1. 實驗室污水一般使用什麼試劑處理
實驗室廢水含有酸、鹼、有機污染物、重金屬離子、病原微生物,PH 值變化幅度大內,COD 濃度高,主要分容為三大類:
1、有機廢水:主要來源是實驗試劑、溶劑;
2、無機廢水:主要來源是酸鹼試劑、重金屬試劑;
3、生物致病廢水:主要來源是微生物培養、血液生化實驗,血站、疾控中心等。
實驗室廢水處理比較成熟的方法及設備:
1、重金屬混凝共沉工藝:去除重金屬、懸浮物、色度;
2、PH自動調節工藝:酸鹼廢水自動調節PH值;
3、臭氧氧化消毒工藝:有機廢水降解、去除COD、殺滅大腸桿菌;
4、醫療廢水按要求還要投二氧化氯;
5、實驗室廢水處理凈化裝置:一體化組合工藝處理,全自動運行。
以上源自:瑞美迪官網,如有疑問,請咨詢。
2. 實驗室廢水處理方法和裝置有哪些
實驗室廢水有很多種下面我詳細的說一下
氧化還原中和沉澱法
此類方法多適用於含六價鉻和具有還原性的有毒物質及金屬的有機化合物。主要用於處理含氰、含酚、含硫化物的廢水。常見的工藝過程是向廢水中加入氧化劑 ,經過氧化還原反應後 ,使高毒性的物質轉化為低毒性的物質 ,再經過混凝、沉澱將其從反應體系中除去。C r6 + 和 C r3 + 的無機物最高允許排放量分別為0. 5 mg /L 和 3. 0 mg /L。含鉻的廢液可用鐵、鋅等作還原劑 ,用廢鹼液中和沉澱後 ,轉化為難溶鹽除去。
2.硫化物沉澱法
這種方法適用於含汞、鉛等金屬的呈酸性的實驗廢水。一般是向廢水中加入硫化鈉 ,生成難溶於水的金屬硫化物 ,然後與 Fe (OH ) 3 共沉澱而分離出去。
3.絮凝沉澱法
絮凝沉澱法不僅是處理許多工業企業污水中重金屬的有效方法 ,也是實驗室廢水處理的一種可行
方法。這種方法適用於含重金屬較多的實驗廢水 ,加入合適的絮凝劑 ,在弱鹼性條件下可以形成絮狀沉澱 ,有效去除廢水中的重金屬離子 ,降低廢水的化學需氧量 ( COD ) 。
4.活性炭吸附法
這種方法多用於處理物理、化學方法不能處理的微量呈溶解狀態的有機實驗廢水。有機實驗廢水含有大量的廢溶劑、實驗殘液、有機酸等。其濃度高、排放量少的特點很適合活性炭吸附法處理。處理工藝流程為先把廢水中的有相分離出來 ,再用活 性炭吸附 , COD 的去除率可達 93%
5.焚燒法
每種處理方式都有其特定的處理性能 ,都不是萬能的。焚燒法一般適用於形成乳濁液之類的液。但要特別注意避免燃燒產生的毒氣造成二次污染。例如 ,對於只含有 C, H , O 元素的有機廢物在燃燒時一般不會造成二次污染 ,而含有鹵素 N , S等元素的有機廢物焚燒時將會釋放多種有害氣體。
6.生物實驗廢水的處置方法
處理生物實驗廢水常用的方法是熱力消毒滅菌和化學葯劑消毒滅菌。熱力消毒滅菌法是通過高溫加熱使廢水溫度達到或超過某些有害微生物存活溫度的最高極限 ,殺死細菌 ,以確保排出廢水的安全。化學葯劑消毒滅菌法則是利用各種化學葯劑對廢水中的有害微生物進行殺菌消毒處理 ,目前常用的消毒工藝有臭氧消毒、氯消毒、鹼消毒等。在實際操作中 ,可以採用熱力和化學葯劑相結合的消毒滅菌方式 ,安全有效地處理生物安全實驗室的廢水。
詳細的可以看水天藍環保裡面有詳細的解答
3. 農葯廢水的農葯廢水處理方法
光催化法
銳鈦型的TiO2 在紫外光的照射下能產生氧化性極強的羥基自由基,能夠氧化降解有機物,使其轉化為CO2、H2O以及無機物,降解速度快,無二次污染,為降解處理農葯廢水提供了新思路 。對於光催化降解有機物目前關注的問題,一方面是降解過程中的影響因素和降解過程的轉化問題 ,對納米TiO2 的固載化和反應分離一體化成為光催化領域中具有挑戰性的課題之一,另一方面是提高制備催化劑催化效率的問題。
