① 液壓卷揚機結構分析
由液壓卷揚機的工作原理可知,卷揚機由下列主要部件組成:①液壓馬達:液壓馬達型式常為軸向柱塞式和徑向柱塞式馬達,輕載卷揚機可採用端面配油的擺線齒輪馬達;②制動器:其結構為液壓常閉多片盤式制動器,彈簧制動液壓松開;③減速器:一般為一級或二級行星輪系;④捲筒和機架:⑤閥塊:閥塊由梭閥、平衡閥及油路塊集成。圖4-1就是此種類型結構卷揚機。
1.自帶減速器的卷揚機
圖4-4所示AF15000型液壓卷揚機是將液壓馬達、制動器和減速器等部件組成一體,稱為卷揚機減速機。減速機外殼與捲筒固定,而液壓馬達外殼與支架固定。不同規格型號的減速機,配以相應捲筒和機架,即組成液壓卷揚機的系列產品。
圖4-4 AF15000型液壓卷揚機
2.具有自由下放功能的卷揚機
具有自由下放功能的液壓卷揚機有兩種型式結構。一種是傳動輸出軸與捲筒之間設一離合器,離合器結構類似制動器,詳見圖4-5ILYJ5系列自由下放卷揚機。離合器也是常閉式,彈簧閉合,液壓分離,由單獨換向閥控制。
圖4-5 ILYJ5系列自由下放卷揚機
圖4-6是具有自由下放速度可調的液壓卷揚機,在捲筒上設有閘帶制動器,通過控制液壓缸中壓力,即可實現重載自由下放過程中的速度調節。
圖4-6 ILYJ5系列自由下放速度可調的卷揚機
另一種具有自由下放功能液壓卷揚機的液壓原理見圖4-7,液壓卷揚機上加一外控油路,來控制制動器和液控單向閥。卷揚機實行自由下放作業時,卷揚機的換向閥處於中位,接通外控油路,使制動器松開、液控單向閥打開,液壓馬達進油口與出油口連通,卷揚機在負載作用下實現自由下放動作。這種卷揚機比採用離合器自由下放的卷揚機結構簡單,液壓岩心鑽機上應用較多。
3.RW300型液壓卷揚機
(1)結構:圖4-8為美國BRADENRW300型卷揚機的結構圖,此卷揚機設計最大提升能力13950kg。
圖4-8中,液壓馬達16固定在液壓馬達座13上,並固定在右側底座12上。液壓馬達主軸通過內輪18的花鍵傳給卷揚機主軸,主軸左端為一軸齒輪,因此液壓馬達輸出軸直接驅動一級中心輪6轉動,一級行星輪25通過滾針軸承24支承在一級行星輪軸26上。一級中心輪通過一級行星輪驅動內齒圈7轉動。
圖4-7 外控自由下放卷揚機的液壓系統圖
第一行星輪系的中心輪通過一級行星輪驅動一級行星架(系桿)1轉動,而該行星輪架通過花鍵與二級中心輪3連接在一起,而二級中心輪通過滑動軸承支承在卷揚機主軸(中心輪6)上。二級中心輪通過二級行星輪驅動內齒圈轉動,通過二級行星輪驅動二級行星架2轉動,而該行星架通過花鍵與三級中心輪4連接在一起,三級行星架5固定不動,三級中心輪通過三級行星輪22驅動內齒圈7轉動。
圖4-8 RW300型卷揚機結構圖
內輪18與外套筒15之間裝有凸輪楔塊17,三者構成一單向離合器。外套筒左端外圓加工成齒槽與摩擦片21內齒相嚙合。摩擦片外齒與液壓馬達座13內齒相嚙合。卷揚機不工作時通過彈簧14,活塞9壓緊摩擦片,使外套筒不能轉動。形成具有雙制動系統的液壓卷揚機。
(2)工作原理:RW300型液壓卷揚機的液壓系統見圖4-9。圖4-10為卷揚機的雙重製動系統結構圖。
圖4-9 制動液壓系統圖
圖4-10 雙重製動系統結構圖
這種卷揚機的特點是在輸入軸與多片摩擦離合器之間又裝一個帶有凸輪楔塊摩擦滾動元件的離合器,使卷揚機不必松開摩擦離合器就可提升。
圖4-10所示為雙重製動系統結構圖,其中凸輪楔塊式定向離合器由內輪5,外套筒2和凸輪楔塊3等組成。內輪內孔為花鍵軸孔與液壓馬達軸配合,外套筒外表面加工成凹槽,與一組帶有凸齒的摩擦片相配合。
工作原理:當主軸逆時針回轉提升外負載時如圖4-11所示,凸輪楔塊被摩擦力矩帶動而滾向間隙寬敞的部分,這時定向離合器處於分離狀態,多片摩擦離合器處於彈簧推力作用壓緊處於嚙合狀態不工作。主軸通過行星輪系帶動捲筒作提升工作。不受凸輪楔塊離合器的影響。
圖4-11 自由轉動狀態
圖4-12 鎖定狀態
提升動作停止時,由於負載的自重會使捲筒反向(順時針)轉動,順時針轉動導致凸輪楔塊收縮,並楔緊與內輪和外套筒之間,使定向離合器進入接合狀態(圖4-12),從而緊緊地將主軸鎖住不動,阻止由負載自重引起的反向轉動。
卷揚機下降負載時,接通油路,當油壓未達到平衡閥開啟壓力時,液壓馬達保持不動,另外當油壓未達到多片摩擦離合器打開壓力時,液壓馬達也保持不動(圖4-12)。只有當油壓升至平衡閥的開啟壓力,同時達到松開多片摩擦離合器壓力時,液壓馬達才能轉動,負載下降。平衡閥的開度決定流量和負載下降速度,增加進入液壓馬達的油量就能夠增強壓力並加大平衡閥的開度,從而提高負載下降速度。降低流量會使壓力降低,平衡閥開度減小,從而降低負載的下降速度。
當操縱閥處於中間位置時,壓力下降,平衡閥關閉,負載運動停止。
(3)輪系傳動比計算:圖4-13為RW300型卷揚機傳動簡圖。設各齒輪齒數z1=15;z2=19;z3=54;z4=26;z5=20;z6=66;z7=20;z8=23。試求主軸轉速n1與捲筒轉速n6的傳動比。
解:首先劃分輪系,此輪系有兩個周轉輪系,一個定軸輪系。中心輪1、行星輪2、內齒圈3與系桿H1組成一級行星輪系;中心輪4、行星輪5、內齒圈6與系桿H2組成二級行星輪系;中心輪7、行星輪8、內齒圈6與系桿H3(系桿為固定件)組成定軸輪系。
圖4-13 RW300型卷揚機傳動簡圖
從傳動簡圖4-13中可知:n3=n6;n4=nH1;n7=nH2
寫出各輪系傳動比,並代入數值
液壓動力頭岩心鑽機設計與使用
由式a得 n1=-3.6n6+4.6nH1
由式b得 nH1=-2.54n6+3.54nH2
由式c得 nH2=-3.3n6
上述三式整理後
液壓動力頭岩心鑽機設計與使用
即捲筒與主軸旋轉方向相反,傳動比i16=69
② 液壓卷揚機
卷揚機又稱升降機,是鑽機的主要執行部件之一。卷揚機主要用於鑽進過程中鑽具和 套管的升降,採用繩索取心鑽進工藝,鑽機還要單獨配備一提升力較小的繩索取心卷揚機。
1.基本要求
鑽進過程中,升降系統的主要作用是升降鑽具。升降工序時間占整個鑽孔鑽探總時間 的比值隨孔深而增加,一個2000m深的鑽孔,比值能佔到20%~35%。所以說,升降系統 的完善程度,直接影響鑽探效率與質量,升降系統應滿足以下基本要求:
(1)升速度大小、級數、調速范圍與起重量的確定,應能最大限度地降低升降工序的機動時間和盡可能提高功率利用率。
(2)下鑽時,由於操作或孔內情況驟然變化,使升降系統承受較大的動負載;孔內發生卡鑽時需進行強力起拔。因此要求升降系統結構與強度能適應這種負載特點。
(3)升降鑽具時,微動升降動作頻繁,這種動作能否准確完成,不僅影響鑽進效率,而且影響鑽進質量(如提鑽時,發生岩心脫落);處理孔內事故過程的微控升降准確與否,直接影響排除事故的速度和效果。因此,除操作原因外,要求卷揚機起放靈敏,平穩可靠。
(4)提高升降工序的准確性和速度,避免事故,卷揚機的操縱位置應便於操作者觀察 孔口。
(5)卷揚機的布局應有利於排繞鋼絲繩。
2.液壓卷揚機工作原理
如圖4-12所示,卷揚機採用軸向柱塞式液壓馬達1驅動主軸8,經過行星輪系統10減速 傳至捲筒9,通過鋼絲繩進行提升或下降工作。在捲筒右端裝有制動器,並設有環形液壓 缸。從圖中可知彈簧3通過液壓缸活塞4壓緊摩擦片6,由於制動底座是固定的,這時定位 盤5被制動,主軸8不能轉動。
圖4-12 液壓卷揚機結構圖
在油路設計上液壓馬達與環形液壓缸油路是並聯的。當卷揚機啟動時,同時向液壓馬 達和環形液壓缸供壓力油,進入環形液壓缸的壓力油克服彈簧張力使制動器松開,捲筒工 作。卷揚機的提升或下降,均由液壓馬達驅動。當油路卸荷時,環形液壓缸的壓力消失,制動器在彈簧的張力作用下,定位盤被制動,捲筒處於剎車狀態。在下放鑽具時,當下放 速度過快,超過液壓馬達供油時,由於回油路上平衡閥的限速作用使鑽具以一定速度呈勻 速下降。
3.輪系傳動比計算
圖4-1 3為卷揚機傳動簡圖,此輪系是一個混合輪系。混合輪系是既有定軸輪系又有周轉輪系。在計算混合輪系的傳動比時,不能把它看做一個整體,而用一個統一的公式來進 行計算,必須把混合輪系中定軸輪系部分和周轉輪系部分分開,然後分別按不同的方法計 算它們的傳動比,最後聯立求解。
