A. 汽車動力轉向系統的作用及組成
轉向助力泵、轉向橫拉桿、助力器、方向機 等組成,轉向助力泵 使轉向靈活便於操作 轉向橫拉桿 是是前輪轉向用的
純手打,望採納,謝謝
B. 發動機由那幾部分機構系統組成,其主要作用是什麼
發動機由七大塊組成,每一部分都有自己的功能。分別為:
一、機體組
1、組成:氣缸蓋、氣缸體和曲軸箱
2、作用:作為發動機各機構、各系統的裝配基體,是支撐和固定曲柄連桿機構及其他裝置的骨架,與拖拉機底盤的相關部件組成拖拉機的車架。
二、曲柄連桿機構
1、組成:主要包括活塞、連桿、曲軸、飛輪等。
2、作用:是發動機藉以產生動力,並將活塞的直線往復運動轉變為曲軸的旋轉運動而輸出動力。
三、配氣機構與進排氣系統
1、組成:主要包括進氣門、排氣門、挺柱、推桿、搖臂、凸輪軸以及凸輪軸正時齒輪(由曲軸正時齒輪驅動)。
2、作用:使可燃混和氣及時充入氣缸並及時從氣缸排出廢氣。
四、供給系統和調速器
1、組成:主要包括油箱、沉澱杯、柴油濾清器、輸油泵、噴油泵及調速器等。
2、作用:定時、定量、定壓地將清潔的柴油以霧狀噴入燃燒室,並根據柴油機的負荷情況,自動調節供油量,以保證發動機最經濟的穩定運轉。
五、起動裝置
1、組成:起動電動機及其離合機構、飛輪齒圈、起動開關、蓄電池等。
2、作用:使柴油機由靜止狀態轉為運轉狀態並在柴油機剛進入運轉狀態是就能與之順利脫離的機構。
六、冷卻系
1、組成:汽缸體和氣缸蓋的冷卻水套、水泵、節溫器、風扇、散熱器、水溫表等
2、作用:把受熱機件的熱量散到空氣中去,延緩零件的強度和硬度的下降以致變形損壞,維持相互配合零件的合適的配合間隙,避免潤滑油受高溫而變質,保證柴油機的正常工作。
七、潤滑系
1、組成:主要包括機油泵、限壓閥、機油濾清器、潤滑油道等。
2、作用:將潤滑油供給作相對運動的零件以減少它們之間的摩擦阻力,減輕機件的磨損,並部分的冷卻摩擦零件,清洗摩擦表面。
累死我了,希望我的答案能夠幫助到你!!!
C. 汽車傳動系統組成與作用
汽車行駛過程中採用的傳動操作系統是由離合器、變速器、萬向轉運傳動設備以及相關的驅動橋共同構成的,也就是進行發動機和汽車四輪驅動器之間互相連接的動力傳輸設備。汽車的傳動操作系統的主要應用功能有促使汽車起步的功能、變速功能、主要減慢速度的功能以及差速功能等等不同應用功能,給行駛過程中的汽車以足夠充足的牽引力和行車速度變化,進而可以順利地確保行駛中的汽車可以更加安全、穩定的運行和駕駛。 [2]
離合器
離合器作為發動機與傳動系的結合工具,其由主動部分(飛輪、離合器蓋等)、從動部分(摩擦片)、壓緊裝置(膜片彈簧)和操縱機構組成。作用主要有以下幾點:①保證汽車平穩的起步;②保證擋位改變時的順滑性;;③防止傳動系統過載造成機件損壞。 變速器是實現不同行駛路況下的行駛速度改變的重要工具,主要有變速器殼、蓋、輸入軸、輸出軸、中間軸、倒擋軸、齒輪、軸承、油封、操縱機構等組成,利用不同直徑的齒輪嚙合實現轉速和轉矩的轉變,為實現變速變矩、實現汽車倒行、中斷傳輸動力和實現動力傳輸的功能。 [3]
隨著科技的發展,離合器可以分為以下幾種::①液力偶合器,也稱液力變矩器,通過油液傳動,用油液帶動渦輪實現動力的傳遞;②電磁離合器是通過線圈的電磁感應,通電時產生磁性實現動力傳遞;③摩擦式離合器又分為乾式和濕式摩擦離合器兩種,根據從動盤的數量又分為單雙多盤式等種類。隨著電子技術在汽車領域的應用,一些自動離合器也應運而生,由控制單元(ECU)來代替手動的離合器操作,減少了汽車駕駛者在使用過程中的不規范操作造成的能量損失。自動離合器可分為機械電機式自動離合器和液壓式自動離合器兩種。機械式是通過ECU分析油門、發動機轉速和車輛行駛速度後控制馬達拉動拉 桿驅使離合器工作的運動形式,而液壓式是用電動油泵代替拉桿。裝有自動離合器的汽車比AT和CVT汽車有耗油低、成本低的優勢。 [3]
萬向傳動裝置
萬向傳動裝置是實現汽車傳動系動力傳輸的關鍵裝置,位於傳動軸的末端,鏈接傳動軸驅動橋和半軸等零件。 作用是在汽車車身空間、汽車軸距、裝配誤差等各方面因素引起的發動機與汽車軸線不在同一位置,解決動力傳遞過程、適應轉向和汽車運行時所產生的上下跳動角度變化問題。 [3]