陳士夫等在玻璃纖維、玻璃珠、玻璃片上負載TiO2 薄膜光催化劑,並用於有機磷農葯的降解,取得了滿意的結果。梁喜珍通過研究TiO2 光催化降解有機磷農葯樂果廢水的影響因素,獲得了適宜的工藝條件。潘健民通過對納米TiO2 及其復合材料光催化降解有機磷農葯進行的研究,分析了在不同催化劑、不同濃度AgNO3 浸漬、不同實驗裝置條件下的光催化降解效果,說明TiO2 表面擔載微量的Ag後,不僅能提高納米TiO2 催化活性,而且有較好的絮凝作用,使TiO2 與處理後的水易分離,後處理更方便。葛湘鋒研究發現光催化降解在一定條件下符合零級動力學反應模式,而且反應速率常數和反應物起始濃度也呈線形關系,當反應物濃度增長過快達到一定值時,其反應速率常數明顯下降,反應物濃度過高時,則降解反應不再符合零級反應。
目前採用的光催化體系多為高壓燈、高壓氙燈、黑光燈、紫外線殺菌燈等光源,能量消耗大。若能對納米TiO2 進行有效、穩定地敏化,擴展其吸收光譜范圍,能以太陽光直接作為光源, 則將大大降低成本。
超聲波技術
超聲波是頻率大於20 kHz的聲波,超聲波誘導降解有機物的原理是在超聲波的作用下液體產生空化作用,即在超聲波負壓相作用下,產生一些極端條件使有機物發生化學鍵斷裂、水相燃燒、高溫分解 或自由基反應。
鍾愛國等研究表明,在甲胺磷濃度為1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、溫度30 ℃、Fe2 + >50 mg·L - 1、充O2 至飽和的條件下,用低頻超聲波(80W·cm- 2 )連續輻照120 min,甲胺磷去除率達到99. 3% ,乙醯甲胺磷的去除率達到99. 9%。孫紅傑等研究了各種因素超聲波頻率、功率、聲強、變幅桿直徑和溶液初始pH等對超聲降解甲胺磷農葯廢水的影響。Kotronarou等得出對硫磷在超聲條件下可以被完全降解為PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反應溫度為20 ℃、pH為7. 4時,對硫磷無催化水解半衰期為108 d,其有毒代謝產物對氧磷水解半衰期為144 d。Cristina等對馬拉磷農葯在超聲波輻射下, 82μmol·L - 1的馬拉磷溶液30 min內pH從6下降到4, 2 h內所有的馬拉磷全部降解,產物均為無機小分子。
蔣永生、傅敏等報道了用超聲波降解模擬廢水中低濃度樂果的試驗表明,輻射時間延長,降解率增加,加入H2O2 可明顯提高樂果的降解率,在溶液初始濃度較低的范圍內,降解速率隨濃度增大而加快,
濃度增大到一定值後,降解速率變化不明顯,超聲降解時溶液溫度控制在15~60 ℃為宜。謝冰等對久效磷和亞磷酸三甲酯生產過程中產生的廢水進行了超聲氣浮預處理,可降低其COD和毒性,提高其可生化性,再經以光合細菌為主的生化處理,可使其COD降至200 mg·L - 1。
王宏青等研究表明: 滅多威經超聲作用35min,可被完全轉換為無機物,其降解過程為假一級反應;濃度增加時,降解減慢; Fe2 +和H2O2 對降解有促進作用,且Fe2 +促進作用比H2O2 的大;採用不同氣體飽和溶液時,降解率的大小順序為Ar >O2 >Air >N2。紅外光譜表明降解產物為SO42 - 、NO3- 和CO2。
目前有關超聲輻射降解有機污染物的研究,大多屬於實驗室研究,還缺乏系統的研究,更缺少中試數據。
生物法
在國內,農葯廠家大多建有生化處理裝置,但目前幾乎沒有一家能夠獲得理想的處理效果。因此,對這類廢水的生化處理研究是十分必要的。已有大量研究表明真菌、細菌、藻類等微生物對有農葯有很好的降解作用。