劃分輪系的時候,關鍵是把其中的周轉輪系找出來。周轉輪系的特點是有行星輪,所 以首先要找到行星輪,然後找出桿系(注意桿系不一定是簡單的桿狀),以及與行星輪嚙 合的所有中心輪。每一個桿系連同桿繫上的行星輪和行星輪相嚙合的中心輪就組成一個周 轉輪系。在一個復雜的混合輪系中,可能包含有幾個周轉輪系(每個桿系都對應一個周轉 輪系),當將這些周轉輪系劃出來後,剩下的便是定軸輪系。
圖4-13 卷揚機傳動簡圖
先把卷揚機中的輪系分出來,如圖4-13所示,由齒輪1、2、3與桿系H組成的周轉輪 系。左邊由於桿系H1是固定的,所以齒輪4、5與齒輪3組成一個定軸輪系。齒輪4與4′ 是 一個雙聯齒輪,桿系H由內齒輪花鍵與4外齒輪嚙合,連接成一體。
現分別計算它們的傳動比:
定軸輪系的傳動比為:
深部找礦鑽探技術與實踐
周轉輪系的傳動比為:
深部找礦鑽探技術與實踐
由於齒輪4、與桿系H是一個內、外齒輪嚙合的聯軸器,
深部找礦鑽探技術與實踐
上兩式聯立求出:
深部找礦鑽探技術與實踐
根據上式中給出的齒輪齒數值,可求出不同的傳動比,而得出不同的捲筒轉速。
4.液壓卷揚機的使用與維護
使用液壓卷揚機前必須對卷揚機結構機械性能了解透徹。並遵守操作規程和安全指南。
(1)定期更換齒輪油。包括:
1)換油:運行完第一個1 00h後應該更換齒輪油,之後每運行1000h或者6個月更換一次,兩者當中選擇間隔時間較短的一個來執行。齒輪油必須更換以防止磨損部件損害到齒 輪運行的可靠性和安全性,以及對軸承、齒輪和密封圈的侵蝕。如果不能按照推薦的最小 間隔時間換油,則可能導致出現間歇性剎車滑動,從而造成卷揚機損壞,甚至嚴重的人身 傷害。
2)油麵:齒輪油麵應每運行500h或者3個月檢查一次,兩者中選擇時間較短的來執 行。檢查油麵時,拆下位於捲筒座中心位置的大螺塞。油麵應該位於與此開口底部持平的 位置。
3)推薦使用行星齒輪油:實踐經驗表明使用合適的行星齒輪油對於保證剎車離合器 的可靠性和安全性,以及獲得較長的齒輪壽命具有至關重要的作用。
如果使用的行星輪油類型和黏度不恰當,則可能導致間歇性剎車離合器滑動,造成卷 揚機損壞,甚至造成嚴重的人身傷害。某些齒輪潤滑劑含有大量的防滑添加劑,這些可能 導致剎車離合器滑動並造成剎車離合器圓盤和密封圈的損傷。由於環境溫度導致油的黏度 發生變化,這對於剎車離合器運行的可靠性也具有關鍵性作用。實驗表明過重或者過稠的 齒輪油可能導致間歇性剎車離合器滑動。所以必須確保卷揚機上的齒輪油的黏度與其主要 的環境溫度相適應。
(2)卷揚機啟動前進行預熱程序。每次啟動之前應進行預熱程序,當環境溫度低於 4℃時,必須進行預熱。
啟動時應當按照推薦的最低可靠性能運行,同時保持液壓卷揚機控制閥處於齒輪的空 擋上,從而保證有足夠的時間來預熱系統。然後卷揚機應當以低速來回運行幾次,以便將 預熱的液壓油灌注到所有潤滑點上,並使齒輪油潤滑流過行星齒輪裝置。
如果不對卷揚機進行適當預熱,尤其是在環境溫度較低的情況下沒有適當的預熱,將 可能導致由於較高的反壓力啟動剎車而出現臨時性剎車滑動,從而可能造成卷揚機損壞和 嚴重的人身傷害。
(3)在卷揚機捲筒上纏繞鋼絲繩時,不要期望靠手將其捋緊,而應將其抓住「一把倒 一把」地將其纏緊。
(4)不要使用斷股的鋼絲繩。
(5)不要對卷揚機的任何部分進行焊接。
(6)不要超過液壓卷揚機規格中的最大油壓力和流量。
(7)保持液壓系統潔凈並避免受到污染。
(8)每年對卷揚機所有齒輪部件進行一次拆卸和檢測。
③ 求一張卷揚機的設計圖紙,卷揚機F=12t, 吊繩牽引v=0.3m/s, 捲筒直徑D=500mm,做過課題的跪求分享下感謝
一級直齒輪減速器說明書和裝配技術數據滾筒圓周力:F=1200N帶速:V=2.1M/S滾筒直徑:D=400mm全題目:一級圓柱直齒輪減速器參考書目:《機械設計基礎》任成高《簡明機械零件設計實用手冊》胡家秀其他也可發給我參考啊萬分感謝!!!也把它發到我的郵箱裡面看看吧。。[email protected]不過你也可以到我的博客裡面看看哦。/機械設計課程--帶式運輸機傳動裝置中的同軸式1級圓柱齒輪減速器目錄設計任務書……………………………………………………1傳動方案的擬定及說明………………………………………4電動機的選擇…………………………………………………4計算傳動裝置的運動和動力參數……………………………5傳動件的設計計算……………………………………………5軸的設計計算…………………………………………………8滾動軸承的選擇及計算………………………………………14鍵聯接的選擇及校核計算……………………………………16連軸器的選擇…………………………………………………16減速器附件的選擇……………………………………………17潤滑與密封……………………………………………………18設計小結………………………………………………………18參考資料目錄…………………………………………………18機械設計課程設計任務書題目:設計一用於帶式運輸機傳動裝置中的同軸式二級圓柱齒輪減速器一.總體布置簡圖1—電動機;2—聯軸器;3—齒輪減速器;4—帶式運輸機;5—鼓輪;6—聯軸器二.工作情況:載荷平穩、單向旋轉三.原始數據鼓輪的扭矩T(N•m):850鼓輪的直徑D(mm):350運輸帶速度V(m/s):0.7帶速允許偏差(%):5使用年限(年):5工作制度(班/日):2四.設計內容1.電動機的選擇與運動參數計算;2.斜齒輪傳動設計計算3.軸的設計4.滾動軸承的選擇5.鍵和連軸器的選擇與校核;6.裝配圖、零件圖的繪制7.設計計算說明書的編寫五.設計任務1.減速器總裝配圖一張2.齒輪、軸零件圖各一張3.設計說明書一份六.設計進度1、第一階段:總體計算和傳動件參數計算2、第二階段:軸與軸系零件的設計3、第三階段:軸、軸承、聯軸器、鍵的校核及草圖繪制4、第四階段:裝配圖、零件圖的繪制及計算說明書的編寫傳動方案的擬定及說明由題目所知傳動機構類型為:同軸式二級圓柱齒輪減速器。故只要對本傳動機構進行分析論證。本傳動機構的特點是:減速器橫向尺寸較小,兩大吃論浸油深度可以大致相同。結構較復雜,軸向尺寸大,中間軸較長、剛度差,中間軸承潤滑較困難。電動機的選擇1.電動機類型和結構的選擇因為本傳動的工作狀況是:載荷平穩、單向旋轉。所以選用常用的封閉式Y(IP44)系列的電動機。2.電動機容量的選擇1)工作機所需功率PwPw=3.4kW2)電動機的輸出功率Pd=Pw/ηη==0.904Pd=3.76kW3.電動機轉速的選擇nd=(i1』•i2』…in』)nw初選為同步轉速為1000r/min的電動機4.電動機型號的確定由表20-1查出電動機型號為Y132M1-6,其額定功率為4kW,滿載轉速960r/min。基本符合題目所需的要求計算傳動裝置的運動和動力參數傳動裝置的總傳動比及其分配1.計算總傳動比由電動機的滿載轉速nm和工作機主動軸轉速nw可確定傳動裝置應有的總傳動比為:i=nm/nwnw=38.4i=25.142.合理分配各級傳動比由於減速箱是同軸式布置,所以i1=i2。因為i=25.14,取i=25,i1=i2=5速度偏差為0.5%<5%,所以可行。各軸轉速、輸入功率、輸入轉矩項目電動機軸高速軸I中間軸II低速軸III鼓輪轉速(r/min)96096019238.438.4功率(kW)43.963.843.723.57轉矩(N•m)39.839.4191925.2888.4傳動比11551效率10.990.970.970.97傳動件設計計算1.選精度等級、材料及齒數1)材料及熱處理;選擇小齒輪材料為40Cr(調質),硬度為280HBS,大齒輪材料為45鋼(調質),硬度為240HBS,二者材料硬度差為40HBS。2)精度等級選用7級精度;3)試選小齒輪齒數z1=20,大齒輪齒數z2=100的;4)選取螺旋角。初選螺旋角β=14°2.