導航:首頁 > 裝置知識 > 本實驗裝置中哪些是系統

本實驗裝置中哪些是系統

發布時間:2022-08-20 20:33:55

① 盧瑟福背散射實驗的實驗原理

現從盧瑟福核式模型出發,先求α粒子散射中的偏轉角公式,再求α粒子散射公式。
1.α粒子散射理論
(1)庫侖散射偏轉角公式
設原子核的質量為M,具有正電荷+Ze,並處於點O,而質量為m,能量為E,電荷為2e的α粒子以速度 入射,在原子核的質量比α粒子的質量大得多的情況下,可以認為前者不會被推動,α粒子則受庫侖力的作用而改變了運動的方向,偏轉 角,如圖3.3-1所示。圖中 是α粒子原來的速度,b是原子核離α粒子原運動徑的延長線的垂直距離,即入射粒子與原子核無作用時的最小直線距離,稱為瞄準距離。
圖3.3-1 α粒子在原子核的庫侖場中路徑的偏轉
當α粒子進入原子核庫侖場時,一部分動能將改變為庫侖勢能。設α粒子最初的的動能和角動量分別為E和L,由能量和動量守恆定律可知:
(1)
(2)
由(1)式和(2)式可以證明α粒子的路線是雙曲線,偏轉角θ與瞄準距離b有如下關系:
(3)
設 ,則
(4)
這就是庫侖散射偏轉角公式。
(2)盧瑟福散射公式
在上述庫侖散射偏轉公式中有一個實驗中無法測量的參數b,因此必須設法尋找一個可測量的量代替參數b的測量。
事實上,某個α粒子與原子散射的瞄準距離可大,可小,但是大量α粒子散射都具有一定的統計規律。由散射公式(4)可見, 與b有對應關系,b大, 就小,如圖3.3-2所示。那些瞄準距離在b到 之間的α粒子,經散射後必定向θ到 之間的角度散出。因此,凡通過圖中所示以b為內半徑,以 為外半徑的那個環形 的α粒子,必定散射到角 到 之間的一個空間圓錐體內。
圖3.3-2 α粒子的散射角與瞄準距離和關系
設靶是一個很薄的箔,厚度為t,面積為s,則圖3.3-1中的 ,一個α粒子被一個靶原子散射到方向范圍內的幾率,也就是α粒子打在環 上的概率,即
(5)
若用立體角 表示,
由於
則有
(6)
為求得實際的散射的α粒子數,以便與實驗進行比較,還必須考慮靶上的原子數和入射的α粒子數。
由於薄箔有許多原子核,每一個原子核對應一個這樣的環,若各個原子核互不遮擋,設單位體積內原子數為 ,則體積 內原子數為 ,α粒子打在這些環上的散射角均為 ,因此一個α粒子打在薄箔上,散射到 方向且在 內的概率為 。
若單位時間有n個α粒子垂直入射到薄箔上,則單位時間內 方向且在 立體角內測得的α粒子為:
(7)
經常使用的是微分散射截面公式,微分散射截面
其物理意義為,單位面積內垂直入射一個粒子(n=1)時,被這個面積內一個靶原子( )散射到 角附近單位立體角內的概率。
因此,
(8)
這就是著名的盧瑟福散射公式。
代入各常數值,以E代表入射 粒子的能量,得到公式:
(9)
其中, 的單位為 ,E的單位為MeV。
1.盧瑟福理論的實驗驗證方法
為驗證盧瑟福散射公式成立,即驗證原子核式結構成立,實驗中所用的核心儀器為探測器。
設探測器的靈敏度面對靶所張的立體角為 ,由盧瑟福散射公式可知在某段時間間隔內所觀察到的α粒子總數 應是:
(10)
式中 為該時間 內射到靶上的α粒子總數。由於式中等都是可測的,所以(10)式可和實驗數據進行比較。由該式可見,在上方面內所觀察到的α粒子數與散射靶的核電荷 ,α粒子動能及散射角等因素都有關。
對盧瑟福散射公式(9)或(10),可以從以下幾個方面加以驗證。
(1) 固定散射角,改變金靶的厚度,驗證散射計數率與靶厚度的線性關系 。
(2) 更換α粒子源以改變α粒子能量,驗證散射計數率與α粒子能量的平方反比關系 。
(3) 改變散射角,驗證散射計數率與散射角的關系 。這是盧瑟福散射擊中最突出和最重要的特徵。
(4) 固定散射角,使用厚度相等而材料不同的散射靶,驗證散射計數率與靶材料核電荷數的平方關系 。由於很難找到厚度相同的散射靶,而且需要對原子數密度 進行修正,這一實驗內容的難度較大。
本實驗中,只涉及到第(3)方面的實驗內容,這是對盧瑟福散射理論最有力的驗證。
3.盧瑟福散射實驗裝置
盧瑟福散射實驗裝置包括散射真空室部分、電子學系統部分和步進電機的控制系統部分。實驗裝置的機械結構如圖3.3-3所示。
圖3.3-3 盧瑟福散射實驗裝置的機械結構
(1)散射真空室的結構
散射真空室中主要包括有 放射源、散射樣品台、 粒子探測器、步進電機及轉動機構等。放射源為 或 源, 源主要的 粒子能量為 , 源主要的 粒子能量為 。
(2)電子學系統結構
為測量 粒子的微分散射截面,由式(9),需測量在不同角度出射 粒子的計數率。所用的 粒子探測器為金硅面壘Si(Au) 探測器, 粒子探測系統還包括電荷靈敏前置放大器、主放大器、計數器、探測器偏置電源、NIM機箱與低壓電源等。
(3)步進電機及其控制系統
在實驗過程中,需在真空條件下測量不同散射角的出射 粒子計數率,這樣就需要經常地變換散射角度。在本實驗裝置中利用步進電機來控制散射角 ,可使實驗過程變得極為方便。不用每測量一個角度的數據便打開真空室轉換角度,只需在真空室外控制步進電機轉動相應的角度即可;此外,由於步進電機具有定位準確的特性,簡單的開環控制即可達到所需精確的控制。 E.盧瑟福等人所做,又稱盧瑟福α粒子散射實驗。J.J.湯姆孫發現電子揭示了原子具有內部結構後,1903年提出原子的葡萄乾圓麵包模型,認為原子的正電荷和質量聯系在一起均勻連續分布於原子范圍,電子鑲嵌在其中,可以在其平衡位置作微小振動。
1909年盧瑟福的助手H.蓋革和E.馬斯登在盧瑟福建議下做了α粒子散射實驗,用準直的α射線轟擊厚度為微米的金箔,發現絕大多數的α粒子都照直穿過薄金箔,偏轉很小 ,但有少數α粒子發生角度比湯姆孫模型所預言的大得多的偏轉,大約有1/8000 的α粒子偏轉角大於90°,甚至觀察到偏轉角等於150°的散射,稱大角散射,更無法用湯姆孫模型說明。1911年盧瑟福提出原子的有核模型,與正電荷聯系的質量集中在中心形成原子核,電子繞著核在核外運動,由此導出α粒子散射公式,說明了α粒子的大角散射。盧瑟福的散射公式後來被蓋革和馬斯登改進了的實驗系統地驗證。根據大角散射的數據可得出原子核的半徑上限為10-14米。此實驗開創了原子結構研究的先河。 實驗結果表明,絕大多數α粒子穿過金箔後仍沿原來的方向前進,但有少數α粒子發生了較大的偏轉,並有極少數α粒子的偏轉超過90°,有的甚至幾乎達到180°而被反彈回來,這就是α粒子的散射現象。