程潔紅從土壤中分離得到以多菌靈生產農葯廢水為惟一碳源生長的13株菌,經鑒定為假單胞菌屬( Pseudom onas sp. ) ,研究了SBR 工藝運行的最佳條件,所篩選的菌株對多菌靈農葯廢水的COD去除率為52. 3%。張德詠,譚新球從生產甲胺磷農葯的廢水中篩選具有促生活性及可降解甲胺磷的光合細菌菌株, 培養後第7 d, 該菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,樂果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,該菌株也能夠以三唑磷、辛硫磷作為惟一碳源生長。
生物膜法將微生物細胞固定在填料上,微生物附著於填料生長、繁殖,在其上形成膜狀生物污泥。與常規的活性污泥法相比,生物膜具有生物體積濃度大、存活世代長、微生物種類繁多等優點,尤其適宜於特種菌在廢水體系中的應用。王軍、劉寶章利用半軟性填料進行掛膜,處理菊酯類、雜環類綜合農葯廢水。當進水CODCr為6 810、3 130、1 890mg·L - 1時,經過24 h的作用,細菌膜對CODCr的降解率分別達到24. 8%、43. 5%、53. 4%。
電解法
鐵炭微電解法是絮凝、吸附、架橋、卷掃、共沉、電沉積、電化學還原等多種作用綜合效應的結果,能有效地去除污染物提高廢水的可生化性。新產生的鐵表面及反應中產生的大量初生態的Fe2 +和原子H具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環;微電池電極周圍的電場效應也能使溶液中的帶電離子和膠體附集並沉積在電極上而除去;另外反應產生的Fe2 + 、Fe3 +及 其水合物具有強烈的吸附絮凝活性,能進一步提高處理效果。
雍文彬採用鐵屑微電解法能有效去除農葯生產廢水中的COD、色度、As、氨氮、有機磷和總磷,去除率分別可達76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。張樹艷採用鐵炭微電解法對幾種農葯配水進行處理,試驗結果表明,最佳反應條件下,廢水的CODC r 去除率都可達67%以上;最佳反應條件:鐵/水比為(0. 25~0. 375) ∶1,鐵/炭比為( 1~3) ∶1, pH3~4,反應時間1~1. 5 h。廢水經微電解處理,然後進行Fenton試劑氧化,則微電解出水中Fe2 + 可作為Fenton的鐵源,且微電 解時有機污染物的初級降解也有利於後續Fenton反應的進行。吳慧芳採用微電解和Fenton試劑氧化兩種物化手段對菊酯、氯苯BOD5 /CODCr = 0. 03)和對鄰硝氯苯(BOD5 /CODCr = 0. 05) 3種廢水按比例配製而成的綜合農葯廢水進行預處理,結果表明:在廢水pH為2~2. 5時,經微電解處理後,BOD5 /CODCr比值達0. 45以上,可生化性提高; Fenton試劑對綜合農葯廢水CODCr去除率為60%左右,色度去除率接近100%。劉占孟以活性炭-納米二氧化鈦為電催化劑,對甲胺磷溶液的電催化氧化降解規律進行研究表明,該工藝能有效去除廢水中的有機物,納米二氧化鈦催化劑的催化效果顯著。電解效果隨著電解時間的延長、催化劑的增加而升高,低pH有利於電催化氧化過程中H2O2 和·OH 的生成。王永廣採用電解/UASB /SBR工藝處理生化性差、氯離子濃度高的氟磺胺草醚農葯廢水。設計電流密度取30. 0 A·m- 2 ,該工程的電費為2. 30 元·m- 3 ,葯劑費為0. 30 元·m- 3 ,人工費為1. 50元·m- 3 ,運行成本為4. 10元·m- 3 , COD去除率> 97%。
氧化法
深度氧化技術(AOPs)可通過氧化劑的組合產生具有高度氧化活性的·OH,被認為是處理難降解有機污染物的最佳技術。