驅動橋
驅動橋即主減速器、差速器和半軸的總稱。其中主減速器是通過增加轉矩、減少轉速來實現動力傳遞。差速器是主減速器傳遞的動力傳遞給兩輪,其目的是實現轉彎時兩車輪的不同速度需求。 [3]
半軸
半軸是將差速器的動力傳遞給驅動輪的裝置。 現以輕型轎車為例,從離合器、變速器以及傳動部件材料等方面分析研究汽車傳動系的傳動效率的改進方向。 [3]
變速器
傳動系的動力傳遞主要通過變速器將發動機的動力以改變傳動比的方式傳遞給車輪,用來適應周圍環境的變 化及自身重量的改變,在汽車發展的歷程中,汽車的變速器經歷了從手動到自動的技術變革。 [3]
手動變速器(MT)也就是通俗講的手動擋,是需要駕駛者在使用汽車時根據個人意願和實際情況自我調節汽車的一種變速方式。它通過大小不同的齒輪在駕駛者的操控下完成高速和低速的不同動力傳輸需求。 採用新型技術進行技術升級是MT發展的道路,可採用以下幾種方法:①採用高性能的鋼材,增加齒輪的剛度, 減少變速器齒輪在轉動過程中的變形磨損,增加齒輪間的結合,減少滑動產生的能量損失;②採用不同的軸承結構,用球和柱軸承結構替換錐軸承,減少齒輪轉動的摩擦錯位帶來的能量損失;③採用高性能的潤滑劑,減少換擋時齒輪的摩擦,增加契合度減少能量損失;④減少變速器潤滑油的油量,可以減少汽車在空載時能量損失6%~8%。 [3]
液力機械式自動變速器(AT)是通過液體壓力的方式傳遞和改變扭矩,實現控制機構的閉鎖功能。運用液體壓力和齒輪傳動與電控系統相結合實現速度的改變和扭矩的轉換。9G-TRONIC 變速器把齒比擴大到了9:15,發動機的轉速被有效地降低,節油效果較好。採用了雙扭減振和離心技術保證了舒適性,運用最新式的行星齒輪直控單元,使齒輪控制迅速;在材料方面採用了新型的鋁合金材料,將整車質量減小;在箱體中採用了兩個油泵,鏈傳動的離軸式設計主油泵在保證潤滑的同時增加了冷卻效果。 [3]
無級變速器(CVT)是通過傳動帶將動力傳遞給一個可改變槽齒寬度的棘輪完成動力的傳遞,達到變速的目的。某公司提出了對CVT進行改進,用鏈條作傳動方式,能實現更大的扭矩,但噪音大。傳動比的范圍越大,對 提高燃油經濟性更有利,所以CVT的最大傳動比為7.7,燃油經濟性能相對較好。 [3]
機械式自動變速器(AMT)是在原來的固定軸式有級變速器的基礎上增加了自動控制機構,即ECU。簡單的就是在手動變速箱的基礎上增加電控離合系統和電控換擋系統。AMT繼承了MT的優點在燃油經濟性方面比傳統的 4AT 相比,油耗降低20% ~30%,這是一個相當可觀的數據,AMT相比於MT減少了不熟練駕駛者在操作時的燃油消耗,但舒適性與其他車型相比略差,在換擋時存在頓挫感,一直沒有被廣泛使用。 [3]
雙離合器自動變速器(DCT)通過兩組被自動控制的離合器交替工作, 實現無時間間隔換擋。小扭矩濕式雙離合自動變速器,質量相對較輕,適合小排量的發動機,同時採用電機驅動適時精確控制換擋時機,能使發動機在較長的一段時間內保持較低速度運轉,效率高,更加省油,在離合器方面採用了格特拉克獨有的微滑摩技術,摩擦器片和摩擦片之間會有一層油膜,能緩解發動的瞬時轉速。 [3]
純電動汽車傳動系統
傳動方案
機械式傳動:最早的電動汽車主要採用的都是機械式傳動系統,結構類似於傳統的內燃機汽車,以電動機取代發動機,配備的驅動電機一般具有較小的轉矩與較高的轉速等特點,而配備的變速器大多結構較為復雜。但由於其零部件多、在傳動效率方面受到比較大的限制,無法在性能上滿足電動汽車的設計需求。 [4]
機電集成式傳動:顧名思義,機電集成主要是指將傳動系與電動機集成於一體,其傳動系統主要包括主減速器和差速器等單元。該傳動方式多採用傳動比在5-20的行星齒輪減速器。行星減速器相對其他減速器,具有精度高、剛性強、傳動效率高、扭矩/體積比大的優勢。該傳動方式通過對傳動系統及電動機的集成設計,結構小巧體積輕便,同時可以滿足純電動汽車對承載力、抗沖擊力及抗震能力等的性能需求且安全系數較高、循環壽命較長。但整車通過性變差,維修不便等。 [4]