② 在燃燒熱的測定實驗中哪些是體系哪些是環境

有。體系:內筒水,氧彈,溫度計,內筒攪拌器。環境:外筒水。

①檢驗多功能控制器數顯讀數是否穩定。熟習壓片和氧彈裝樣操作,量熱計安裝注意探頭不得碰彎,溫度與溫差的切換功能鍵鈕,報時及燈閃爍提示功能等。

②乾燥恆重苯甲酸(0.9~1.2g)和萘(0.6~0.8g)壓片,注意緊實度,分析天平稱樣。

③容量瓶量取3000mL水,調節水溫低於室溫1K。

(2)本實驗裝置中哪些是系統擴展閱讀:

燃燒熱應指明相應的燃燒反應的熱化學方程,其中反應物和產物都要標明它的狀態,方程中的系數表示物質的摩爾數。按熱力學規定,放熱反應的熱效應為負值。例如:H2(氣,1大氣壓,25℃)+0.5O2(氣,1大氣壓,25℃)=H2O(液,1大氣壓,25℃),ΔH懢=-285.830±0.042千焦/摩爾。

熱力學中採用標准態作為參考態。標准態的燃燒熱用ΔH懢或ΔU懢表示。標准態的燃燒反應是一個理想的過程,其反應物和產物分別處在各自的熱力學標准態(見標准熱力學函數)。

③ 在燃燒熱的測定實驗中,那些是體系,哪些是環境實驗過程中有無熱損耗

有。體系:內筒水,氧彈,溫度計,內筒攪拌器。環境:外筒水。

燃燒熱是1摩爾物質專完全燃燒時所放出的熱量。屬在恆容條件下測得的燃燒熱為恆容燃燒熱(ov),恆容燃燒熱這個過程的內能變化(δu)。在恆壓條件下測得的燃燒熱為恆壓燃燒熱(qp),恆壓燃燒熱等於這個過程的熱焓變化(δh)。

熱量的散失仍然無法完全避免,這可以是同於環境向量熱計輻射進熱量而使其溫度升高,也可以是由於量熱計向環境輻射出熱量而使量熱計的溫度降低。因此燃燒前後溫度的變化值不能直接准確測量,而必須經過作圖法進行校正。

(3)本實驗裝置中哪些是系統擴展閱讀:

注意事項:

數據處理中用雷諾法校正溫差,觀測燃燒前後的一系列水溫和時間的觀測值誤差,造成校正曲線的不準確,從開始燃燒到溫度上升至室溫這一段時間△t1內,由環境輻射和攪拌引進的能量所造成的升溫,故應予扣除。

由室溫升到最高點這一段時間△t2內,熱量計向環境的熱漏造成的溫度降低,計算時必須考慮在內扣除不合適會造成誤差。

④ 現代實驗室系統包括哪些部分各有何作用和要求

實驗室根據使用情況不同,裡面所需要的功能跟系統都會有所要求的,參考以下實驗室系統的詳細介紹:
一、實驗室通風系統:實驗室通風系統與室內空調系統的通風設計的要求不同,主要的目的是提供安全、舒服的工作環境,減少人員暴露在危險的空氣下,通風主要的目是解決實驗人員的身體健康和勞動保護問題。
二、實驗室建築空調與潔凈系統:實驗室建築與普通的建築是有區別的,不同的實驗室對溫度、溫度、壓強、潔凈度等參數有不同的要求,而且不同的實驗室之間的氣流不能交叉污染,實驗區的氣流不能流向辦公區,因些實驗建築空調系統的要求比普通建築的要求復雜很多,按布置方式不同可分為分散型空調系統、集中型空調系統及局部集中型空調系統。
三、實驗室環保系統:在化學實驗室進行實驗時會使用化學葯品,實驗過程中發生的化學反應會產生廢氣、廢液、固體廢物,對環境造成污染。近年來,隨著人們環保意識和法律意識的增強,化學實驗室的污染問題備受關注。為了降低實驗室對環境的污染,應把實驗室環保系統納入實驗室設計與建設中,從而有利於實驗室環境污染的防預措施,在保證實驗效果的前提下,用無害、沒有污染或低害、低虧染的試劑替代毒性較強的試劑,在一些特定實驗要用到較高的化學試劑時,一定要用封閉的收集桶收集廢液。
四、實驗室氣體管道系統:實驗室的氣體的供應不同於一般工廠的要求,首先表現在儀器設備對氣體的純度要求較高,一般工作氣體要求達到99.999%以上,其次氣體的供應連續,輸出壓力平穩,氣體的壓力波動可能導致儀器設備沒有辦法正常工作,氣體的不連續供應甚至可能導致儀器設備故障,因此實驗室氣體管路的設計是較為嚴格的。
五、實驗室給排水系統:包括實驗給水系統、生活給水系統和消防給水系統。實驗給水系統分為一般實驗用水與實驗用純水,實驗室純水系統屬於單獨的給水系統,生活給水系統和消防給水系統與一般建築的給水系統一致。
不同的實驗室對實驗用水有不同的要求,通常進行強酸、強鹼、劇毒液體的實驗並有飛濺爆炸的實驗室,就近設置應急噴淋施,應急眼睛沖洗器。無菌室和放射性實驗室配熱水淋浴裝置。
污染區的用水需要通過斷流水箱,室內消火栓應設置在清潔區內,給水系統的管道入口通常應設置潔凈區,採用上行下給式給水管網,以免擴散污染。
室內消防給水系統包括普通消防系統、自動噴灑消防給水系統和水幕消防給水系統等。實驗樓,庫房等建築物在必要時應設立室外消防給水系統,由室外消助給水管道。
六、實驗室純水系統:在當今的實驗室中,水環境作為絕大數實驗室的基本環境,在實驗中占的地位非常重要,水質往往決定了很多實驗結果的真實性、可重復性,對多數做實驗的專家來說,他們通常要純水中的雜質和化合物的濃度在b級,甚至更低。