引入紫外線、雙氧水聯合作用和調控反應體系pH,可進一步提高臭氧深度氧化法的效率。陳愛因研究表明,紫外光催化臭氧化降解農葯2, 4-二氯苯氧乙酸(2, 4- D)廢水成效顯著,臭氧/紫外(UV)深度氧化法(比較單獨臭氧化、臭氧/紫外、臭氧/雙氧水、臭氧/雙氧水/紫外4種臭氧化過程)是最好的臭氧化處理方法。2, 4- D 200 mg·L - 1的水樣,反應30min, 2, 4- D降解完全, 75 min時礦化率達75%以上。鹼性反應氛圍有利於臭氧化反應進行。雙氧水的引入對2, 4- D降解無明顯促進作用,這是因為雙氧水分解消耗OH- ,沒有緩沖的反應體系pH降低,限制了雙氧水的分解和·OH自由基鏈反應。表明添加H2O2 對光解效果有一定改善作用,投加量達到75 mg·L - 1時,水樣的COD去除率由零投加時的20%提高到40% ,但過量投加對處理效果沒有進一步促進作用。曝氣能促進光解效果,特別對UV /Fenton工藝作用更為顯著,光解水樣2 h後,曝氣條件下的COD 去除率可從不曝氣條件下的30%提高到80%。
催化濕式氧化能實現有機污染物的高效降解,同時可以大大降低反應的溫度和壓力,為高濃度難生物降解的有機廢水的處理提供了一種高效的新型技術。催化劑是催化濕式氧化的核心,諸多學者致力於研究開發新型高效的催化劑。韓利華等以Cu和Ce為活性組分,制備了Cu /Ce復合金屬氧化物,比較了均相-多相催化劑的催化性能。韓玉英在催化濕式氧化法處理吡蟲啉農葯廢水中,分別用硝酸亞鈰和硝酸銅作催化劑,反應一定時間後COD去除率分別達到80%和95. 5%。用硝酸銅作催化劑處理吡蟲啉農葯廢水具有較高的活性,但Cu2 + 有較高的溶出量。張翼、馬軍在廢水中加入2種自製的催化劑,結果表明,只用臭氧處理的情況下7 d後有機磷的去除率為78. 03%; 在催化劑A 存在下, 去除率可達93. 85%;在催化劑B存在下,去除率可達為88. 35%。在室溫和中性介質中均屬於一級反應。ClO2 是一種強氧化劑,鹼性條件下氰根(CN- )先被氧化為氯酸鹽,氯酸鹽進一步被氧化為碳酸鹽和氮氣,從而徹底消除氰化物毒性。陳莉榮將含氰農葯廢水空氣吹脫除氨後,採用ClO2 作為氰化物的氧化劑,氰化物濃度為60~80 mg·L - 1 , pH為11. 5左右時,按ClO2 ∶CN- ≥3. 5 (質量比)投葯,氰化物的去除率達97%以上,氧化後廢水經生物處理系統進一步處理後各項指標都能達排放標准要求。
4. 濕式氧化法的概述
PACT系統已在多種廢水處理中得到應用:
■ 市政污水
■ 市政與工業綜合廢水
■ 工業廢水
■ 有害廢水
■ 垃圾滲濾液
■ 受污染地下水和受污染地表水
以下是PACT®系統有代表性的應用及性能表現:
有機化合物廢水 PACT®系統用於多種有機化合物、塑料、合成纖維、溶劑、染料和殺蟲劑生產場地的預處理和直接排放。路易斯安那的一個專業化工廠使用兩級好氧PACT®系統,其處理後的污水符合排入密西西比河的有機物和污水毒性要求。
殺蟲劑生產廢水 有一工廠的廢水中含有19種殺蟲劑,濃度超過3400 ppm, 用PACT®系統進行處理,PACT®對化學需氧量(COD)的去除率達到99%以上,殺蟲劑總量減少99.8%。受污染地下水 PAC T®系統已在受污染地下水的處理中得到應用, 且效果良好。在加州洛杉磯市附近有一個PACT ®批處理系統,受當地一家移動家庭用品和油漆生產廠家污染的地下水,經該系統處理後COD和BO D含量降低99%以上。垃圾滲濾液 隨著垃圾掩埋場管理規定日益嚴格, PACT®系統更多地用於處理市政固體廢料和有害垃圾掩埋場產生的滲濾液。加州洛杉磯市附近有一個有害物和市政垃圾掩埋場, 當地對比其它處理系統評估後認為PACT®系統成本最低、土地用量最少、處理穩定性最好,於19 88年安裝了該系統。