電動橋傳動:該傳動系統多採用在驅動橋內同時安置兩部驅動電機的布置方式。其中,差速器僅在車輛轉彎時參與對車輪的控制,協助轉彎,而在車輛直行時停止工作。等輸出功率的單電機與雙電機相比,體積更為龐大,質量也更高。採用電動橋傳動方式的電動汽車具有比前兩種傳動方式更好的機電集成水平,且在傳動效率方面得到了更好的保障。但另一方面,若保證驅動電機可滿足更多行駛工況下的行駛需求,就必須適應更寬的轉矩變化范圍,對控制和加工技術要求較高,電動橋內部的結構也隨之更為復雜,增加整車成本,不利於後期維修。 [4]
主要發展問題和解決方法
制約純電動汽車發展的首先是蓄電池的續航能力問題。目前市場上使用的電動汽車完成一次充電後,續航里程一般為100~300km,且僅在保持適當行駛速度及具有良好的電池調節系統的前提下才能得到保證,續航問題成為電動汽車的主要弊端。其次是蓄電池壽命較為短暫,普通蓄電池可允許的充放電次數僅為300~400次,即使性能良好的蓄電池充放電次數也不過700~900次,按每年充放電200次計算,一個蓄電池的壽命最多為4年。 [4]
針對以上問題,在控製成本的前提下的解決辦法主要有:一是減少成員數量或增大車內空間,以攜帶更多數量的電池,但是一味增加電池數量的方法存在很大限制。電池數量的增加必然會增大整車質量及車輛的行駛阻力,所以急需開發具有更高的比功率及比能量的電動汽車能量儲存裝置。二是對電動汽車進行節能設計。
D. 汽車傳動系統的作用是什麼由那些裝置組成
傳動系統可將發動機發出的動力傳遞到驅動車輪,具有減速增距,變速,倒車,中斷動力,輪間差速和軸間差速等功能,
傳動系統的由機械式傳動系統和液力機械式傳動系統組成
E. 動力裝置系統起到哪些作用
動力裝置抄系統是推動運襲載火箭飛行並獲得一定速度的裝置。對液體火箭來說,動力裝置系統由推進劑輸送、增壓系統和液體火箭發動機兩大部分組成。固體火箭的動力裝置系統較簡單,它的主要部分就是固體火箭發動機推進劑直接裝在發動機的燃燒室殼體內。
F. 簡述傳動系統組成與功用
汽車行駛過程中採用的傳動操作系統是由離合器、變速器、萬向轉運傳動設備以及相關的驅動橋共同構成的,也就是進行發動機和汽車四輪驅動器之間互相連接的動力傳輸設備。
汽車的傳動操作系統的主要應用功能有促使汽車起步的功能、變速功能、主要減慢速度的功能以及差速功能等等不同應用功能,給行駛過程中的汽車以足夠充足的牽引力和行車速度變化,進而可以順利地確保行駛的中的汽車可以更加安全、穩定的運行和駕駛。
一、汽車傳動系統的組成
1、離合器
離合器作為發動機與傳動系的結合工具,其由主動部分(飛輪、離合器蓋等)、從動部分(摩擦片)、壓緊裝置(膜片彈簧)和操縱機構組成。可分為液力偶合器、電磁離合器、摩擦式離合器
2、萬向傳動裝置
萬向傳動裝置是實現汽車傳動系動力傳輸的關鍵裝置,位於傳動軸的末端,鏈接傳動軸驅動橋和半軸等零件。
3、驅動橋
驅動橋即主減速器、差速器和半軸的總稱。其中主減速器是通過增加轉矩、減少轉速來實現動力傳遞。差速器是主減速器傳遞的動力傳遞給兩輪,其目的是實現轉彎時兩車輪的不同速度需求。
4、半軸
半軸是將差速器的動力傳遞給驅動輪的裝置。
5、變速器
傳動系的動力傳遞主要通過變速器將發動機的動力以改變傳動比的方式傳遞給車輪,用來適應周圍環境的變化及自身重量的改變。可分為①手動變速器(MT)②液力機械式自動變速器(AT)③無級變速器(CVT)④機械式自動變速器(AMT)⑤雙離合器自動變速器(DCT)。
二、汽車傳動系統的作用
1、減速與變速
汽車的起步與驅動要求作用在驅動輪上的驅動力足以克服來自外界的各種阻力以及自身的重力,如滾動阻力和空氣阻力等。
發動機輸出的動力具有轉速高、轉矩小的特點 ,無法滿足汽車行駛的基本需要,通過傳動系統的主減速器,可以達到減速增矩的目的,即傳給驅動輪的動力比發動機輸出的動力轉速低,轉矩大。
發動機的最佳工作轉速范圍很小,但汽車行駛的速度和需要克服的阻力卻在很大范圍內變化,通過傳動系統的變速器,可以在發動機工作范圍變化不大的情況下,滿足汽車行駛速度變化大和克服各種行駛阻力的需要。
2、倒車