七、實驗室供電系統:實驗室建築內部有各種類型的實驗室及儀器設備,供電系統除了維持實驗室特定的環境用電外,還要滿足現有及未來增加的各種儀器的特殊用電要求,對於離心機、層析冷櫃、低溫冰箱帶壓縮機之類的儀器,它們]的電機啟動所需要的電流往往是工作電流的數倍,在啟動瞬間往往會影響該線路的電壓波動,如果接在該線路上所用的大功率儀器較多,就會引起儀器工作不正常。
所以,對實驗建築供電系統的設計,除了要預留足夠的富餘電量以滿足未來發展的需要,還需要提供不間斷的穩壓電源,基於實驗室的與眾不同,實驗室建築的供電系統從電源、線路、照明、安全等各方面都有其獨特性實驗建築的用電量通常是現有用電量的2倍。

八、實驗建築智能化系統:實驗室智能化不僅是一種技術,更是一種理念,一種潮流,它是將實驗室世界帶入一個嶄新的時候 ,改變人們觀念,影響人們的工作方式,實驗建築智能化系統包括樓宇自控系統,信息管理系統,辦公自動化系統,綜合布線系統,安全防範系統,火災自動報警系統和停車場管理系統。
九、實驗室安全防護系統:實驗室是科技的搖籃,實驗室安全防護系統是保證實驗室安全的前提條件,是為了將實驗室潛在的職業危險降至較低,以創造健康安全的工作環境。保護對象包括人員的安全、樣品的安全、儀器的安全、運行系統的安全及環境的安全、實驗室安全防護系統包括實驗室硬體建設與軟體管理。
十、實驗室管道系統:實驗建築內有各種共用設施管道很多,在一般小型實驗室內常見的管道有水管、風管、電線管和煤氣管,在大型實驗室或特殊實驗室內還有壓縮空氣、蒸汽、氫氣、氧氣、真空、蒸餾水、空調、網路等管道,管道系統的布置原則是既要保證使用安全,方便安裝,檢修、改裝和增添,又要盡量使各種管線短捷經濟合理和美觀。

⑤ 實驗室設備包括哪些

1、實驗台:板抄式中央襲台 鋼木單邊實驗台、全鋼中央台、水斗台、天平台;

2、實驗檯面板:環氧樹脂檯面、陶瓷板檯面、耐蝕理化板檯面、千思板;

3、通風櫃系列 :板式通過風櫃、鋼木通風櫃、新型全鋼通風櫃、落地式全鋼通風櫃;

4、櫃體系列;試劑櫃、器皿櫃、氣瓶櫃、安全櫃、更衣櫃、鞋櫃;

5、試劑架:板式試劑架、鋼玻中央試劑架、德式試劑架、防水插座、實驗凳;

6、實驗室專業水斗系列:洗眼器、緊急沖淋器、實驗室專用水龍頭、實驗室專用考克系列;

7、實驗室通風系統:原子吸氣罩、萬向抽氣罩;

8、辦公隔斷系列:辦公桌、辦公椅。

(5)本實驗裝置中哪些是系統擴展閱讀

實驗室的歸屬分類:

1、第一類是樹立在大學裡面,從屬於大學或者是由大學代管的實驗室。

2、第二類實驗室屬於國家機構,有的甚至是國際機構。它們大多從事於基本計量,高精尖項目,超大型的研究課題,和國防軍事等任務。

3、第三類實驗室直接歸屬於工業企業部門,為工業技術的開發與研究服務。

參考資料

網路-實驗室設備

⑥ 燃燒熱的測定實驗中,裝置中哪部分是燃燒反應體系燃燒反應體系的溫度和溫度變化能否被測定為什麼

答:在本實驗裝置中,氧彈的內部是被測物質的燃燒空間,也就是燃燒反應體系。由內於做燃燒實驗時要在氧彈中充入容高壓的氧氣,燃燒瞬間將產生高溫,這樣就無法將溫度計(或溫差計)直接插入到高壓氧彈中或者因為溫度計無法承受高壓或高溫,另外溫度計是玻璃或金屬外殼,在氧彈外面也無法與氧彈緊密接觸,或者有的溫度計(如熱電偶)達不到測量精度,所以很難對燃燒反應體系進行溫度或溫度差的測量。

⑦ 固體比熱容比的測定誤差來源有哪些,哪些屬於系統誤差,哪些屬於隨機誤差

按圖6所示安裝實驗裝置,用加熱盤對標准樣品加熱,同時監視加熱溫度,達65.0℃停止加熱.並將加熱盤移開,使樣品自然冷卻,同時開始記錄溫度T1和對應時間t1.初始時由於樣品溫度與室溫差別較大,降溫較快,所以記錄點要略密些.隨著樣品降溫,溫差變小,變化緩慢,記錄時間間隔可加大.當溫度約為40℃時,停止測量.(3) 測量待測樣品的冷卻曲線實驗步驟同上.注意實驗條件要與前者相同.本實驗只要求測量一組數據.計算待測樣品的比熱容C值,若誤差太大,要分析原因並重新測量.注意事項如下:(1)樣品自然冷卻時,應懸置於無風、無熱源、氣溫穩定的環境中,開始記錄數據時動作要敏捷、記錄T、t要准確.(2)小心加熱盤溫度過高燙手. 3.物體初始溫度 記錄時間不完全一致

⑧ 含水合物多孔介質的導熱特性實驗

李棟梁1,2,梁德青1,2

李棟梁(1976-),男,博士,助理研究員,主要從事天然氣水合物基礎物性及應用技術方面的研究,E-mail:[email protected]

1.中國科學院廣州能源研究所/可再生能源與天然氣水合物重點實驗室,廣州510640

2.中國科學院廣州天然氣水合物研究中心,廣州510640

摘要:含水合物多孔介質的有效導熱系數的重要性,涉及全球氣候變暖對海底和大陸架中水合物穩定性的影響。利用單面瞬態平面熱源法測定了不同水合物飽和度下石英砂體系的有效導熱系數。結果表明:水合物的形成過程顯著影響水合物生成後體系的有效導熱系數,其有效導熱系數和初始含水量並不成比例。水合物與沉積物顆粒不同的聚集模式可能顯著影響它們的導熱系數。從實驗結果來看,水合物在低水飽和度石英砂中生成的水合物為膠結模式,而在高水飽和度石英砂中生成的是接觸模式。從其導熱系數來看,膠結模式的導熱系數明顯大於接觸模式。

關鍵詞:水合物;導熱系數;石英砂;多孔介質

Experimental Study on Effective Thermal Conctivity of Hydrate-Bearing Sand

Li Dongliang1,2,Liang Deqing1,2

1.Key Laboratory of Renewable Energy and Gas Hydrate/Chinese Academy of Science,Guangzhou,Guangdong 510640,China

