般第一道次軋制時採用較低的軋制速度,因為第一道的壓下量大,如果再用高速度軋
制,將使軋輥急劇發熱,由於多輥軋機軋輥冷卻條件較差,將影響軋輥壽命;另外,由於坯料縱向厚度偏差大,板形與軋輥不完全符合,第一道軋制時要對坯料進行調整,要求速度較低;同時採用高速度大壓下,主電機能力也不能滿足。
以後的道次,則根據壓下制度和張力制度及主電機的功率決定軋制速度,使主電機的能
力得到發揮。
每道次軋制的啟動和制動時,分別有一個升速和降速的過程。在軋制過程中,應盡可能
少調速,以保證軋制的穩定性,從而達到厚度偏差的均一性。
4 輥形
由於二十輥軋機機架的剛性和零凸度設計,以及軋輥輥形的多種有效的調整手段,所以,
二十輥軋機能夠全部使用沒有輥形凸度的平輥進行軋制。根據需要,工作輥和第二中間輥也
可以適當地配置凸度輥;第一中間輥永遠是平輥,但—頭帶有錐度,供軋輥軸向調整使用;支撐輥的背襯軸承不能有凸度。

閱讀全文

與軋機軸向調節裝置畢業設計相關的資料

熱點內容
水管閥門漏水是什麼原因 瀏覽:96
軸承蛻皮怎麼 瀏覽:326
x5排氣閥門 瀏覽:491
鐵桶改成工具箱 瀏覽:855
軸承運輸多少錢 瀏覽:731
超聲波玻璃管用什麼顏色 瀏覽:530
進水閥門怎麼包 瀏覽:512
混凝土試塊抗壓強度試驗自動化裝置 瀏覽:539
塑料筐生產設備哪裡買 瀏覽:85
自動扣緊裝置 瀏覽:33
捷達運動儀表怎麼刷431 瀏覽:279
台州光谷機械有限公司怎麼樣 瀏覽:821
加裝可變排氣閥門有影響嗎 瀏覽:288
注塑機機械手吸盤吸不住怎麼辦 瀏覽:11
電容隔直裝置作用 瀏覽:512
實驗器材包括什麼材料嗎 瀏覽:112
雙軸式秸稈收割粉碎裝置設計 瀏覽:600
為什麼突然投屏找不到設備 瀏覽:406
直線軸承座uu代表什麼 瀏覽:251
消防器材計入管理費用怎麼算 瀏覽:124