按齒面接觸強度設計因為低速級的載荷大於高速級的載荷,所以通過低速級的數據進行計算按式(10—21)試算,即dt≥1)確定公式內的各計算數值(1)試選Kt=1.6(2)由圖10-30選取區域系數ZH=2.433(3)由表10-7選取尺寬系數φd=1(4)由圖10-26查得εα1=0.75,εα2=0.87,則εα=εα1+εα2=1.62(5)由表10-6查得材料的彈性影響系數ZE=189.8Mpa(6)由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限σHlim1=600MPa;大齒輪的解除疲勞強度極限σHlim2=550MPa;(7)由式10-13計算應力循環次數N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8N2=N1/5=6.64×107(8)由圖10-19查得接觸疲勞壽命系數KHN1=0.95;KHN2=0.98(9)計算接觸疲勞許用應力取失效概率為1%,安全系數S=1,由式(10-12)得[σH]1==0.95×600MPa=570MPa[σH]2==0.98×550MPa=539MPa[σH]=[σH]1+[σH]2/2=554.5MPa2)計算(1)試算小齒輪分度圓直徑d1td1t≥==67.85(2)計算圓周速度v===0.68m/s(3)計算齒寬b及模數mntb=φdd1t=1×67.85mm=67.85mmmnt===3.39h=2.25mnt=2.25×3.39mm=7.63mmb/h=67.85/7.63=8.89(4)計算縱向重合度εβεβ==0.318×1×tan14=1.59(5)計算載荷系數K已知載荷平穩,所以取KA=1根據v=0.68m/s,7級精度,由圖10—8查得動載系數KV=1.11;由表10—4查的KHβ的計算公式和直齒輪的相同,故KHβ=1.12+0.18(1+0.6×1)1×1+0.23×1067.85=1.42由表10—13查得KFβ=1.36由表10—3查得KHα=KHα=1.4。故載荷系數K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05(6)按實際的載荷系數校正所得的分度圓直徑,由式(10—10a)得d1==mm=73.6mm(7)計算模數mnmn=mm=3.743.按齒根彎曲強度設計由式(10—17mn≥1)確定計算參數(1)計算載荷系數K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96(2)根據縱向重合度εβ=0.318φdz1tanβ=1.59,從圖10-28查得螺旋角影響系數Yβ=0。88(3)計算當量齒數z1=z1/cosβ=20/cos14=21.89z2=z2/cosβ=100/cos14=109.47(4)查取齒型系數由表10-5查得YFa1=2.724;Yfa2=2.172(5)查取應力校正系數由表10-5查得Ysa1=1.569;Ysa2=1.798(6)計算[σF]σF1=500MpaσF2=380MPaKFN1=0.95KFN2=0.98[σF1]=339.29Mpa[σF2]=266MPa(7)計算大、小齒輪的並加以比較==0.0126==0.01468大齒輪的數值大。2)設計計算mn≥=2.4mn=2.54.幾何尺寸計算1)計算中心距z1=32.9,取z1=33z2=165a=255.07mma圓整後取255mm2)按圓整後的中心距修正螺旋角β=arcos=1355』50」3)計算大、小齒輪的分度圓直徑d1=85.00mmd2=425mm4)計算齒輪寬度b=φdd1b=85mmB1=90mm,B2=85mm5)結構設計以大齒輪為例。因齒輪齒頂圓直徑大於160mm,而又小於500mm,故以選用腹板式為宜。其他有關尺寸參看大齒輪零件圖。軸的設計計算擬定輸入軸齒輪為右旋II軸:1.初步確定軸的最小直徑d≥==34.2mm2.求作用在齒輪上的受力Ft1==899NFr1=Ft=337NFa1=Fttanβ=223N;Ft2=4494NFr2=1685NFa2=1115N3.軸的結構設計1)擬定軸上零件的裝配方案i.I-II段軸用於安裝軸承30307,故取直徑為35mm。ii.II-III段軸肩用於固定軸承,查手冊得到直徑為44mm。iii.III-IV段為小齒輪,外徑90mm。iv.IV-V段分隔兩齒輪,直徑為55mm。v.V-VI段安裝大齒輪,直徑為40mm。vi.VI-VIII段安裝套筒和軸承,直徑為35mm。2)根據軸向定位的要求確定軸的各段直徑和長度1.I-II段軸承寬度為22.75mm,所以長度為22.75mm。2.II-III段軸肩考慮到齒輪和箱體的間隙12mm,軸承和箱體的間隙4mm,所以長度為16mm。3.III-IV段為小齒輪,長度就等於小齒輪寬度90mm。4.IV-V段用於隔開兩個齒輪,長度為120mm。5.V-VI段用於安裝大齒輪,長度略小於齒輪的寬度,為83mm。6.VI-VIII長度為44mm。4.求軸上的載荷66207.563.5Fr1=1418.5NFr2=603.5N查得軸承30307的Y值為1.6Fd1=443NFd2=189N因為兩個齒輪旋向都是左旋。故:Fa1=638NFa2=189N5.精確校核軸的疲勞強度1)判斷危險截面由於截面IV處受的載荷較大,直徑較小,所以判斷為危險截面2)截面IV右側的截面上的轉切應力為由於軸選用40cr,調質處理,所以([2]P355表15-1)a)綜合系數的計算由,經直線插入,知道因軸肩而形成的理論應力集中為,,([2]P38附表3-2經直線插入)軸的材料敏感系數為,,([2]P37附圖3-1)故有效應力集中系數為查得尺寸系數為,扭轉尺寸系數為,([2]P37附圖3-2)([2]P39附圖3-3)軸採用磨削加工,表面質量系數為,([2]P40附圖3-4)軸表面未經強化處理,即,則綜合系數值為b)碳鋼系數的確定碳鋼的特性系數取為,c)安全系數的計算軸的疲勞安全系數為故軸的選用安全。I軸:1.作用在齒輪上的力FH1=FH2=337/2=168.5Fv1=Fv2=889/2=444.52.初步確定軸的最小直徑3.軸的結構設計1)確定軸上零件的裝配方案2)根據軸向定位的要求確定軸的各段直徑和長度d)由於聯軸器一端連接電動機,另一端連接輸入軸,所以該段直徑尺寸受到電動機外伸軸直徑尺寸的限制,選為25mm。e)考慮到聯軸器的軸向定位可靠,定位軸肩高度應達2.5mm,所以該段直徑選為30。f)該段軸要安裝軸承,考慮到軸肩要有2mm的圓角,則軸承選用30207型,即該段直徑定為35mm。g)該段軸要安裝齒輪,考慮到軸肩要有2mm的圓角,經標准化,定為40mm。h)為了齒輪軸向定位可靠,定位軸肩高度應達5mm,所以該段直徑選為46mm。i)軸肩固定軸承,直徑為42mm。j)該段軸要安裝軸承,直徑定為35mm。2)各段長度的確定各段長度的確定從左到右分述如下:a)該段軸安裝軸承和擋油盤,軸承寬18.25mm,該段長度定為18.25mm。b)該段為軸環,寬度不小於7mm,定為11mm。c)該段安裝齒輪,要求長度要比輪轂短2mm,齒輪寬為90mm,定為88mm。d)該段綜合考慮齒輪與箱體內壁的距離取13.5mm、軸承與箱體內壁距離取4mm(採用油潤滑),軸承寬18.25mm,定為41.25mm。e)該段綜合考慮箱體突緣厚度、調整墊片厚度、端蓋厚度及聯軸器安裝尺寸,定為57mm。f)該段由聯軸器孔長決定為42mm4.按彎扭合成應力校核軸的強度W=62748N.mmT=39400N.mm45鋼的強度極限為,又由於軸受的載荷為脈動的,所以。III軸1.作用在齒輪上的力FH1=FH2=4494/2=2247NFv1=Fv2=1685/2=842.5N2.初步確定軸的最小直徑3.軸的結構設計1)軸上零件的裝配方案2)據軸向定位的要求確定軸的各段直徑和長度I-IIII-IVIV-VV-VIVI-VIIVII-VIII直徑607075877970長度105113.758399.533.255.求軸上的載荷Mm=316767N.mmT=925200N.mm6.彎扭校合滾動軸承的選擇及計算I軸:1.求兩軸承受到的徑向載荷5、軸承30206的校核1)徑向力2)派生力3)軸向力由於,所以軸向力為,4)當量載荷由於,,所以,,,。