2.G uangzhou Center for G as Hydrate Research,Chinese A cadem y of Sciences,G uangzhou,G uangdong 510640,China

Abstract:Thermal conctivities of methane hydrate-bearing sand samples,which were formedfrom moist sand with different initial water saturations,were measured by Gustafsson' s TPS (transient plane source) technique.The results show the weak negative temperature dependence similar to that of a crystal-like material,which agrees well with most sedimentary and pure methane hydrate results.The effective thermal conctivity of hydrate-bearing sediment is strongly dependent on morphology.These phenomena are in harmony with the influence of the seismic velocities.In partially water-saturated,gas-rich environments,hydrates tend to cement sediment grains together,and even a small amount of hydrate will significantly increase effective thermal conctivity.In higher water concentration sand and water-saturated sand,the effective thermal conctivity does not obviously increase with the hydrate saturation.It may be that hydrateformed in water-saturated systems does not cement the sand particle and the thermal conctivity of gas hydrate is close to that of water.

Key words:hydrate;thermal conctivity;sand;porous medium

0 引言

含水合物多孔介質的有效導熱系數的重要性,涉及全球氣候變暖對海底和大陸架中水合物穩定性的影響。鬆散沉積物的有效導熱系數通常在實驗室中通過對鑽探所得樣品測量而得到,但有時候樣品並不是很容易取得,在這種情況下就需要對有效導熱系數進行原位測量。但是,目前對含水合物多孔介質的有效導熱系數測量工作並不是很充分[1]

Henninges等[2]通過原位測試獲得了永久凍土帶含水合物沉積物的有效導熱系數。Trehu[3]也通過原位測試獲得了含水合物海底沉積物的有效導熱系數。但是,原位測量會受到很多限制。然而,實驗室中的研究一般只限於簡單的模擬沉積物和人工合成水合物,例如Stoll和Bryan[4]測量了甲烷水合物與沉積物混合多孔介質的有效導熱系數,但沒有報道詳細的配比關系。Waite等[5]研究了甲烷水合物與石英砂混合多孔介質的有效導熱系數有配比關系,但無相關模型建立。Tzirita[6]較早實驗測定了含水合物石英砂和黏土的有效導熱系數,並指出孔隙度是控制其有效導熱系數的臨界因子。de Martin[7]通過實驗研究了純甲烷水合物以及含水合物的石英砂導熱系數並指出:在增強顆粒之間的熱傳遞方面,甲烷水合物扮演了一個很重要的角色,甲烷水合物在孔隙中的存在增強了體系的有效剪應力,因此增強了顆粒之間的熱傳遞。Cortes等]通過實驗研究了THF(四氫呋喃)水合物與石英砂、THF水合物與黏土的有效導熱系數,並使用並聯模型、串聯模型、Hashin-Shtrikman上界和Hashin-Shtrikman下界模型來分析沉積物有效導熱系數與孔隙度的關系。黃犢子等[9]結合瞬態面熱源法來測量混合氣水合物導熱系數及含混氣水合物的沙子多孔介質的有效導熱系數並發現:由於「爬壁」效應,混合氣與飽含SDS(十二烷基硫酸鈉)水溶液的沙子反應生成的含混合氣水合物的沙子多孔介質的有效導熱系數約為1.2 W/(m·K),該數值顯著低於含四氫呋喃水合物的沙子多孔介質的值(約1.9W/(m·K))。

由於實地測量時接觸熱阻較大,並且鑽井中存在流體的對流換熱和測量時熱響應的時間滯後,而實驗室測量的情況並不能概括實地的樣品情況,測量含水合物沉積物的有效導熱系數變得相當困難,使得目前的實驗結果差別較大,因此,有必要進一步研究含水合物沉積物的有效導熱系數。

1 實驗裝置和過程

1.1 實驗裝置

實驗裝置由水合物合成系統、水合物壓縮成型系統、導熱系數測試系統和數據採集系統組成,整個實驗系統如圖1所示。其中水合物合成系統由反應釜、反應氣路、恆溫空氣浴等組成。

圖1 水合物導熱測試實驗系統圖

反應釜的材質為1Cr18Ni9Ti,設計耐壓強度為30MPa,工作壓力最大25 MPa,內徑50 mm,有效容積為200 m L。反應釜上端裝有液體驅動的液壓活塞,活塞桿下部連接壓制樣品用的圓柱體不銹鋼塊,反應釜上部連接位移感測器,活塞桿的移動距離可通過位移感測器顯示。

反應釜底部裝有Hot Disk導熱系數測量探頭,該探頭為雙螺旋探頭結構。該探頭在測試過程中起到2個作用,它既是加熱樣品的熱源,又是記錄溫度隨時間升高的阻值溫度計。在Hot Disk測試系統中一般要求探頭夾在兩塊平整的樣品中間,而水合物的導熱測試要求在高壓下完成,其樣品也需要通過壓制才能獲得較好的測試結果,因此本文選擇直徑為66 mm的聚四氟乙烯圓塊為背景材料,通過單面測試和特殊計算來獲取樣品的導熱系數。導熱測試探頭的電纜被分成4根線,每根線用1個帶有絕緣套的針連接,針用卡套固定,保證密封且相互絕緣。

恆溫空氣浴採用義大利Angelantoni集團公司旗下的ACS公司生產的Challenge 250試驗箱,溫度范圍為-70~180℃,控溫精度和均勻度分別為±0.1℃和±0.5℃。

數據測試系統包括溫度、壓力和位移的測量。溫度測量是採用四線鎧裝熱電阻(Pt100),量程為-70~100℃,精度為0.1℃。壓力測量用的壓力感測器採用廣州森納士儀器公司生產的DG1300型壓力感測器,精度0.5級,量程為0~20 MPa。位移的測量通過位移感測器來實現,位移感測器為北京京海泉感測科技有限公司生產的DA-20型感測器,量程0~50 mm,精度0.05%。數據採集系統為安捷倫公司Agilent-34970A型數據採集儀。

1.2 實驗過程

確定管路系統無泄漏後在常溫下打開反應釜,用吹風機吹乾反應釜內殘留的水分,然後量取一定體積的干石英砂小心置於反應釜中,用移液槍吸取蒸餾水直到完全浸沒石英砂並記錄消耗的水量。封好反應釜並連接好管路,然後對系統進行抽真空。抽完真空後通入12~14 MPa的甲烷氣體。靜置一段時間讓甲烷充分溶解直到壓力穩定後開始開啟空氣浴進行降溫。隨著溫度的進一步降低,發現在-10℃左右壓力會突起,冰生成會使體系的體積發生變化而導致壓力升高。這時候可以上調空氣浴的溫度到5℃左右使冰融化,由於融冰過程可以加快水合物的形成。因此經過若干次重復後不再觀察到溫度下降過程中壓力的突起,就可以判定沉積物中的水完全轉化為水合物。待水合物完全生成後即可進行後續的熱物性測試。