煉油廠和石化廠廢水 PACT®系統正日益用於煉油廢水和石化廠廢水處理。美國和其它各地有多家精煉廠和石油化工廠,正日益使用PACT®系統滿足多項法規要求,包括生物測定、有機物和化學需氧量(COD),或用於廢水回用。中試和處理試驗
為充分發揮PACT ® 系統的靈活性,我們提供整套中試和廢水可處理性試驗。我們可根據您的廢水處理需求,設計具體的試驗計劃。廢水處理性試驗設備包括實驗室規模的和中試規模的,前者在我們位於威斯康辛州的試驗室進行,中試則在用戶現場進行。可移動的PACT®系統中試可以包括活性炭再生也可以不包括活性炭再生。試驗可包括各種生物處理模式:好氧工藝、厭氧工藝,單級或雙級。
我們的分析實驗室可為上述實驗提供強有力的支持。我們的實驗室是全美國在分析工業、市政和有害污水、給水和污泥等方面配備最好的實驗室之一。另外,我們還擁有一個正式獲得RCRA許可的樣本處理、貯存和處置(TS D )設施,可處理和貯存各種樣本。(RCRA:資源保護與修復法案)我們擁有對各種廢水進行可處理性試驗的多年經驗。西門子水處理技術部可跟您一起檢測您的污水、進行概念設計,並設計出一個性價比合算的處理方案, 確保您的廢水處理能夠符合環境管理規定。我們的經驗保證了處理方案的設計從實驗室或
中試規模到生產性規模的可靠發展。
PACT®系統目前已在世界各地廣泛應用, 幫助用戶滿足以下要求:
■ 有機化學物品、塑料和合成纖維(OCPSF)生產排放物規定。
■ RCRA土地保護規定,該規定禁止土地用於處置污水,要求處理垃圾滲濾液和受污染地下水。
■ 針對排放水的嚴格的生物活體鑒定標准
■ 針對排入飲用水源地的工業廢水的處理規定
■ 針對排入自然水體的各種污水的嚴格的COD和總氮控制標准
PA C T® 系統可用於改造和新建項目,從日處理能力為2 0~400立方米的工廠預制設備,到日處理量達4 000立方米的現場安裝設備, 以及根據客戶要求專門設計的日處理量高達20萬立方米的大型系統,均可提供。並且可以是單級系統和雙級系統、連續處理或批處理系統。PACT ®系統的客戶可以享受到該技術長達3 0多年的技術經驗、中試技能和工程設計等專業知識。
系統運行
PACT®系統使用的粉末活性炭是直接投加到厭氧或好氧生物處理過程中的,物理吸附和生物代謝過程同時進行,協同作用。活性炭能夠「緩沖」 廢水中有毒有機物的毒性從而減輕其對生物系統的不利影響。好氧PACT®系統中,進水流入一個曝氣池,粉末炭也加入曝氣池, 形成一定比例的混合懸浮固體。曝氣反應之後,已得到處理的廢水和粉末炭混合泥漿進入二次沉澱池進行固液分離。
厭氧PACT®系統中,在廢水進入厭氧反應器之前就跟投加的粉末炭混合,粉末炭和生物協同作用,一部分炭粉和生物固體進入污泥處理程序。具體的處理方法要根據污泥量、處理費用和炭的用量等因素進行選擇。廢棄污泥可以進行脫水處理,或泵送至濕式空氣氧化設備, 在該裝置內炭得到再生並銷毀生物污泥。濕式空氣再生設備可自熱運行,無需外來熱源。活性炭得到回收,生物污泥得以消解,基本不用再進行污泥二次處理或處置。
PACT系統的主要功能就是將懸浮性、膠質性以及溶解性的污染物轉化成町降解的粉末活性炭生物膠體,促進污泥沉降,增加溶解性有機物、色度、毒性物質、重金屬的去除率。相關文獻顯示¨q1,其不僅保持了傳統活性污泥法的優點,同時也由於活性炭吸附劑的加入而大幅度提升了有機、無機污染物的去除率。對於醫葯、電鍍、食品、表面塗裝、石化、垃圾滲濾液、印染等廢水都有很好的去除效果。wao濕式氧化再生)系統主要包括高壓泵、空壓機、熱交換器、加熱鍋爐、DSE(differential speed elutriation,差速分離)除灰系統。工藝可在高溫高壓下,使廢水或污泥中的高濃度有機物質和毒性物質氧化分解。高溫的目的在於使氧化反應得以加速進行,而高壓狀態則是為了維持液相的存在。