由於為一般載荷,所以載荷系數為,故當量載荷為5)軸承壽命的校核II軸:6、軸承30307的校核1)徑向力2)派生力,3)軸向力由於,所以軸向力為,4)當量載荷由於,,所以,,,。由於為一般載荷,所以載荷系數為,故當量載荷為5)軸承壽命的校核III軸:7、軸承32214的校核1)徑向力2)派生力3)軸向力由於,所以軸向力為,4)當量載荷由於,,所以,,,。由於為一般載荷,所以載荷系數為,故當量載荷為5)軸承壽命的校核鍵連接的選擇及校核計算代號直徑(mm)工作長度(mm)工作高度(mm)轉矩(N•m)極限應力(MPa)高速軸8×7×60(單頭)25353.539.826.012×8×80(單頭)4068439.87.32中間軸12×8×70(單頭)4058419141.2低速軸20×12×80(單頭)75606925.268.518×11×110(單頭)601075.5925.252.4由於鍵採用靜聯接,沖擊輕微,所以許用擠壓應力為,所以上述鍵皆安全。連軸器的選擇由於彈性聯軸器的諸多優點,所以考慮選用它。二、高速軸用聯軸器的設計計算由於裝置用於運輸機,原動機為電動機,所以工作情況系數為,計算轉矩為所以考慮選用彈性柱銷聯軸器TL4(GB4323-84),但由於聯軸器一端與電動機相連,其孔徑受電動機外伸軸徑限制,所以選用TL5(GB4323-84)其主要參數如下:材料HT200公稱轉矩軸孔直徑,軸孔長,裝配尺寸半聯軸器厚([1]P163表17-3)(GB4323-84三、第二個聯軸器的設計計算由於裝置用於運輸機,原動機為電動機,所以工作情況系數為,計算轉矩為所以選用彈性柱銷聯軸器TL10(GB4323-84)其主要參數如下:材料HT200公稱轉矩軸孔直徑軸孔長,裝配尺寸半聯軸器厚([1]P163表17-3)(GB4323-84減速器附件的選擇通氣器由於在室內使用,選通氣器(一次過濾),採用M18×1.5油麵指示器選用游標尺M16起吊裝置採用箱蓋吊耳、箱座吊耳放油螺塞選用外六角油塞及墊片M16×1.5潤滑與密封一、齒輪的潤滑採用浸油潤滑,由於低速級周向速度為,所以浸油高度約為六分之一大齒輪半徑,取為35mm。二、滾動軸承的潤滑由於軸承周向速度為,所以宜開設油溝、飛濺潤滑。三、潤滑油的選擇齒輪與軸承用同種潤滑油較為便利,考慮到該裝置用於小型設備,選用L-AN15潤滑油。四、密封方法的選取選用凸緣式端蓋易於調整,採用悶蓋安裝骨架式旋轉軸唇型密封圈實現密封。密封圈型號按所裝配軸的直徑確定為(F)B25-42-7-ACM,(F)B70-90-10-ACM。軸承蓋結構尺寸按用其定位的軸承的外徑決定。設計小結由於時間緊迫,所以這次的設計存在許多缺點,比如說箱體結構龐大,重量也很大。齒輪的計算不夠精確等等缺陷,我相信,通過這次的實踐,能使我在以後的設計中避免很多不必要的工作,有能力設計出結構更緊湊,傳動更穩定精確的設備。
④ 卷揚機工作原理
卷揚機工作原理:
電機經減速機帶動鋼絲繩滾筒,收放鋼絲繩,通過不同的滑輪改變方向。工藝要求主要是滾筒轉速即鋼絲繩運動速度和制動系統的安全可靠性。卷揚機屬於較簡單的提升或牽引機械。
卷揚機(又叫絞車/電葫蘆),是用捲筒纏繞鋼絲繩或鏈條提升或牽引重物的輕小型起重設備。卷揚機可以垂直提升、水平或傾斜拽引重物。卷揚機分為手動卷揚機和電動卷揚機兩種。現在以電動卷揚機為主。
電動卷揚機是由電動機、傳動機構和捲筒或鏈輪組成,分鋼絲繩電動葫蘆和環鏈電動葫蘆兩種。
卷揚機可單獨使用,也可作起重、築路和礦井提升等機械中的組成部件,因操作簡單、繞繩量大、移置方便而廣泛應用。主要運用於建築、水利工程、林業、礦山、碼頭等的物料升降或平拖。
⑤ 卷揚機的工作原理及構造
卷揚機的工作原理是把電能經過電動機轉換為機械能,即電動機的轉子轉動輸出,經三角帶、軸、齒輪減速後再帶動捲筒旋轉。捲筒卷繞鋼絲繩並通過滑輪組,使起重機吊鉤提升或落下載荷Q,把機械能轉變為機械功,完成載荷的垂直運輸裝卸工作。電動卷揚機構造由電動機、聯軸節、制動器、齒輪箱和捲筒組成,共同安裝在機架上。
電動卷揚機又可稱為電動葫蘆。對於起升高度和裝卸量大,工作繁忙的情況下,要求調速性能好,特別要空鉤能快速下降。對安裝就位或敏感的物料,要能以微動速度下降。
卷揚機包括JK快速卷揚機和JM慢速卷揚機,僅能在地上使用,它以電動機為動力,經彈性聯軸節,三級封閉式齒輪減速器,牙嵌式聯軸節驅動捲筒,採用電磁製動。
該產品通用性高、結構緊湊、體積小、重量輕、起重大、使用轉移方便,被廣泛應用於建築、水利工程、林業、礦山、碼頭等的物料升降或平拖,還可作現代化電控自動作業線的配套設備。
(5)卷場機傳動裝置課程設計擴展閱讀
卷揚機使用時的注意事項:
1、捲筒上的鋼絲繩應排列整齊,如發現重疊和斜繞時,應停機重新排列。嚴禁在轉動中用手、腳拉踩鋼絲繩。鋼絲繩不許完全放出,最少應保留三圈。
2、鋼絲繩不許打結、扭繞,在一個節距內斷線超過10%時,應予更換。
3、作業中,任何人不得跨越鋼絲繩,物體(物件)提升後,操作人員不得離開卷揚機。休息時物件或吊籠應降至地面。
4、作業中,司機、信號員要同吊起物保持良好的可見度,司機與信號員應密切配合,服從信號統一指揮。
5、作業中如遇停電情況,應切斷電源,將提升物降至地面。
6、工作中要聽從指揮人員的信號,信號不明或可能引起事故時應暫停操作,待弄清情況後方可繼續作業。
⑥ 如何確定軸的支點位置和傳動零 件上力的作用點
目 錄
第一部分 設計任務書----------------------------------------------------------------3第二部分 電傳動方案的分析與擬定---------------------------------------------------5第三部分 電動機的選擇計算----------------------------------------------------------6第四部分 各軸的轉速、轉矩計算------------------------------------------------------7第五部分 聯軸器的選擇-------------------------------------------------------------9第六部分 錐齒輪傳動設計---------------------------------------------------------10第七部分 鏈傳動設計--------------------------------------------------------------12第八部分 斜齒圓柱齒輪設計-------------------------------------------------------14第九部分 軸的設計----------------------------------------------------------------17第十部分 軸承的設計及校核-------------------------------------------------------20第十一部分 高速軸的校核---------------------------------------------------------22第十二部分 箱體設計---------------------------------------------------------------23第十三部分 設計小結---------------------------------------------------------------24
第一部分 設計任務書
1.1 機械設計課程的目的
機械設計課程設計是機械類專業和部分非機械類專業學生第一次較全面的機械設計訓練,是機械設計和機械設計基礎課程重要的綜合性與實踐性教學環節。其基本目的是:
(1) 通過機械設計課程的設計,綜合運用機械設計課程和其他有關先修課程的理論,結合生產實際知識,培養分析和解決一般工程實際問題的能力,並使所學知識得到進一步鞏固、深化和擴展。
(2) 學習機械設計的一般方法,掌握通用機械零件、機械傳動裝置或簡單機械的設計原理和過程。