1.3 實驗材料

實驗中所需材料如表1所示。

表1 實驗材料表

2 實驗結果與討論

2.1 部分水飽和石英砂混合體系的有效熱導系數

圖2為不同飽和度石英砂有效導熱系數的實驗結果。

圖2 部分水飽和石英砂混合體系的有效導熱系數

從圖2可以看出,隨飽和度的增加,有效導熱系數值明顯呈增大的趨勢。對於飽和度小於90%的石英砂,試樣有效導熱系數值隨含濕率的增加平穩增大,有效導熱系數隨飽和度的增加幾乎呈線性增長,而飽和度從90%開始,隨飽和度的增加,有效導熱系數的增長速度開始變得非常迅速。和Chen[10]於明志等[11]的結果相比,導熱系數還隨著孔隙率的增大而減小。

2.2 水合物-甲烷-石英砂混合體系的有效導熱系數

圖3為含水合物石英砂有效導熱系數與溫度的關系實驗結果。3個樣品使用同樣的石英砂,所不同的只是生成前石英砂孔隙中的水飽和度不同。水砂質量比分別為0.1927、0.2367和0.2568,對應的水飽和度分別為0.54、0.93和1.00。但從實驗結果來看,生成水合物後體系的有效導熱系數和初始含水量並不成比例。水砂質量比為0.1927的樣品的有效導熱系數最高,平均為1.60W/(m·K),水砂質量比為0.2367和0.2568的樣品有效導熱系數則分別為1.07 W/(m·K)和1.50 W/(m·K)。

圖3 含水合物石英砂的導熱系數與溫度的關系

圖4為水合物-甲烷-石英砂混合體系有效導熱系數與水合物飽和度的關系。這里採用的石英砂樣品不同水飽和度的樣品,而樣品中水已完全轉化為水合物,剩餘孔隙空間填充的是甲烷氣體。

圖4 水合物飽和度對甲烷/水合物/石英砂體系有效導熱系數的影響

和圖3相同,從實驗數據來看,生成水合物後體系的有效導熱系數和水合物飽和度並不成比例,高飽和度時導熱系數反而較低。黃犢子等[9]報道含甲烷水合物石英砂樣品的有效導熱系數為0.98 W/(m·K)。但根據他的評估,該樣品含氣率為29.2%,即該樣品還含有29.2%的孔隙。因此,本文的樣品和黃犢子等[9]的樣品可能一樣,水合物中還含有一定量的氣體,但可以肯定不含自由水或僅含少量的自由水,因為在降溫過程中並沒有觀察到壓力的突起。

2.3 水合物-水-石英砂混合體系的有效導熱系數

圖5為水飽和度水合物-石英砂體系的有效導熱系數。這里採用的石英砂樣品為飽和樣品,而樣品中剩餘孔隙空間填充的是水。

從本實驗結果來看,水飽和度水合物-石英砂體系的有效導熱系數隨水合物的飽和度增大而減小。但從報道的水合物導熱系數來看,水合物的導熱系數大於水。在有效介質理論中,水合物和沉積物的關系有2種模型:一種是接觸模型(grain contact model),水合物與沉積物顆粒相互鬆散接觸,在這種狀態下,水合物有2種處理方法,一是把水合物當做流體,水合物和水共同作為流體相,這種模式也叫懸浮模式(模式A);而是把水合物當做骨架的一部分,水合物和水共同組成固體骨架(模式B)。第二種為膠結模型(cementation model,模式C)[14]。水合物與沉積物顆粒不同的聚集模式可能顯著影響它們的導熱系數。從本文的實驗結果來看,水合物在低水飽和度石英砂中生成的水合物為膠結模式,而在高水飽和度石英砂中生成的是接觸模式。從導熱系數來看,膠結模式的導熱系數明顯大於接觸模式。

圖5 水合物飽和度對濕石英砂有效導熱系數的影響

3 結論

1)濕砂體系有效導熱系數隨含濕率的增加平穩增大,且隨著孔隙率的增大而減小。

2)水合物的形成過程顯著影響水合物生成後體系的有效導熱系數,其有效導熱系數和初始含水量並不成比例。

3)水合物與沉積物顆粒不同的聚集模式可能顯著影響它們的導熱系數。從實驗結果來看,水合物在低水飽和度石英砂中生成的水合物為膠結模式,而在高水飽和度石英砂中生成的是接觸模式。從其導熱系數來看,膠結模式的導熱系數明顯大於接觸模式。

參考文獻

[1]Waite W F,de Martin B J,Kirby SH,et al.Thermal Conctivity Measurements in Porous Mixtures of Methane Hydrate and Quartz Sand[J].Geophys Res Lett,2002,29(24):821-824.

[2]Henninges J.Measurements of Thermal Conctivity of Tetrahydrofuran Hydrate-Bearing Sand Using the Constantly Heated Linesource Method[C].International Conference 2007 and 97th Annual Meeting.Bremen:Geologische Vereinigung e.V,2007.

[3]Trehu A M.Subsurface Temperatures Beneath Southern Hydrate Ridge[J].Proc Ocean Drill Program Sci Results 2006,204:1-26,doi:10.2973/odp.proc.sr.204.114.

[4]Stoll R D,Bryan G M.Physical Properties of Sediments Containing Gas Hydrates[J].J Geophys Res,1979,84:1629-1634.

[5]Waite W F,Pinkston J,Kirby S H.Preliminary Laboratory Thermal Conctivity Measurements in Pure Methane Hydrate and Methane Hydrate-Sediment Mixtures:a Progress Report[M].Yokohama:Proceedings of the Fourth International Conference on Gas Hydrate,2002,728-733.

[6]Tzirita A.In Situ Detection of Natural Gas Hydrates Using Electrical and Thermal Properties[D].Texas:A&M Univ.,College Station,1992.

[7]deMartin B J.Laboratory Measurements of the Thermal Conctivity and Thermal Diffusivity of Methane Hydrate at Simulated in Situ Conditions[D].Georgia:Institute of Technology,2001.

[8]Cortes D D,Martin A I,Yun T S.Thermal Conctivity of Hydrate-Bearing Sediments[J].Journal of Geophysical Research,2009,114:B11103.doi:10.1029/2008JB006235.

[9]黃犢子.水合物及其在多孔介質中導熱性能的研究[D].合肥:中國科學技術大學,2005.

[10]Chen S X.Thermal Conctivity of Sands[J].Heat Mass Transfer 2008,44:1241-1246.