剩餘污泥經重力濃縮池送入WAO系統再生活性炭,炭所吸附的有機物在高溫高壓下被分解,再生炭送至儲槽再迴流至曝氣池,一部分則送至排灰槽排灰。再生過程的控制重點是壓力、溫度、高壓空氣以及灰分的排除。本系統最佳工藝條件:溫度為2300C,時間為1 h,充氧量P=0.6 MPa。進入WAR系統的炭泥濃度>7%,懸浮固體量不得低於7%,以便提供WAO系統穩定的污泥量。 2.1 什麼是PACT-WAO工藝系統實際上,活性污泥法有多種不同的分類方法,如按曝氣的氣源分類,可分為空氣曝氣、純氧曝氣;按曝氣方式分類,可分為鼓風曝氣、機械曝氣等。 活性污泥法的各種工藝在運行過程中,最關鍵之處在於維持活性污泥的活性和凝聚性(沉澱性能)。而活性污泥的凝聚性能極易受進水水質和外界因素的影響,從而導致二沉池出水飄泥等異常現象。此時,在曝氣池中投加粉末填料、混凝劑或其它化學葯劑,往往會取得很好的效果,這就是所謂的「投料式」活性污泥法。其中以投加粉末填料為多,又稱粉末活性污泥法。因粉末填料對進水有機物的吸附能力遠遠強於活性污泥,因此會產生粉末填料對進水有機物不斷吸附、活性污泥微生物不斷對粉末填料所吸附的有機物降解的現象。也因此,具有耐沖擊負荷、提高難生物降解有機物去除能力、具有較好的脫色效果等特點。另外,該法尚具有改善活性污泥的沉澱性能、減少或抑制污泥膨脹等性能。PACT-WAO系統使用的粉末填料是直接投加到厭氧或好氧生物處理過程中的,物理吸附和生物代謝過程同時進行,協同作用。粉末填料能夠「緩沖」 廢水中有毒有機物的毒性從而減輕其對生物系統的不利影響。好氧PACT-WAO系統中,進水流入一個曝氣池,粉末填料也加入曝氣池, 形成一定比例的混合懸浮固體。曝氣反應之後,已得到處理的廢水和粉末填料混合泥漿進入二次沉澱池進行固液分離。厭氧PACT-WAO系統中,在廢水進入厭氧反應器之前就跟投加的粉末填料混合,粉末填料和生物協同作用,產生高效率的處理效果。跟常規厭氧系統一樣,本系統可回收甲烷,用作燃料,從而進一步提高能源效率。處理後, 一部分粉末填料和生物固體進入污泥處理程序。具體的處理方法要根據污泥量、處理費用和粉末填料的用量等因素進行選擇。廢棄污泥可以進行脫水處理,或泵送至粉末填料氧化設備。PACT-WAO系統是它是結合了傳統的粉末填料-活性污泥法的諸多優點,並在適當的溫度及壓力水的液相氧化程序下,將過剩的生物污泥摧毀並氧化粉末填料生物污泥中吸附的污染物質流程與粉末填料-活性污泥法的有機結合,融為一體,藉以再生此廢棄污泥回收再利用,從結構上取代傳統的活性廢水生物處理流程,並簡化了污泥處理單元,無污染物排放的新型工藝。PACT-WAO系統是將待處理的物料置於密閉的容器中,在高溫高壓條件下通入空氣或純度較高的氧作為氧化劑,按濕式燃燒原理使污水中有機物降解。在該系統內粉末填料得到再生並銷毀生物污泥,粉末填料再生設備可自熱運行,無需外來熱源。粉末填料得到回收,生物污泥得以消解,出水經過濾後可直接回用,即實現了水資源的充分利用,又實現了污泥的無害化處理,對於大型的市政污水處理廠和難降解的有機廢水尤為適用。簡單的講,PACT-WAO工藝系統是指粉末填料生物處理系統與粉末填料再生系統的有機結合,並集兩個系統的優勢和互補。是一種在一定溫度(170~300℃)和壓力(1.0~10MPa)下,在填充有專用固定催化劑的反應容器中,利用氧氣(空氣)將各種廢水及污泥中的有機物,氨氮化合物不經稀釋,一次處理即可將高濃度工業有機廢水中的COD、TOC,氨等污染物催化氧化進行深度分解處理(接觸時間0.1~2.0h),使其轉變為CO化物、N氧化物和水等無害成分,並同時脫色,除臭及殺菌消毒,從而達到凈化處理廢水的目的.該工藝不產生污泥,只有少量的清洗廢液需單獨處置。當達到一定處理規模時還可以進行能量回收。