(3) 進行機械設計基本技能的訓練,如計算、繪圖、熟悉和運用設計資料(手冊、圖冊、標准和規范等)以及使用經驗數據,進行經驗估算和數據處理等。
1.2 機械設計課程的內容
選擇作為機械設計課程的題目,通常是一般機械的傳動裝置或簡單機械。
課程設計的內容通常包括:確定傳動裝置的總體設計方案;選擇電動機;計算傳動裝置的運動和動力參數;傳動零件、軸的設計計算;軸承、聯軸器、潤滑、密封和聯接件的選擇及校核計算;箱體結構及其附件的設計;繪制裝配工作圖及零件工作圖;編寫設計計算說明書。
在設計中完成了以下工作:
① 減速器裝配圖1張(A0或A1圖紙);
② 零件工作圖2~3張(傳動零件、軸、箱體等);
③ 設計計算說明書1份,6000~8000字。
1.3 機械設計課程設計的步驟
機械設計課程設計的步驟通常是根據設計任務書,擬定若干方案並進行分析比較,然後確定一個正確、合理的設計方案,進行必要的計算和結構設計,最後用圖紙表達設計結果,用設計計算說明書表示設計依據。
機械設計課程設計一般可按照以下所述的幾個階段進行:
1.設計准備
① 分析設計計劃任務書,明確工作條件、設計要求、內容和步驟。
② 了解設計對象,閱讀有關資料、圖紙、觀察事物或模型以進行減速器裝拆試驗等。
③ 浮系課程有關內容,熟悉機械零件的設計方法和步驟。
④ 准備好設計需要的圖書、資料和用具,並擬定設計計劃等。
2.傳動裝置總體設計
① 確定傳動方案——圓柱齒輪傳動,畫出傳動裝置簡圖。
② 計算電動機的功率、轉速、選擇電動機的型號。
③ 確定總傳動比和分配各級傳動比。
④ 計算各軸的功率、轉速和轉矩。
3.各級傳動零件設計
① 減速器內的傳動零件設計(齒輪傳動)。
4.減速器裝配草圖設計
① 選擇比例尺,合理布置試圖,確定減速器各零件的相對位置。
② 選擇聯軸器,初步計算軸徑,初選軸承型號,進行軸的結構設計。
③ 確定軸上力作用點及支點距離,進行軸、軸承及鍵的校核計算。
④ 分別進行軸系部件、傳動零件、減速器箱體及其附件的結構設計。
5.減速器裝配圖設計
① 標注尺寸、配合及零件序號。
② 編寫明細表、標題欄、減速器技術特性及技術要求。
③ 完成裝配圖。
6.零件工作圖設計
① 軸類零件工作圖。
② 齒輪類零件工作圖。
③ 箱體類零件工作圖。
第一部分 題目及要求
卷揚機傳動裝置的設計
1. 設計題目
設計一卷揚機的傳動裝置。傳動裝置簡圖如下圖所示。
(1)卷揚機數據
卷揚機繩牽引力F(N)、繩牽引速度v(m/s)及捲筒直徑D(mm)見附表。
(2)工作條件
用於建築工地提升物料,空載啟動,連續運轉,三班制工作,工作平穩。
(3) 使用期限
工作期限為十年,每年工作300天,三班制工作,每班工作4小時,檢修期間隔為三年。
(4) 產批量及加工條件
小批量生產,無鑄鋼設備。
2. 設計任務
1)確定傳動方案;
2)選擇電動機型號;
3)設計傳動裝置;
4)選擇聯軸器。
3. 具體作業
1)減速器裝配圖一張;
2)零件工作圖二張(大齒輪,輸出軸);
3)設計說明書一份。
4. 數據表
牽引力F/N 12 10 8 7
牽引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
捲筒直徑D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480
卷揚機傳動裝置的設計
5. 設計題目
設計一卷揚機的傳動裝置。傳動裝置簡圖如下圖所示。
(1)卷揚機數據
卷揚機繩牽引力F(N)、繩牽引速度v(m/s)及捲筒直徑D(mm)見附表。
(2)工作條件
用於建築工地提升物料,空載啟動,連續運轉,三班制工作,工作平穩。
(5) 使用期限
工作期限為十年,每年工作300天,三班制工作,每班工作4小時,檢修期間隔為三年。
(6) 產批量及加工條件
小批量生產,無鑄鋼設備。
6. 設計任務
1)確定傳動方案;
2)選擇電動機型號;
3)設計傳動裝置;
4)選擇聯軸器。
7. 具體作業
1)減速器裝配圖一張;
2)零件工作圖二張(大齒輪,輸出軸);
3)設計說明書一份。
8. 數據表
牽引力F/N 12 10 8 7
牽引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
捲筒直徑D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480
第二部分 傳動方案的分析與擬定
確定總傳動比:
由於Y系列三相非同步電動機的同步轉速有750,1000,1500和3000r/min四種可供選擇.根據原始數據,得到卷揚機捲筒的工作轉速為
按四種不同電動機計算所得的總傳動比分別是:
電動機同步轉速
750 1000 1500 3000
系統總傳動比
32.71 43.61 65.42 130.83
確定電動機轉速:
綜合考慮電動機和傳動裝置的尺寸、重量、價格以及總傳動比,750轉的低速電動機傳動比雖小,但電動機極數大價格高,故不可取。3000轉的電動機重量輕,價格便宜,但總傳動比大,傳動裝置外廓尺寸大,製造成本高,結構不緊湊,也不可取。剩下兩種相比,如為使傳動裝置結構緊湊,選用1000轉的電動機較好;如考慮電動機重量和價格,則應選用1500轉的電動機。現選用1500轉的電動機,以節省成本。
確定傳動方案:
驗算:通常V帶傳動的傳動比常用范圍為 ,二級圓柱齒輪減速器為 ,則總傳動比的范圍為 ,因此能夠滿足以上總傳動比為65.42的要求。
第三部分 電動機的選擇計算
1、確定電動機類型
按工作要求和條件,選用Y系列籠型三相非同步電動機,封閉式結構。
2、確定電動機的功率
工作機的功率
KW
效率的選擇:
1. V帶傳動效率: η1 = 0.96
2. 7級精度圓柱齒輪傳動:η2 = 0.98
3. 滾動軸承: η3 = 0.99
4. 彈性套柱銷聯軸器: η4 = 0.99
5. 傳動滾筒效率: η5 = 0.96
傳動裝置總效率為
工作機所需電動機功率
kw
因載荷平穩,電動機額定功率 略大於 即可。由Y系列電動機技術數據,選電動機的額定功率 為7.5 kw,結合其同步轉速,選定電動機的各項參數如下:
取同步轉速: 1500r/min ——4級電動機
型號: Y132M-4
額定功率: 7.5kW
滿載功率: 1440r/min
堵轉轉矩/額定轉矩: 2.2
最大轉矩/額定轉矩: 2.2
第四部分 確定傳動裝置總傳動比和分配各級傳動比
1、確定總傳動比
2、分配各級傳動比
取V帶傳動的傳動比 ,則減速器的傳動比 為
取兩級圓柱齒輪減速器高速級的傳動比
則低速級的傳動比
第五部分 運動參數及動力參數計算
0軸(電動機軸):
P0 = Pd =7.2 kW
n0 = nm = 1440 r/min
T0 = 9550×( )= N?m
1軸(高速軸):
P1 = P0η1 = kW
n1 = = r/min
T1 = 9550×( )= N?m
2軸(中間軸):
P2 = P1η2η3 = kW
n2 = r/min
T2 = 9550×( )= N?m
3軸(低速軸):
P3 = P2η2η3 = kW
n3 = r/min
T3 = 9550×( )= N?m
4軸(輸出軸):
P4 = P3η3η4 = kW
n4 = r/min
T4 = 9550×( )= N?m
輸出軸功率或輸出軸轉矩為各軸的輸入功率或輸入轉矩乘以軸承效率(0.99),即
P』= 0.99P
軸名 功率P(kW) 轉矩T(N?m) 轉速
n(r/min) 傳動比
i 效率
η
輸入 輸出 輸入 輸出
電動機軸 7.20 47.75 1440
3.8 0.96
1軸 6.91 3.047 155.91 154.35 378.95
4.809 0.97
2軸 6.70 2.896 811.99 803.83 78.80
3.435 0.97
3軸 6.50 2.753 2705.97 2678.91 22.94
1 0.98
輸出軸 6.37 2.590 2651.85 2625.33 22.94
第六部分 傳動零件的設計計算
高速級斜齒圓柱齒輪設計
材料選擇:小齒輪40Cr (調質)硬度280HBs;