汽車除了前進以外,還要倒車,而發動機是不能反向旋轉的。這就要求傳動系能夠改變驅動輪的轉動方向,以實現汽車的倒向行駛,在變速器中設置倒擋,汽車就可以實現倒車功能。
3、中斷動力傳遞
起動發動機後,在汽車行駛中換擋以及對汽車進行制動,為使發動機不熄火,這要求傳動系能暫時切斷動力的傳遞路線。
因此在發動機與變速器之間設置了一個離合器,在變速器中設置空檔,這樣就可以實現汽車在發動機不停止轉動時能較長時間地中斷傳遞動力。
4、差速作用
汽車在轉彎行駛時,左、右驅動車輪在同一時間內滾過的距離不同,如果兩側的驅動輪用一根鋼性軸驅動,則兩輪轉動的角度必然相同,這樣在汽車轉彎時必然會出現車輪相對地面滑動的現象,這將使汽車轉向困難,汽車動力消耗增加,傳動系內部零件磨損和輪胎磨損,甚至發生事故。
G. 機械式傳動系由哪些裝置組成各起何作用
1)由離合器、變速器、萬向傳動裝置、驅動橋(主減速器、差速器、半軸)所組成。
2)各裝置的作用:
離合器:它可以切斷或接合發動機動力傳遞,起到下述三個作用1)保證汽車平穩起步;2)保證換擋時工作平順;3)防止傳動系過載。
變速器由變速傳動機構和操縱機構所組成。作用:
改變傳動比,擴大驅動輪轉矩和轉速的變化范圍,以適應經常變化的行駛條件,並使發動機在有利(功率較高而耗油率較低)的工況下工作
在發動機旋轉方向不變的前提下,使汽車能倒退行駛
利用空擋,中斷動力傳遞,以使發動機能夠起動、怠速,並便於變速器換擋或進行動力輸出。
萬向傳動裝置由十字軸、萬向節和傳動軸組成。作用:變夾角傳遞動力,即傳遞軸線相交但相互位置經常變化的兩軸之間的動力。
驅動橋:由主減速器、差速器、半軸等組成。
主減速器的作用:降速增扭;改變動力傳遞方向(動力由縱向傳來,通過主減速器,橫向傳給驅動輪)。
差速器的作用:使左右兩驅動輪產生不同的轉速,便於汽車轉彎或在不平的路面上行駛。
半軸的作用:在差速器與驅動輪之間傳遞扭短
H. 動力輸出裝置的分類
動力輸出裝置,按其輸出動力的轉速來分:有單速、雙速和三速的。
按操縱方式來分:有手動、氣動、電動和液動的。都可由駕駛員在駕駛室內進行操縱。
I. pto是什麼意思
pto是動力輸出裝置的意思。PTO是一種開關控制方式,主要用於速度和位置控制。它是動力輸出脈沖串輸出的縮寫,解釋為脈沖串輸出。
pto的主要作用是從車輛底盤系統取得動力,然後通過自身的轉化,把動力通過傳動軸傳遞給車輛油泵系統,進而控制上裝完成各自特殊的功能。
PTO是用於控制步進電機或伺服電機,實現自動化領域的精確位置、轉矩和速度控制。卡車上的pto是輔助動力輸出的意思。在啟動卡車並通過pto設定必要的目標速度後,發動機會在控制系統的控制下穩定在這個速度,這樣車速就能保持在必要的速度,即使踩下油門,車速也不會改變。
J. 發動機主要組成部分圖片名稱和作用
發動機(Engine)是一種能夠把其它形式的能轉化為機械能的機器,包括如內燃機(汽油發動機等)、外燃機(斯特林發動機、蒸汽機等)、電動機等。如內燃機通常是把化學能轉化為機械能。發動機既適用於動力發生裝置,也可指包括動力裝置的整個機器(如:汽油發動機、航空發動機)。發動機最早誕生在英國,所以,發動機的概念也源於英語,它的本義是指那種「產生動力的機械裝置」。
機體是構成發動機的骨架,是發動機各機構和各系統的安裝基礎,其內、外安裝著發動機的所有主要零件和附件,承受各種載荷。因此,機體必須要有足夠的強度和剛度。機體組主要由氣缸體、汽缸套、氣缸蓋和氣缸墊等零件組成。
氣缸體
水冷發動機的氣缸體和上曲軸箱常鑄成一體,
稱為氣缸體——曲軸箱,也可稱為氣缸體。氣缸體一般用灰鑄鐵鑄成,氣缸體上部的圓柱形空腔稱為氣缸,下半部為支承曲軸的曲軸箱,其內腔為曲軸運動的空間。在氣缸體內部鑄有許多加強筋,冷卻水套和潤滑油道等。
氣缸體應具有足夠的強度和剛度,根據氣缸體與油底殼安裝平面的位置不同,通常把氣缸體分為以下三種形式。
1、一般式氣缸體:其特點是油底殼安裝平面和曲軸旋轉中心在同一高度。這種氣缸體的優點是機體高度小,重量輕,結構緊湊,便於加工,曲軸拆裝方便;但其缺點是剛度和強度較差