[11]於明志,隋曉鳳,彭曉峰.堆積型含濕多孔介質導熱系數測試實驗研究[J].山東建築大學學報,2008,23(5):385-388.

[12]Waite W F,de Martin B J,Ki rby S H,et al.Thermal Conctivity Measurements in Porous Mixtures of Methane Hydrate and Quartz Sand[J].Geophys Res Let,2002,29(24):821-824.doi:10.1029/2002 GL015988.

[13]Duchkov A D,Manakov A Y,Kazant sev S A,et al.Experimental Modeling and Measurement of Thermal Conctivity of Sediments Containing Methane Hydrates[J].Geophysics,2006,409(1):732-735.doi:10.1134/S1028334X06050114.

[14]Ecker C.Seismic Characterization of Methane Hydrates Structures[D].US:Stanford University,2001.

⑨ 朱家岩隧道涌水物理模擬

4.3.1 物理模擬基本原理

岩溶管道水系統物理模擬是用等效水箱(水能儲存單位)與變徑管束(水能輸送單位)組合的模擬模型來逼近真實的岩溶地下水系統。按水力相似原理,以一定的時空比例來組裝模擬模型,通過動態模擬,尋求岩溶管道水系統含水介質體和地下水運動特徵,求取水文地質參數,為岩溶地下水系統定量評價和水量預報提供依據。

岩溶管道水系統進行物理模擬要進行一定的概化和時空縮小等多方面的處理。概化與處理必須遵循一定的規律,即滿足力學相似條件。力學相似條件是指系統與模型內的水流中同類運動要素(例如某點速度或阻力)之間存在一定的比例關系。力學相似包括幾何相似、運動相似、動力相似、邊界相似等四個方面。

岩溶地下水系統的物理模擬以力學相似定律為基礎,同時結合系統自身的結構與水流運動特徵,建立相應的相似准則。

岩溶管道水系統中地下水的運動受控於水力梯度與介質空隙空間體形態及其組合。經分析與總結前人的研究成果表明,在系統中,重力和紊動阻力作用是影響地下水運動狀態的關鍵因素。因此,系統物理模擬需同時建立重力相似准則與紊動阻力相似准則。

據水力學推導,紊動阻力相似要求兩個水流沿程阻力系數對應相等。沿程阻力系數僅與管壁粗糙度有關。紊動阻力相似准則是模型中管壁粗糙度與原型中對應點管壁粗糙度之比是模型與原型線性比的1/6次方倍[1]

4.3.2 岩溶管道水流物理模擬過程

岩溶管道水系統物理模擬,包括了對岩溶儲水介質的模擬、對岩溶導水介質的模擬以及對其二者的混合模擬。其中對岩溶導水介質水流的模擬是整個系統模擬的關鍵,又是一個極其復雜的過程,難度很大,它涉及水能轉換、質量守恆及介質對水流的阻力等問題。同時,由於岩溶管道介質的復雜多變性,其模擬技術很值得研究。

在對岩溶管道水流物理模擬中,首先通過對野外資料,特別是水位與水流的關系資料進行分析,然後考慮如何對其進行模擬。在一般情況下,岩溶管道可採用變徑管束來對其進行模擬,用阻力元件模擬管道阻力,實現對實際管道的模擬模擬,其模擬過程如圖4.4所示[2]

圖4.4 岩溶管道水流物理模擬過程

4.3.2.1 管道流量-水位曲線分析

在整個岩溶管道水系統中,管道斷面很不規則,是一個很難測量的量,這給岩溶管道水流流速的研究帶來了困難。而水流流量中已經包含了水流斷面和流速的信息,它是水流速率與斷面面積的乘積。如果已知管道流量和某斷面面積,也就等於知道了流速。另外,由於水的不可壓縮性,當管道全部充水時,管道內各斷面的流量都是相同的。因此,為了簡化所研究的問題,在物理模擬時,以水流流量作為基本量。

在岩溶管道系統中,管道的流量與流速一樣,它與管道的長度、水力半徑、水的密度、水動力黏度系數、管道的粗糙度、水流流態等因素有關。在這眾多的影響因素中,大多數因素是難以知道的。因此,在研究岩溶管道的流量與介質的關系時,應先將上述因素用管道的綜合流量參數加以表示,然後,有條件時,再逐步深入,研究其他具體的影響因素。

在單一的岩溶管道里,其流量與其驅動水頭的關系如下[3]

qv(t)=α[H(t)-H0]1/n(4.8)

式中:H(t)、H0為某瞬時管道進、出口的水位;ΔH=H(t)—H0為某瞬時管道的驅動水頭;qv(t)為某瞬時通過管道的流量;α為管道的綜合流量參數;n為流態指數,當管道流態為紊流時n=1.75~2,當管道流態是層流時n=1。

ΔH-Q的特徵曲線見圖4.5。從圖中知道,當流量參數α較大時,其流量較大,曲線遠離ΔH軸,說明管道的阻力小、導水能力強;反之當流量參數α較小時,其流量較小,曲線靠近ΔH軸,說明其管道阻力大、導水能力弱。依據單一管道流量特徵曲線,很容易採用單一管道來模擬單一的岩溶管道。在模擬時,可採用模擬管道中的阻力元件來模擬實際管道阻力。在多數情況下,其模擬結果能達到異構同功的效果。

圖4.5 單一岩溶管道流量與驅動水頭關系曲線

4.3.2.2 岩溶管道的等效箱-管組合模擬

在自然界里,岩溶管道往往都不是以孤立、單一的形式存在,而是以組合交叉或網路等形式存在,這時就要用管道組合來模擬,或者說等效箱-管組合模擬。這是因為岩溶管道還是一個灰箱或黑箱系統,因而只能在過水能力和過水方式上進行等效模擬。模擬時,根據實際資料所提供的信息,包括管道的空間狀態、流量動態、通道條數及過水能力等作為模擬初值。在對岩溶管道水流模擬中,以機控水箱來模擬儲水空間,以玻璃管來模擬管道。而模擬結果則是要確定管道系統是單一(主)通道或是多通道(包括管束或有差異的導水介質)以及管道(或導水介質)間的組合方式,求出綜合流量參數。因此,首先要對管道的qv=f(ΔH)特徵曲線作分析,繪出其流量與驅動水頭的特徵曲線,如果該管道是單一管道,則其流量與驅動水頭的關系滿足於式(4.8);反之則實測曲線與模擬曲線相差甚大,此時要考慮用等效箱-管來組合模擬。經過反復切換管道組合模式,最終確定一種模擬結果較理想的組合模式。