大齒輪45#鋼(調質)硬度240HBs;(硬度差40HBs)
七級精度,取Z1=21,Z2= =4.809×21=100.989,取Z2=101,
初選螺旋角β=14°,
按齒輪面接觸強度設計:
1) 試選載荷系數 Kt=1.6
2) 由動力參數圖,小齒輪傳遞的轉矩
3) 由表10-7(機械設計)選取齒寬系數
4) 由表10-6查得材料的彈性影響系數
5) 由圖10-21d按齒面硬度查得小齒輪的接觸疲勞強度極限 ;大齒輪的接觸疲勞強度極限 ;
6) 由式10-13計算應力循環次數
7) 由圖10-19查得接觸疲勞壽命系數 ;
8) 計算接觸疲勞許用應力
取失效概率為1%,安全系數S=1,由式(10-12)得
9)由圖10-26(機械設計)得
εα1 = 0.76
εα2 = 0.86
則端面重合度
10)由圖10-30選取區域系數ZH = 2.433
11) 計算許用接觸應力
=
12)計算:
試算小齒輪分度圓直徑 ,由計算公式得
計算圓周速度
計算齒寬b及模數
= 1×60.59 = 60.59 mm
mnt = = mm
h = 2.25 mnt = mm
計算縱向重合度
縱向重合度 =0.318×φdZ1tanβ =
計算載荷系數K
已知,KA=1,取Kv=1.05(由圖10-8查得),由表10-4查得的計算公式
∴KHβ = 1.15+0.18(1+0.6φd2)+0.23×10-3×60.59 = 1.45
由圖10-13,得KFβ = 1.4
由表10-3,得
∴K = KA?Kv?KHα?KHβ = 1×1.05×1.3×1.45 = 1.98
按實際得載荷系數校正所算得德分度圓直徑,由試(10-10a)得
計算模數
mn= =
13) 按齒根彎曲強度設計
由圖10-20c查得小齒輪的彎曲疲勞強度極限 ;大齒輪的彎曲疲勞強度極限 ;
由圖10-18查得彎曲疲勞壽命系數 ;
計算彎曲疲勞許用應力
取彎曲疲勞安全系數S=1.4,由式10-12得
計算載荷系數
K = KA?Kv?KFα?KFβ = 1×1.05×1.3×1.4= 1.91
根據縱向重合度εβ=1.6650,由圖10-28,查得螺旋角影響系數Yβ=0.88
計算當量齒數
= 22.9883
查取齒形系數
由表10-5查得 YFα1=2.69,YFα2=2.20,
查取應力校正系數
由表10-5查得 YSα1=1.56,YSα2=1.79
計算大、小齒輪的 並加以比較
大齒輪的數值較大。
設計計算
經園整,mn=2 mm
∵ ,∴mn=2.5 mm
Z1 = = ,取Z1=25,Z2=120
幾何尺寸計算:
中心距 a =
經園整,a = 187 mm
修正螺旋角, =
∵β變動不大,
∴εα、εβ、ZH無需修正。
計算大、小齒輪的分度直徑
mm
mm
計算齒輪寬度
b = φdd1 = mm
園整後,B2=65mm,B1=70mm
da1 = d1+2ha1 =69.48
da2 = d2+2ha2 = 315.08
df1 = d1-2hf1 = 49.48
df2 = d2-2hf2 =305.08
第九部分 軸的設計
1) 高速軸:
初定最小直徑,選用材料45#鋼,調質處理。取A0=112(下同)
則dmin = A0 = mm
∵最小軸徑處有鍵槽
∴dmin』 = 1.07 dmin = 17.72mm
∵最小直徑為安裝聯軸器外半徑,取KA=1.7,同上所述已選用TL4彈性套柱聯軸器,軸孔半徑d=20mm
∴取高速軸的最小軸徑為20mm。
由於軸承同時受徑向和軸向載荷,故選用單列圓錐滾子軸承按國標T297-94選取30206。
D×d×T=17.25mm
∴軸承處軸徑d=30mm
高速軸簡圖如下:
2)
取l1=38+46=84mm,l3=72mm,取擋圈直徑D=28mm,取d2=d4=25mm,d3=30mm,l2=l4=26.5mm,d1=d5=20mm。
齒輪輪轂寬度為46mm,取l5=28mm。
聯軸器用鍵:園頭普通平鍵。
b×h=6×6,長l=26mm
齒輪用鍵:同上。b×h=6×6,長l=10mm,倒角為2×45°
3) 中間軸:
中間軸簡圖如下:
初定最小直徑dmin= =22.1mm
選用30305軸承,
d×D×T = 25×62×18.25mm
∴d1=d6=25mm,取l1=27mm,l6=52mm
l2=l4=10mm,d2=d4=35mm,l3=53mm
d3=50mm,d5=30mm,l5=1.2×d5=36mm
齒輪用鍵:園頭普通鍵:b×h=12×8,長l=20mm
4) 低速軸:
低速軸簡圖如下: 初定最小直徑:
dmin = = 34.5mm
∵最小軸徑處有鍵槽
∴dmin』=1.07dmin=36.915mm
取d1=45mm,d2=55mm,d3=60mm,d4=d2=55mm
d5=50mm,d6=45mm,d7=40mm;
l1=45mm,l2=44mm,l3=6mm,l4=60mm,l5=38mm,l6=40mm,l7=60mm
齒輪用鍵:園頭普通鍵:b×h=16×6,長l=36mm
選用30309軸承:d×D×T = 40×90×25.25mm;B=23mm;C=20mm
⑦ 帶式輸送機傳動裝置(機械設計課程設計)
一)選擇電抄動機襲1。選擇電動機容量 P=FV/η P=4000*2/η η是帶式輸送機的效率,你沒寫出來。2。選取電動機額定功率 查表3。確定電動機轉速 n=60V/πD n=60*2*1000/π*450 毫米轉化米/1000 然後查表。二)計算傳動裝置的總傳動比並分配各級傳動比。總傳動比等於電動機轉速除以n。 分配有:動機道減速箱,動力軸道中間軸,間軸道輸出軸 。 開始的就這么多了。我打字好慢的,累的不行了 呵呵
⑧ 機械設計課程設計帶式運輸機傳動裝置的設計
給你做個參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2 、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3 、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100 ,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比: u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取 φ
齒寬: b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1 、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2 、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滾動軸承的選擇
1 、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2 、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1 、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2 、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3 、輸入軸與帶輪聯接採用平鍵聯接 =25mm L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4 、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11
⑨ 求帶式輸送機傳動裝置課程設計F=2300 v=1.5,滾筒直徑D=400,哪位大神以前有的 你能不能發給我
一、傳動方案擬定
第二組第三個數據:設計帶式輸送機傳動裝置中的一級圓柱齒輪減速器
(1) 工作條件:使用年限10年,每年按300天計算,兩班制工作,載荷平穩。
(2) 原始數據:滾筒圓周力F=1.7KN;帶速V=1.4m/s;