2、龍門式氣缸體:其特點是油底殼安裝平面低於曲軸的旋轉中心。
它的優點是強度和剛度都好,能承受較大的機械負荷;但其缺點是工藝性較差,結構笨重,加工較困難。
3、隧道式氣缸體:這種形式的氣缸體曲軸的主軸承孔為整體式,採用滾動軸承,主軸承孔較大,曲軸從氣缸體後部裝入。其優點是結構緊湊、剛度和強度好,但其缺點是加工精度要求高,工藝性較差,曲軸拆裝不方便。
為了能夠使氣缸內表面在高溫下正常工作,必須對氣缸和氣缸蓋進行適當地冷卻。冷卻方法有兩種,一種是水冷,另一種是風冷。水冷發動機的氣缸周圍和氣缸蓋中都加工有冷卻水套,並且氣缸體和氣缸蓋冷卻水套相通,冷卻水在水套內不斷循環,帶走部分熱量,對氣缸和氣缸蓋起冷卻作用。
曲軸箱
氣缸體下部用來安裝曲軸的部位稱為曲軸箱,曲軸箱分上曲軸箱和下曲軸箱。上曲軸箱與氣缸體鑄成一體,下曲軸箱用來貯存潤滑油,並封閉上曲軸箱,故又稱為油底殼圖。油底殼受力很小,一般採用薄鋼板沖壓而成,其形狀取決於發動機的總體布置和機油的容量。油底殼內裝有穩油擋板,以防止汽車顛動時油麵波動過大。油底殼底部還裝有放油螺塞,通常放油螺塞上裝有永久磁鐵,以吸附潤滑油中的金屬屑,減少發動機的磨損。在上下曲軸箱接合面之間裝有襯墊,防止潤滑油泄漏。
氣缸蓋
氣缸蓋安裝在氣缸體的上面,從上部密封氣缸並構成燃燒室。
按照進氣系統分類
它經常與高溫高壓燃氣相接觸,因此承受很大的熱負荷和機械負荷。水冷發動機的氣缸蓋內部制有冷卻水套,缸蓋下端面的冷卻水孔與缸體的冷卻水孔相通。利用循環水來冷卻燃燒室等高溫部分。
缸蓋上還裝有進、排氣門座,氣門導管孔,用於安裝進、排氣門,還有進氣通道和排氣通道等。汽油機的氣缸蓋上加工有安裝火花塞的孔,而柴油機的氣缸蓋上加工有安裝噴油器的孔。頂置凸輪軸式發動機的氣缸蓋上還加工有凸輪軸軸承孔,用以安裝凸輪軸。
氣缸蓋一般採用灰鑄鐵或合金鑄鐵鑄成,鋁合金的導熱性好,有利於提高壓縮比,所以近年來鋁合金氣缸蓋被採用得越來越多。
氣缸蓋是燃燒室的組成部分,燃燒室的形狀對發動機的工作影響很大,由於汽油機和柴油機的燃燒方式不同,其氣缸蓋上組成燃燒室的部分差別較大。汽油機的燃燒室主要在氣缸蓋上,而柴油機的燃燒室主要在活塞頂部的凹坑。這里只介紹汽油機的燃燒室,而柴油機的燃燒室放在柴油供給系裡介紹。
汽油機燃燒室常見的三種形式。
1)半球形燃燒室
半球形燃燒室結構緊湊,火花塞布置在燃燒室中央,火焰行程短,
按照氣缸數目分類
故燃燒速率高,散熱少,熱效率高。這種燃燒室結構上也允許氣門雙行排列,進氣口直徑較大,故充氣效率較高,雖然使配氣機構變得較復雜,但有利於排氣凈化,在轎車發動機上被廣泛地應用。
2)楔形燃燒室
楔形燃燒室結構簡單、緊湊,散熱面積小,熱損失也小,能保證混合氣在壓縮行程中形成良好的渦流運動,有利於提高混合氣的混合質量,進氣阻力小,提高了充氣效率。氣門排成一列,使配氣機構簡單,但火花塞置於楔形燃燒室高處,火焰傳播距離長些,切諾基轎車發動機採用這種形式的燃燒室。
3)盆形燃燒室
盆形燃燒室,氣缸蓋工藝性好,製造成本低,但因氣門直徑易受限制,進、排氣效果要比半球形燃燒室差。捷達轎車發動機、奧迪轎車發動機採用盆形燃燒室。
氣缸墊
氣缸墊裝在氣缸蓋和氣缸體之間,其功用是保證氣缸蓋與氣缸體接觸面的密封,防止漏氣,漏水和漏油。
氣缸墊的材料要有一定的彈性,能補償結合面的不平度,以確保密封,同時要有好的耐熱性和耐壓性,在高溫高壓下不燒損、不變形。目前應用較多的是銅皮——棉結構的氣缸墊,由於銅皮——棉氣缸墊翻邊處有三層銅皮,壓緊時較之石棉不易變形。有的發動機還採用在石棉中心用編織的綱絲網或有孔鋼板為骨架,兩面用石棉及橡膠粘結劑壓成的氣缸墊。
安裝氣缸墊時,首先要檢查氣缸墊的質量和完好程度,所有氣缸墊上的孔要和氣缸體上的孔對齊。其次要嚴格按照說明書上的要求上好氣缸蓋螺栓。擰緊氣缸蓋螺栓時,必須由中央對稱地向四周擴展的順序分2~3次進行,最後一次擰緊到規定的力矩。
OHV
發動機的凸輪軸布局形式分為OHC(頂置凸輪軸)和OHV(底置凸輪軸)這兩種。目前日本及歐洲的汽車廠家較為青睞頂置凸輪軸這種設計;而底置凸輪軸,通常只有在美國車上才能看見。