4.3.3 物理模擬的應用

郭純青等[1]對廣西北山鉛鋅黃鐵礦區岩溶管道水系統進行了物理模擬,選取1983年6月百年一遇的雙洪峰(21日、22日),以及S2、S18、903、10A2四個觀測孔水位資料及1號、2號、3號、4號泉溢洪洞四個觀測資料,將北山礦區岩溶管道水系統概化為4個等效水箱,經多次反復模擬實驗,實現了對8個主要水文點水位及流量的最佳擬合,擬合精度較高。對桂林岩溶水文地質試驗場S31泉子系統進行了物理模擬,將該子系統概化為3個等效水箱,選取1989年4月13日8時至4月15日12時共60 h為模擬時段,模擬了降雨退水段,求取了管道水動力參數。

4.3.4 物理模擬裝置

採用的模擬裝置是由郭純青教授設計的「岩溶管道水系統模擬裝置」。該裝置是目前國內外唯一一個岩溶管道水系統物理模擬裝置。本套模擬裝置依託傳統的物理模擬方法,採取微電子技術與計算結合的方式,建立岩溶管道水系統物理模擬模型,是一套全自動水流控制系統。主要由液位檢測感測器、液位壓力感測器、流量感測器、A/D變換器、CPU監控中心和流量控制器等器件組成。實驗裝置簡圖如圖4.6。岩溶管道水系統物理模擬裝置主要包括兩大部分——等效實體模型部分和數據採集監控部分。

圖4.6 「岩溶管道水系統模擬裝置」簡圖

4.3.4.1 等效實體模型

根據物理模擬建模要求,概化岩溶管道水系統多重含水介質體及水流特徵為水能儲存單元和輸送單元的組合,採用等效水箱與變徑管束的模擬裝置建立等效實體模型,實現對岩溶管道水系統的水動力特徵及系統轉換功能的模擬目的。

系統被概化為水能貯存單元的亞系統,必須取得該單元出口端附近上游水位及流量的動態信息:

Q(t)=fi[h(T)](4.9)

岩溶地區地下水與環境的特殊性研究

h(t)=fz(t)(4.11)

單元的水位與流量必須是同步的,流量可能是多端同時輸出,包括季節性的分級溢洪泉。一般情況下,水能貯存和輸送兩單元總是配套組合模擬,等效水箱的容積也是將兩者統一概化在內。對於水箱貯存量的計算,有如下兩種方法。

用圈定岩溶體積幾何空間的方式計算:

岩溶地區地下水與環境的特殊性研究

式中:V為岩溶管道水某子系統在h1與h2兩標高范圍內的貯存總體積;A(h)為不同標高等效水箱面積;h為水箱出口端有代表性的水位。

由於A(h)面積函數在實際中是不易求得,它不僅包括含水體所圈定的范圍,也包括岩溶率在內的空間變數函數。

採用系統動態信息反求貯存體積:

岩溶地區地下水與環境的特殊性研究

當子系統的水位和流量動態處於無入滲狀態單調下降情況下,可以選取適合的時段將流量動態做分段(時段和相應的標高段)積分求和,可求得總體積和分段體積:

岩溶地區地下水與環境的特殊性研究

式中:ti、ti+1為針對水位變化比較一致的相鄰時段。

岩溶地區地下水與環境的特殊性研究

式中:

為不同水位時水箱出口的流量;

為不同水位時的相應時間間隔。

式(4.8)是式(4.7)的離散式。等效水箱的建立,由於經過上述動態分析,已經可以求出分段的ΔVi的體積,由此可以通過式(4.5)的變換求得等效水箱分段的底面積:

Ai(h)=ΔVi/(hi-hi+1)(4.16)

面積函數Ai(h)的下標i與標高段hi是相應的。據此,等效水箱的空間容積就被完全確定,可以按照既定的模擬比值縮制模型。

4.3.4.2 數據採集監控系統

(1)數據採集子系統

數據採集子系統主要用於對岩溶管道水系統物理模擬模型運轉過程的檢測及運行情況的顯示;同時對採集到的輸入和輸出數據,與野外實測數據對比並作預測分析。

測試元件主要通過微壓差感測器對水箱測壓管即文杜里流量計以及孔口流量計等進行水頭壓力(或壓差)測量;以求得等效水箱水位與管間流量的測試,數據採集主要通過A/D板將感測器採集到的物理信號轉換為數字信號與計算機共同完成(圖4.7)。

圖4.7 數據採集子系統示意

通過多通道的信號輸入,計算機可以按照規定的間隔時間,對全部被測試點的壓力(或壓差)數據做瞬時同步採集。

(2)數據監控子系統

物理模擬裝置中的數據監控子系統,包括帶控製程序的微機,以及執行微機指令的可控水箱的進水裝置。監控子系統的功能是通過對各測試元件所採集模擬模型的信息,反饋控制水箱進水量,實現對岩溶管道子系統的水能儲存和釋放的模擬。

可控水箱進水裝置由電磁閥構成,根據微機指令的數字信號通過D/A板轉換為電訊號,經放大控制電磁閥開關。

物理模擬過程的微機控製程序包括以下兩個方面:

1)識別模擬階段:根據模擬模型中對儲能單元在空間變化(水位的函數)規律,編制出不同標高段相應的進水量的控製程序。

2)預報模擬階段:控製程序編制根據預報期內的降水有效入滲,轉化為水能儲存單元在規定的模擬時段接受隨機滯後輸入量的控制。

通過微機將數據採集與監控兩子系統耦合構成模擬模型的重要組成部分。

4.3.5 朱家岩隧道涌水物理模擬

4.3.5.1 研究區隧道涌水物理模型概化

根據水動力相似原理,按朱家岩隧道實際水文地質條件,選取線性相似比例系數1/103,從而面積相似系數為1/106,體積相似系數為1/109,時間相似系數為1/10,流速相似系數為1/10,流量相似系數為1/107。

研究區補給面積取8×10-2km2,范圍為硐身及其兩側附近地帶,其中包括可能與隧道溝通的匯水窪地、落水洞等地帶,由1/10000岩溶水文地質圖上量取。根據資料綜合分析,隧道硐身均在飽氣帶,枯水期為表層岩溶帶、垂直下滲帶和季節交替帶,厚度為230~355m,豐水期為表層岩溶帶和垂直下滲帶,厚度為210~305m。因此,水箱(儲水介質)概化為面積為800cm2,枯水期高度為35cm,豐水期高度為30cm的垂向變體積水箱。由於研究區以管道流為主,對各子系統之間以裂隙方式的面狀水量變換,可以等效到管道連接部分合並處理。對岩溶管道(包括箱間連接管道及排泄通道)的模擬,先根據地質、水文地質及岩溶發育條件的分析給出初值(包括管道空間狀態、流量分配及阻力狀況等),然後根據動態模擬結果反復調整。初值的給出,遵循下列約束條件:第一,管道條數,根據流量衰減分析的結果,初步確定管道條數為3條,如果模擬結果跟實際相差很大,則重新選擇管道條數。第二,管道位置高度。第三,管道流量約束,水箱補給管道水量應近似於降水補給研究區的水量,管道總排泄量應近似於隧道涌水量。經多次反復模擬試驗,實現對朱家岩隧道涌水過程的最佳模擬,擬合程度最好的即為該區管道組合結構。