根據需要可以作為一個獨立的廢水處理系統,也可與常規活性污泥法和厭氧消化法組合使用達到所需排放標准,經處理達標的廢水可以直接排放,也可以經過濾等處理後循環使用。該工藝有針對性的解決了污水處理廠剩餘污泥處理的問題,完全實現了污泥無害化處理,並且能夠處理各種難降解污染物,出水經過濾後可直接回用,最關鍵的是它在工藝過程中將有毒有害物質分解轉化為無毒無害的二氧化碳和水,整個工藝系統只有少量的無機灰分排出,徹底的解決了污泥的二次污染問題。典型的PACT-WAO工藝系統流程2.2 pact-wao工藝系統進程在生化進水中(或在曝氣池內)投加粉末填料與迴流的污泥一起在曝氣池內混合,從污泥濃縮池中排出的剩餘污泥進污泥脫水裝置。在曝氣池內,活性污泥附著於粉末填料的表面,由於粉末填料巨大的比表面積及其很強的吸附能力,提高了污泥的吸附能力,特別在活性污泥與粉末填料界面之間的溶解氧和降解基質濃度有了很大幅度的提高,從而也提高了COD的降解去除率。一般來說在粉末填料系統內,吸附處理COD的動態吸附容量在100-350%(重量百分比),即一公斤粉末填料可吸附去除1.0-3.5公斤COD。而且,粉末填料法能處理生物難以降解的有毒有害的有機污染物質。根據經驗,直接在SBR好氧生化池內定期(每15-30天)定量投加粉末填料可以獲得很好的處理效果。其實粉末填料和顆粒填料的吸附處理機理是一樣的,不過在在SBR生化池內投加粉末填料更具有以下幾個優點:1、 節約投資成本2、 操作靈活方便3、 粉末填料利用率高4、 可避免填料滋長生物膜導致堵塞,影響出水速率的缺點:在PACT-WAO系統中,活性污泥附著於粉末填料的表面,由於粉末填料巨大的比表面積及其較強的吸附能力,在活性污泥與粉末填料界面間的溶解氧和降解基質濃度有了很大幅度的提高,從而也提高了COD的降解去除率。一般來說,COD的去除(視廢水的種類)可以提高10-40%; 5、 由於廢水中的有毒有害有機物質被粉末填料所吸附,因此廢水中有毒 有害物質的濃度可以穩定在一個較低的水平,從而保證了生化處理系統的正常運行;6、 對於防止氨氮指標反彈,保證出水氨氮指標達標具有很好的效果。7、 粉末填料氧化是在高溫、高壓下,利用氧化劑將廢水中的有機物氧化成二氧化碳和水,從而達到去除污染物的目的。與常規方法相比,具有適用范圍廣,處理效率高,極少有二次污染,氧化速率快,可回收能量及有用物科等特點。從PACT-WAO系統引出的經使用過的含有粉末填料的污泥經重力濃縮,以粉末填料漿形式被泵送通過PACT-WAO系統的熱交換器,然後進入反應器中。其間有壓縮空氣被通入填料漿之中。在反應器內發生放熱反應,當有機物被氧化時釋放出熱量。有機物被氧化,粉末填料的表面則得到更新和再生。經過氧化反應之後的填料料漿從反應器排出的時候要通過熱交換器回收熱量,用於預熱進料填料漿。隨後,得到再生的粉末填料漿返回PACT-WAO系統。在整個過程中,有機物被消解,最終產物為二氧化碳、水和少量低分子量的有機物(主要是乙酸)。累積的灰分被排出系統之外,然後可以很方便地予以處置。在進料固體含量為6%-7%的情況下,PACT-WAO工藝通常為自持過程,不需要額外的輔助燃料。其操作優點有:● 較低的操作溫度● 節能自熱運行(熱量自給自足)● 適用於各種處理規模● 全封閉,無有害氣體外排● 低能耗、 低運行成本● 無需事先脫水● 不排放硫氧化物、氮氧化物和煙塵顆粒● 沒有剩餘污泥● 粉末填料回收率90%以上● 佔地面積小● 產生的灰性質穩定,無浸出污染物●出水經過濾後可直接回用氧化處理單元示意圖粉末填料氧化示意圖具體過程簡述如下:廢水通過貯存罐由高壓泵打入熱交換器,與反應後的高溫氧化液體換熱,使溫度上升到接近反應溫度後進入反應器。反應所需的氧由壓縮機打入反應器。