OHC(頂置凸輪軸),歷經發展現在被分成SOHC(單頂置凸輪軸)和DOHC(雙頂置凸輪軸)。單頂置凸輪軸就是依靠一根凸輪軸來控制進、排氣門的開合。通常來說單頂是配合兩氣門發動機的設計,由於兩氣門發動機在進、排氣效率比多氣門要低,氣門間角布置局限性大。而雙頂置凸輪軸就能把這些問題優化,因為一根凸輪軸只控制一組氣門(進氣門或排氣門),因此省略了氣門的搖臂,簡化了凸輪軸到氣門之間的傳動機構。總的說來,雙頂置凸輪軸由於傳動部件少,進、排氣效率高,更適合發動機高速時的動力表現。對於追求高功率的日本、歐洲廠商,凸輪軸頂置設計當然是最合適不過了。
底置凸輪軸這種設計的發動機一般都是大排量、低轉速、追求大扭矩輸出,因為底置凸輪軸,是依靠曲軸帶動,然後凸輪與氣門搖臂採用一根金屬桿來連接,是凸輪頂起連桿,連桿推動搖臂來實現發動機氣門的開合,所以過高的轉速會使頂桿承壓過大以致折斷。但是這種用頂桿的設計,也有它的優點,結構簡單,可靠性高、發動機重心底、成本低等。因為發動機轉速低,強調的是扭矩表現,所以底置凸輪軸設計是足夠滿足這種需求的。
既然這兩種設計偏向不同,前者是最求大功率,後者是追求大扭矩。我們知道汽車提速快、牽引力強靠的是扭矩,而實現最高速度是依靠功率。這里還有一個簡單的公式:功率=轉速X扭矩。自然吸氣時發動機提升功率最簡單的辦法,就是提高轉速,轉速越高升功率自然就越高。
爆震感測器
發動機工作時因點火時間提前過度(點火提前角)、發動機的負荷、溫度及燃料的質量等影響,會引起發動機爆震。發生爆震時,由於氣體燃燒在活塞運動到上止點之前,輕者產生噪音及降低發動機的功率,重者會損壞發動機的機械部件。為了防止爆震的產生,爆震感測器是不可缺少的重要部件,以便通過電子控制系統去調整點火提前時間。
發動機發生爆震時,爆震感測器把發動機的機械振動轉變為信號電壓送至ECU。ECU根據其內部事先儲存的點火及其他數據,及時計算修正點火提前角,去調整點火時間,防止爆震的發生。
鉑金火花塞
火花塞分很多種,就材料而言主要有:鎳合金、鉑金等,這些材料本身都有良好的導電性。火化塞散熱形式有冷型火花塞和熱型火花塞,火花塞的電極結構主要有單極、雙極、四極等。其中出於想提升車輛點火性能方面的考慮,很多人都會想著把自己的單極火花塞改為多極的,或者將自己的鎳合金火花塞改為鉑金的。
火花塞是由絕緣體和金屬殼體兩部分組成,金屬殼體帶有螺紋,擰在發動機氣缸上,在金屬殼體中有一個中心電極,它通過絕緣材料與金屬殼體絕緣,在中心電極上端有接線螺母,連接從分電器的過來的高壓線,在金屬殼體下面還焊有接地電極,在中心電極與接地電極之間有很小的間隙,脈沖高壓電擊穿兩個電極之間的空氣,產生電火花點燃可然混合氣做功,由於火花塞工作在高溫高壓的惡劣環境,對它的材料和製造工藝都要求十分高,但在大多經濟型車常採用鎳合金火花塞,只有中高檔車才會使用鉑金火花塞或白金火花塞。
頂置凸輪軸
凸輪軸英文全稱為Overhead camshaft,簡稱OHC。一般發動機的凸輪軸安裝位置有下置、中置、頂置三種形式。頂置凸輪軸是將凸輪軸被放置在汽缸蓋內,燃燒室之上,直接驅動搖臂、氣門,不必通過較長的推桿。與氣門數相同的推桿式發動機(即頂置氣門結構)相比,頂置凸輪軸結構中需要往復運動的部件要少得多,因此大大簡化了配氣結構,顯著減輕了發動機重量,同時也提高了傳動效率、降低了工作噪音。盡管頂置凸輪軸使發動機的結構更加復雜,但是它帶來的更出色的引擎綜合表現(特別是平順性的顯著提高)以及更緊湊的發動機結構,使發動機製造商很快在產品中廣泛應用這一設計。頂置凸輪軸與頂置氣門結構的驅動方式並不一定不同。動力可以通過正時皮帶、鏈條甚至齒輪組傳遞到頂置的凸輪軸上。
分電器
汽油發動機點火系統中按氣缸點火次序定時的將高壓電流傳至各氣缸火花塞的部件。在蓄電池點火系統中,通常將分電器和點火器安裝在同一軸上,並由凸輪軸驅動,同時它還帶有點火提前角調整裝置和電容器等。
點火器的斷電臂用彈簧片使觸點閉合,凸輪軸帶動斷電凸輪使觸點開啟,開啟間隙約為0.30~0.45毫米。斷電凸輪的凸起數與氣缸數相同。當觸點開啟時,分電器的分電臂正好對准相應的側電極,感應產生的高壓電由次級線圈經過分電臂、側電極、高壓導線傳至相應氣缸的火花塞。