滾筒直徑D=220mm。
運動簡圖
二、電動機的選擇
1、電動機類型和結構型式的選擇:按已知的工作要求和 條件,選用 Y系列三相非同步電動機。
2、確定電動機的功率:
(1)傳動裝置的總效率:
η總=η帶×η2軸承×η齒輪×η聯軸器×η滾筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)電機所需的工作功率:
Pd=FV/1000η總
=1700×1.4/1000×0.86
=2.76KW
3、確定電動機轉速:
滾筒軸的工作轉速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min
根據【2】表2.2中推薦的合理傳動比范圍,取V帶傳動比Iv=2~4,單級圓柱齒輪傳動比范圍Ic=3~5,則合理總傳動比i的范圍為i=6~20,故電動機轉速的可選范圍為nd=i×nw=(6~20)×121.5=729~2430r/min
符合這一范圍的同步轉速有960 r/min和1420r/min。由【2】表8.1查出有三種適用的電動機型號、如下表
方案 電動機型號 額定功率 電動機轉速(r/min) 傳動裝置的傳動比
KW 同轉 滿轉 總傳動比 帶 齒輪
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89
綜合考慮電動機和傳動裝置尺寸、重量、價格和帶傳動、減速器的傳動比,比較兩種方案可知:方案1因電動機轉速低,傳動裝置尺寸較大,價格較高。方案2適中。故選擇電動機型號Y100l2-4。
4、確定電動機型號
根據以上選用的電動機類型,所需的額定功率及同步轉速,選定電動機型號為
Y100l2-4。
其主要性能:額定功率:3KW,滿載轉速1420r/min,額定轉矩2.2。
三、計算總傳動比及分配各級的傳動比
1、總傳動比:i總=n電動/n筒=1420/121.5=11.68
2、分配各級傳動比
(1) 取i帶=3
(2) ∵i總=i齒×i 帶π
∴i齒=i總/i帶=11.68/3=3.89
四、運動參數及動力參數計算
1、計算各軸轉速(r/min)
nI=nm/i帶=1420/3=473.33(r/min)
nII=nI/i齒=473.33/3.89=121.67(r/min)
滾筒nw=nII=473.33/3.89=121.67(r/min)
2、 計算各軸的功率(KW)
PI=Pd×η帶=2.76×0.96=2.64KW
PII=PI×η軸承×η齒輪=2.64×0.99×0.97=2.53KW
3、 計算各軸轉矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m
TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m
五、傳動零件的設計計算
1、 皮帶輪傳動的設計計算
(1) 選擇普通V帶截型
由課本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
據PC=3.3KW和n1=473.33r/min
由課本[1]P189圖10-12得:選用A型V帶
(2) 確定帶輪基準直徑,並驗算帶速
由[1]課本P190表10-9,取dd1=95mm>dmin=75
dd2=i帶dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由課本[1]P190表10-9,取dd2=280
帶速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范圍內,帶速合適。
(3) 確定帶長和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根據課本[1]表(10-6)選取相近的Ld=1600mm
確定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 驗算小帶輪包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(適用)
(5) 確定帶的根數
單根V帶傳遞的額定功率.據dd1和n1,查課本圖10-9得 P1=1.4KW
i≠1時單根V帶的額定功率增量.據帶型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 計算軸上壓力
由課本[1]表10-5查得q=0.1kg/m,由課本式(10-20)單根V帶的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
則作用在軸承的壓力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N
2、齒輪傳動的設計計算
(1)選擇齒輪材料與熱處理:所設計齒輪傳動屬於閉式傳動,通常
齒輪採用軟齒面。查閱表[1] 表6-8,選用價格便宜便於製造的材料,小齒輪材料為45鋼,調質,齒面硬度260HBS;大齒輪材料也為45鋼,正火處理,硬度為215HBS;
精度等級:運輸機是一般機器,速度不高,故選8級精度。
(2)按齒面接觸疲勞強度設計
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
確定有關參數如下:傳動比i齒=3.89
取小齒輪齒數Z1=20。則大齒輪齒數:Z2=iZ1= ×20=77.8取z2=78
由課本表6-12取φd=1.1
(3)轉矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)載荷系數k : 取k=1.2
(5)許用接觸應力[σH]
[σH]= σHlim ZN/SHmin 由課本[1]圖6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接觸疲勞壽命系數Zn:按一年300個工作日,每天16h計算,由公式N=60njtn 計算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]課本圖6-38中曲線1,得 ZN1=1 ZN2=1.05
按一般可靠度要求選取安全系數SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模數:m=d1/Z1=49.04/20=2.45mm
取課本[1]P79標准模數第一數列上的值,m=2.5
(6)校核齒根彎曲疲勞強度
σ bb=2KT1YFS/bmd1
確定有關參數和系數
分度圓直徑:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齒寬:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)復合齒形因數YFs 由課本[1]圖6-40得:YFS1=4.35,YFS2=3.95
(8)許用彎曲應力[σbb]
根據課本[1]P116:
[σbb]= σbblim YN/SFmin
由課本[1]圖6-41得彎曲疲勞極限σbblim應為: σbblim1=490Mpa σbblim2 =410Mpa
由課本[1]圖6-42得彎曲疲勞壽命系數YN:YN1=1 YN2=1
彎曲疲勞的最小安全系數SFmin :按一般可靠性要求,取SFmin =1
計算得彎曲疲勞許用應力為
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核計算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故輪齒齒根彎曲疲勞強度足夠
(9)計算齒輪傳動的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)計算齒輪的圓周速度V
計算圓周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因為V<6m/s,故取8級精度合適.