研究區補給面積為8×10-2km2,遠小於紅岩泉地下河系統的匯水面積(10.5km2),而實測隧道最大涌水量為3400m3/d,即39.4L/s,也遠小於紅岩泉洪水期的流量(1000~2000L/s),隧道涌水雖然對紅岩泉地下河系統造成了一定的影響,但是影響不大,又由於缺乏長觀資料,因此不考慮紅岩泉流量,只是對隧道涌水系統進行了研究。

4.3.5.2 朱家岩隧道岩溶管道涌水的物理模型研究

根據8月15日的降水量、涌水量資料(因4月30日和6月15日的涌水衰減量不大,有些管道可能沒有參與衰減過程,故採用8月15日的數據進行物理模擬),建立朱家岩隧道包氣帶岩溶管道水系統物理模擬模型,用等效箱-管模型來組合模擬,經過反復使用1條、2條、3條切換管道的組合模擬,最終確定採用3 條切換管道,模擬結果才較為理想,模型見圖4.8。這一結果跟流量衰減分析的結果「該區管道發育程度有三個級別」相一致,驗證了衰減分析的可靠性。

圖4.8 朱家岩隧道物理模型裝置示意

應用該模型來模擬朱家岩隧道8月15日涌水的時間-流量過程線如圖4.9,圖4.10所示。8月16日至9月4日的結果見表4.4。

圖4.9 時間—流量曲線

圖4.10 時間—流量曲線

表4.4 模擬最接近實測數據的一次實驗數據

表中8月19日和8月20日1號、2號流量的大小關系與別的時段的大小關系不一致,可能是由於模型概化時水箱邊界條件的選取不是很精確而造成的,在以後的工作中會予以重視。

據文字記載,湖北宜昌市最大日降水量為385.5mm(1935年7月5日),將此降水量值輸入該模型,經過反復實驗,求得最大涌水量為9800m3/d。

⑩ 風吹進渦流管會分離出兩種溫度的空氣嗎

渦流管是一種結構極為簡單的製冷裝置,它由噴嘴、渦流室、分離孔板、熱閥以及冷熱兩端管組成。高壓氣體沿切向進入渦流室,形成很強的渦流;由於冷端孔板的阻隔,外層氣流便高速螺旋狀向熱端管運動,流動的渦流特性也同時向熱端管運動而逐漸減弱。外層氣流的運動引起熱端管的內芯部形成由熱閥指向冷孔板的壓力梯度。在這種壓力梯度的作用下,形成由熱閥向冷孔板流動的返流。氣體在熱端管的流動過程中,外層氣流溫度升高,內層返流溫度降低,高溫氣流從熱端閥流出,低溫氣體通過冷孔板流出,從而將進渦流管的氣流分離為冷熱兩股溫度不同的氣流。 本實驗是在進口壓力范圍為 0.25MPa~0.70MPa,出口背壓為0.19MPa~0.34MPa之間,總流量范圍為0~30m~3/h(常溫常壓下),入口溫度為12℃~32℃之間的情況下進行的。 在本研究中,我們設計並建立了渦流管能量分離實驗系統。這一系統包括實驗裝置和實驗測試系統。在詳細分析實驗系統可能產生誤差原因的情況下,提出了減小實驗誤差的相應措施。 在大量實驗研究的基礎上,證實了在入口壓力0.25MPa~0.7MPa之間,入口溫度(從12℃~32℃之間)對渦流管的冷熱效應有一定的影響,並且隨著入口溫度的升高,渦流管的製冷性能增加,而制熱性能有所降低。 通過反復和大量的實驗研究,第一次得出了出口背壓(從0.19MPa~0.34MPa之間)對渦流管能量分離具有重大影響的研究結論。這一結果為渦流管的性能調節提供了一種十分有效的方法。 對渦流管性能受冷氣流分量的影響進行了實驗研究。冷氣流分量是影響渦流管性能的因素之一。在其它參數一定的情況下,可以通過調節冷氣流分量來改變渦流管的性能指標。為渦流管的實際應用提供了一定的參考數據。 一 通過大量的實驗研究表明,入日壓力是引起渦流管能量分離的一個重要參 數,在人口壓力為0.20*P:時,冷熱分離不明顯:當入曰壓力達到O.25*k以 及一直到060MPa過程中,隨著入口壓力的升高,渦流管能量分離非常顯著; 比如,在n=44.S%時,入日壓力為0.25MPa、0.40MPa、0.60MPa時的冷熱分離 效應分別是 19.3℃、29.3℃、75.5℃;但當入日壓力大到一定程度,各量增大 趨勢變緩。 噴嘴結構對渦流管性能指標具有重大影響。在本實驗范圍內,對三種形狀 和尺寸的噴嘴進行了測量,從實驗結果來看六個流道均勻布置的噴嘴具有最佳 的效果。 通過以上一系列的實驗研究以及理論分析,對渦流管進一步的研究提出一 些設想,並對渦流管的應用前景進行了展望。

閱讀全文

與本實驗裝置中哪些是系統相關的資料

熱點內容
儀器批發公司有哪些 瀏覽:804
怎麼有的車儀表盤沒胎壓顯示的 瀏覽:847
什麼裝置能自動升降 瀏覽:706
液壓馬達可以作為檢測裝置報價 瀏覽:988
常用電動工具結構 瀏覽:525
悍高五金件的多嗎 瀏覽:318
貨車儀表為什麼要有保溫箱標志 瀏覽:31
心肺康復訓練設備有哪些 瀏覽:437
展茂五金製品有限公司 瀏覽:284
機電設備拆裝費怎麼報價 瀏覽:686
鑄造鋁液溫度過高導致什麼結果 瀏覽:602
爬臂式機器人動力裝置設計 瀏覽:709
蘇州nachi球軸承一般多少錢 瀏覽:900
自動噴水滅火系統的延時裝置的作用 瀏覽:72
大眾汽車雜物從儀表台縫隙掉進去了怎麼辦 瀏覽:929
蘇州高中壓閥門廠待遇怎樣 瀏覽:657
滬東造船閥門有限公司怎麼樣 瀏覽:974
變速箱里的閥門叫什麼作用 瀏覽:140
瑞納怎麼調儀表盤時間 瀏覽:930
黃江鎮鵬馳五金製品有限公司 瀏覽:460