缸線
缸線是傳統點火系中必不可少的一部分,是點火線圈把能量傳給火花塞的介質。缸線大體上分為四部分。第一是導電材料,第二是絕緣膠皮,第三是點火線圈接頭,第四是火花塞接頭(還有一些缸線外面再包裹一層隔熱材料,防止缸線被燒壞)。
缸線數目與發動機缸數相同。隨著科技發展,現在很多車已經沒有了缸線,缸線和點火線圈做到了一起,每缸一個點火線圈,體積大大減小,為每缸獨立點火提供了更加便利的條件。
活塞
發動機好比是汽車的「心臟」,而活塞則可以理解為是發動機的「中樞」,除了身處惡劣的工作環境外,它還是發動機中最忙碌的一個,不斷的進行著從下止點到上止點、從上止點到下止點的往復運動,吸氣、壓縮、做工、排氣等,活塞的內部為掏空設計,更像是一個帽子,兩端的圓孔連接活塞銷,活塞銷連接連桿小頭,連桿大頭則與曲軸相連,將活塞的往復運動轉化為曲軸的圓周運動。
每個活塞的裙體處都有三條皺紋,是為了安裝兩道氣環和一道油環,且氣環在上。在裝配時,兩道氣環的開口需要錯開,起到密封的作用。油環的作用主要是刮除飛濺到缸壁上的多餘潤滑油,並將潤滑油刮布均勻。目前廣泛應用的活塞環材料主要有優質灰鑄鐵、球墨鑄鐵、合金鑄鐵等。
火花塞
通過電極之間的放電現象產生火花,汽油發動機是通過燃料和混合氣體的適時燃燒使之產生動力,但是作為燃料的汽油即使處於高溫環境下也很難自燃,要想使其適時燃燒有必要用「火」來點燃。這里說的火花點火便是「火花塞」的作用。發動機整體性能的好壞完全是取決於火花塞閃出火花的良否來決定的。我們往往把發動機比作為「汽車的心臟」,但是更能把火花塞比作為「發動機的心臟」。
機濾
機濾全稱機油濾清器,它的作用是去除機油中的灰塵、金屬顆粒、碳沉澱物和煤煙顆粒等雜質,保護發動機。
在發動機工作過程中,金屬磨屑、塵土、高溫下被氧化的積碳和膠狀沉澱物、水等不斷混入潤滑油。機油濾清器的作用就是濾掉這些機械雜質和膠質,保待潤滑油的清潔,延長其使用期限。機油濾清器應具有濾清能力強,流通阻力小,使用壽命長等性能。
機油冷卻器
機油冷卻器的作用是冷卻潤滑油,保持油溫在正常工作范圍之內。在大功率的強化發動機上,由於熱負荷大,必須裝用機油冷卻器。發動機運轉時,由於機油粘度隨溫度升高而變稀,降低了潤滑能力。因此,有些發動機裝用了機油冷卻器,其作用是降低機油溫度,保持潤滑油一定的粘度。機油冷卻器布置在潤滑系循環油路。
節氣門
節氣門是控制空氣進入發動機的一道可控閥門,氣體進入進氣管後會和汽油混合成可燃混合氣,從而燃燒做工。它上接空氣濾清器,下接發動機缸體,被稱為是汽車發動機的咽喉。節氣門有傳統拉線式和電子節氣門兩種,傳統發動機節氣門操縱機構是通過拉索(軟鋼絲)或者拉桿,一端連接油門踏板,另一端連接節氣門連動板而工作。電子節氣門主要通過節氣門位置感測器,來根據發動機所需能量,控制節氣門的開啟角度,從而調節進氣量的大小。
節溫器
節溫器是根據冷卻水溫度的高低自動調節進入散熱器的水量,改變水的循環范圍,以調節冷卻系的散熱能力,保證發動機在合適的溫度范圍內工作。節溫器必須保持良好的技術狀態,否則會嚴重影響發動機的正常工作。如節溫器主閥門開啟過遲,就會引起發動機過熱;主閥門開啟過早,則使發動機預熱時間延長,使發動機溫度過低。
冷卻系統
冷卻系的主要功用是把受熱零件吸收的部分熱量及時散發出去,保證發動機在最適宜的溫度狀態下工作。冷卻系按照冷卻介質不同可以分為風冷和水冷,如果把發動機中高溫零件的熱量直接散入大氣而進行冷卻的裝置稱為風冷系。
而把這些熱量先傳給冷卻水,然後再散入大氣而進行冷卻的裝置稱為水冷系。由於水冷系冷卻均勻,效果好,而且發動機運轉噪音小,目前汽車發動機上廣泛採用的是水冷系。
噴油嘴
噴油嘴其實就是個簡單的電磁閥,當電磁線圈通電時,產生吸力,針閥被吸起,打開噴孔,燃油經針閥頭部的軸針與噴孔之間的環形間隙高速噴出,形成霧狀,利於燃燒充分。
噴油嘴本身是一個常閉閥,當ECU下達噴油指令時,其電壓訊號會使電流流經噴油嘴內的線圈,產生磁場來把閥針吸起,讓閥門開啟好使油料能自噴油孔噴出。 噴射供油的最大優點就是燃油供給之控制十分精確,讓引擎在任何狀態下都能有正確的空燃比,不僅讓引擎保持運轉順暢,其廢氣也能合乎環保法規的規范。