六、軸的設計計算
從動軸設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.53/121.67)1/3mm=32.44mm
考慮鍵槽的影響以及聯軸器孔徑系列標准,取d=35mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齒輪作用力:
圓周力:Ft=2T/d=2×198582/195N=2036N
徑向力:Fr=Fttan200=2036×tan200=741N
4、軸的結構設計
軸結構設計時,需要考慮軸系中相配零件的尺寸以及軸上零件的固定方式,按比例繪制軸系結構草圖。
(1)、聯軸器的選擇
可採用彈性柱銷聯軸器,查[2]表9.4可得聯軸器的型號為HL3聯軸器:35×82 GB5014-85
(2)、確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。軸外伸端安裝聯軸器,齒輪靠油環和套筒實現
軸向定位和固定,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,聯軸器靠軸肩平鍵和過盈配合
分別實現軸向定位和周向定位
(3)、確定各段軸的直徑
將估算軸d=35mm作為外伸端直徑d1與聯軸器相配(如圖),
考慮聯軸器用軸肩實現軸向定位,取第二段直徑為d2=40mm
齒輪和左端軸承從左側裝入,考慮裝拆方便以及零件固定的要求,裝軸處d3應大於d2,取d3=4 5mm,為便於齒輪裝拆與齒輪配合處軸徑d4應大於d3,取d4=50mm。齒輪左端用用套筒固定,右端用軸環定位,軸環直徑d5
滿足齒輪定位的同時,還應滿足右側軸承的安裝要求,根據選定軸承型號確定.右端軸承型號與左端軸承相同,取d6=45mm.
(4)選擇軸承型號.由[1]P270初選深溝球軸承,代號為6209,查手冊可得:軸承寬度B=19,安裝尺寸D=52,故軸環直徑d5=52mm.
(5)確定軸各段直徑和長度
Ⅰ段:d1=35mm 長度取L1=50mm
II段:d2=40mm
初選用6209深溝球軸承,其內徑為45mm,
寬度為19mm.考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L2=(2+20+19+55)=96mm
III段直徑d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直徑d4=50mm
長度與右面的套筒相同,即L4=20mm
Ⅴ段直徑d5=52mm. 長度L5=19mm
由上述軸各段長度可算得軸支承跨距L=96mm
(6)按彎矩復合強度計算
①求分度圓直徑:已知d1=195mm
②求轉矩:已知T2=198.58N?m
③求圓周力:Ft
根據課本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求徑向力Fr
根據課本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因為該軸兩軸承對稱,所以:LA=LB=48mm
(1)繪制軸受力簡圖(如圖a)
(2)繪制垂直面彎矩圖(如圖b)
軸承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由兩邊對稱,知截面C的彎矩也對稱。截面C在垂直面彎矩為
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上彎矩為:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)繪制合彎矩圖(如圖d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)繪制扭矩圖(如圖e)
轉矩:T=9.55×(P2/n2)×106=198.58N?m
(6)繪制當量彎矩圖(如圖f)
轉矩產生的扭剪文治武功力按脈動循環變化,取α=0.2,截面C處的當量彎矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危險截面C的強度
由式(6-3)
σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴該軸強度足夠。
主動軸的設計
1、選擇軸的材料 確定許用應力
選軸的材料為45號鋼,調質處理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭轉強度估算軸的最小直徑
單級齒輪減速器的低速軸為轉軸,輸出端與聯軸器相接,
從結構要求考慮,輸出端軸徑應最小,最小直徑為:
d≥C
查[2]表13-5可得,45鋼取C=118
則d≥118×(2.64/473.33)1/3mm=20.92mm
考慮鍵槽的影響以系列標准,取d=22mm
3、齒輪上作用力的計算
齒輪所受的轉矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齒輪作用力:
圓周力:Ft=2T/d=2×53265/50N=2130N
徑向力:Fr=Fttan200=2130×tan200=775N
確定軸上零件的位置與固定方式
單級減速器中,可以將齒輪安排在箱體中央,軸承對稱布置
在齒輪兩邊。齒輪靠油環和套筒實現 軸向定位和固定
,靠平鍵和過盈配合實現周向固定,兩端軸
承靠套筒實現軸向定位,靠過盈配合實現周向固定 ,軸通
過兩端軸承蓋實現軸向定位,
4 確定軸的各段直徑和長度
初選用6206深溝球軸承,其內徑為30mm,
寬度為16mm.。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長36mm,安裝齒輪段長度為輪轂寬度為2mm。
(2)按彎扭復合強度計算
①求分度圓直徑:已知d2=50mm
②求轉矩:已知T=53.26N?m
③求圓周力Ft:根據課本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求徑向力Fr根據課本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵兩軸承對稱
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面彎矩為
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面彎矩為
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)計算合成彎矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)計算當量彎矩:根據課本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危險截面C的強度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此軸強度足夠
(7) 滾動軸承的選擇及校核計算
一從動軸上的軸承
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)由初選的軸承的型號為: 6209,
查[1]表14-19可知:d=55mm,外徑D=85mm,寬度B=19mm,基本額定動載荷C=31.5KN, 基本靜載荷CO=20.5KN,
查[2]表10.1可知極限轉速9000r/min
(1)已知nII=121.67(r/min)
兩軸承徑向反力:FR1=FR2=1083N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=682N FA2=FS2=682N
(3)求系數x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)軸承壽命計算
∵P1=P2 故取P=1624N
∵深溝球軸承ε=3
根據手冊得6209型的Cr=31500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴預期壽命足夠
二.主動軸上的軸承:
(1)由初選的軸承的型號為:6206
查[1]表14-19可知:d=30mm,外徑D=62mm,寬度B=16mm,
基本額定動載荷C=19.5KN,基本靜載荷CO=111.5KN,
查[2]表10.1可知極限轉速13000r/min
根據根據條件,軸承預計壽命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
兩軸承徑向反力:FR1=FR2=1129N
根據課本P265(11-12)得軸承內部軸向力
FS=0.63FR 則FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端為壓緊端,現取1端為壓緊端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系數x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根據課本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)計算當量載荷P1、P2
根據課本P264表(14-12)取f P=1.5
根據課本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)軸承壽命計算
∵P1=P2 故取P=1693.5N
∵深溝球軸承ε=3
根據手冊得6206型的Cr=19500N
由課本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴預期壽命足夠
七、鍵聯接的選擇及校核計算
1.根據軸徑的尺寸,由[1]中表12-6
高速軸(主動軸)與V帶輪聯接的鍵為:鍵8×36 GB1096-79
大齒輪與軸連接的鍵為:鍵 14×45 GB1096-79
軸與聯軸器的鍵為:鍵10×40 GB1096-79
2.鍵的強度校核
大齒輪與軸上的鍵 :鍵14×45 GB1096-79
b×h=14×9,L=45,則Ls=L-b=31mm
圓周力:Fr=2TII/d=2×198580/50=7943.2N
擠壓強度: =56.93<125~150MPa=[σp]
因此擠壓強度足夠
剪切強度: =36.60<120MPa=[ ]
因此剪切強度足夠
鍵8×36 GB1096-79和鍵10×40 GB1096-79根據上面的步驟校核,並且符合要求。