平衡軸
平衡軸讓發動機工作起來更加平穩、順暢。平衡軸技術是一項結構簡單並且非常實用發動機技術,它可以有效減緩整車振動,提高駕駛的舒適性。
當發動機處在工作狀態時,活塞的運動速度非常快,而且速度很不均勻。當活塞位於上下止點位置時,其速度為零,但在上下止點中間位置的速度則達到最高。由於活塞在氣缸內做反復的高速直線運動,因此必然會在活塞、活塞銷和連桿上產生較大的慣性力。雖然連桿上的配重可以有效地平衡這些慣性力,但卻只有一部分運動質量參與直線運動,另一部分參與了旋轉。因而除了上下止點位置外,其它慣性力並不能完全達到平衡狀態,此時的發動機便產生了振動。
起動系統
為了使靜止的發動機進入工作狀態,必須先用外力轉動發動機曲軸,使活塞開始上下運動,氣缸內吸入可燃混合氣,然後依次進入後續的工作循環。而依靠的這個外力系統就是啟動系統。
目前幾乎所有的汽車發動機都採用電力起動機啟動。當電動機軸上的驅動齒輪與發動機飛輪周緣上的環齒嚙合時,電動機旋轉時產生的電磁轉矩通過飛輪傳遞給發動機的曲軸,使發動機起動。電力起動機簡稱起動機。它以蓄電池為電源,結構簡單、操作方便、起動迅速可靠。
氣門
氣門(Value)的作用是專門負責向發動機內輸入燃料並排出廢氣,傳統發動機每個汽缸只有一個進氣門和一個排氣門,這種設計結構相對簡單,成本較低,維修方便,低速性能較好,缺點是功率很難提高,尤其是高轉速時充氣效率低、性能較弱。為了提高進排氣效率,現在多採用多氣門技術,常見的是每個汽缸布置有4個氣門(也有單缸3或5個氣門的設計,原理一樣,如奧迪A6的發動機),4汽缸一共就是16個氣門,在汽車資料上經常看到的「16V」就表示發動機共16個氣門。這種多氣門結構容易形成緊湊型燃燒室,噴油器布置在中央,這樣可以令油氣混合氣燃燒更迅速、更均勻,各氣門的重量和開度適當地減小,使氣門開啟或閉合的速度更快。
曲柄連桿機構
曲柄連桿機構是發動機實現工作循環,完成能量轉換的主要運動零件。曲柄連桿機構的主要零件可以分為三組,機體組、活塞連桿組和曲軸飛輪組。
發動機共有進氣、壓縮、做功、排氣四個行程,在做功行程中,曲柄連桿機構將活塞的往復運動轉變成曲軸的旋轉運動,對外輸出動力,而在其他三個行程中,由於慣性作用又把曲軸的旋轉運動轉變成活塞的往復直線運動。總的來說曲柄連桿機構是發動機藉以產生並傳遞動力的機構。通過它把燃料燃燒後發出的熱能轉變為機械能。
曲軸
曲軸是發動機的主要旋轉機構,
二行程發動機的工作原
它擔負著將活塞的上下往復運動轉變為自身的圓周運動,且通常我們所說的發動機轉速就是曲軸的轉速。
曲軸會因機油不清潔以及軸頸的受力不均勻造成連桿大頭與軸頸接觸面的磨損,若機油中有顆粒較大的堅硬雜質,也存在劃傷軸頸表面的危險。如果磨損嚴重,很可能會影響活塞上下運動的沖程長短,降低燃燒效率,自然也會較小動力輸出。此外曲軸還可能因為潤滑不足或機油過稀,造成軸頸表面的燒傷,嚴重情況下會影響活塞的往復運動。因此一定要用合適黏度的潤滑油,且要保證機油的清潔度。
潤滑系統
發動機工作時,各運動零件均以一定的力作用在另一個零件上,
發動機
並且發生高速的相對運動,有了相對運動,零件表面必然要產生摩擦,加速磨損。因此,為了減輕磨損,減小摩擦阻力,延長使用壽命,發動機上都必須有潤滑系統。
潤滑系統的功用就是在發動機工作時連續不斷地把數量足夠、溫度適當的潔凈機油輸送到全部傳動件的摩擦表面,並在摩擦表面之間形成油膜,實現液體摩擦,從而減小摩擦阻力、降低功率消耗、減輕機件磨損,以達到提高發動機工作可靠性和耐久性的目的。潤滑方式有壓力潤滑、飛濺潤滑、潤滑脂潤滑三種方式。
中冷器
中冷器一般只有在安裝了渦輪增壓的車才能看到。因為中冷器實際上是渦輪增壓的配套件,其作用在於提高發動機的換氣效率。 對於增壓發動機來說,中冷器是增壓系統的重要組成部件。無論是機械增壓發動機還是渦輪增壓發動機,都需要在增壓器與發動機進氣歧管之間安裝中冷器,由於這個散熱器位於發動機和增壓器之間,所以又稱作中間冷卻器,簡稱中冷器。