在反應器內,廢水中的有機物與氧發生放熱反應,在較高溫度下將廢水中的有機物氧化成二氧化碳和水,或低級有機酸等中間產物。反應後氣液混合物經分離器分離,液相經熱交換器預熱進料,回收熱能。高溫高壓的尾氣首先通過再沸器(如廢熱鍋爐)產生蒸汽或經熱交換器 預熱鍋爐進水,其冷凝水由第二分離器分離後通過循環泵再打入反應器,分離後的高壓尾氣送入透平機產生機械能或電能。因此,這一典型的工業化系統不但處理了廢水,而且對能量進行逐級利用,減少了有效能量的損失,維持並補充氧化系統本身所需的能量。 一. pact-wao工藝系統應用目前,PACT-WAO系統的應用主要為以下幾個方面:3.1 應用於各種規模市政污水處理廠PACT-WAO工藝可以大規模應用於城市污水處理,不僅技術先進,經濟上亦可以接受,城市具有廣泛的推廣應用前景,對城市污水再生利用更具成本優勢。pact-wao工藝系統的出水水質較好,經過濾或超濾系統後可直接回用,具有相當的優勢,滿足從各種規模市政污水處理廠的廣泛需要。具體體現在如下幾個方面:a) PACT-WAO工藝受進水水質的影響小PACT-WAO工藝針對市政污水的水質特性進行系統設計,其嚴謹的過程機理和可靠的控制手段可提供安全、衛生、穩定的出水保障。b) PACT-WAO工藝抗沖擊負荷能力較傳統處理工藝有較大的優勢因其在厭氧或好氧生物處理過程中直接投加粉末填料,而粉末填料的強大比表面積具有極強的吸附性,與活性污泥的生化作用協同,可以大大的提高抗沖擊負荷的能力,而市政污水的水量和水質具有極大地不穩定性,使用PACT-WAO工藝系統後,不但可以提高抗沖擊負荷的能力,而且可以很大程度的縮小預處理中的調節池容量,從建廠投資階段節省投資成本;c) 無剩餘污泥外排活性污泥是二級污水處理廠處理過程的必然產物,它的數量一般占總處理污水量的0.5%~1% 。而它的處理費用卻占污水處理廠總運行費用40%--50% 。隨著現代化城市的日益發展,各種廢水的排放量迅速遞增,使城市污水廠的污水處理趨向中型和大型化的集中處理,而如何使伴隨污水處理而產生的大量活性污泥得到合理有效的處理,對於水處理工作者而言,具有重要的現實意義。與傳統再生水生產工藝相比,PACT-WAO工藝系統無剩餘污泥外排,僅有少量的無機灰分排出,完全解決了污泥二次污染帶來的負面作用和減少了污泥處置的大部分成本;對於改善環境,提升污水處理廠的形象和周邊環境具有深遠的意義;PACT-WAO工藝法在處理高濃度有機廢水方面已受到了廣泛重視並有了長足的發展,考慮到活性污泥從物質結構方面與高濃度有機廢水十分相似,因此,若將該技術成功運用於城市污水廠活性污泥的處理,將會具有廣泛的應用前景。針對PACT-WAO工藝系統處理剩餘污泥,可以在新建的污水處理廠設計之初就將PACT-WAO工藝系統的設計理念考慮進去,可以大大的縮短工藝流程,並成功解決污泥二次污染的問題,對於非新建的污水處理廠,也可以在原有系統上適當改造,轉變為PACT-WAO工藝系統。d) 無有毒有害氣體排放整個PACT-WAO工藝系統無毒害氣體外排,對市政污水廠的員工及周邊居民的生態環境改善起到積極地作用,同時減少對對環境的影響;e) 具有操作靈活、佔地面積小、運行成本低等優點PACT-WAO系統從設計之初就充分考慮到市政污水處理的特性,在操作運行、佔地面積等方面進行集中優化,在操作運行方面調度靈活,易於根據市場需求優化配置和擴展工程規模。由於PACT-WAO工藝系統採用自熱式再生,正常情況下無需外加能源,燃料是廢填料泥中的生物和被吸附的有機物,只需要啟動蒸汽,通過使用熱交換器提高能量效率。同時,該系統無需污泥處理裝置和除嗅裝置,在運行成本上大大優於傳統處理工藝。3.2 應用於石化行業廢水當溫度在204~316℃范圍內,廢水中烴類有機物及其鹵化物的分解率達到或超過99%,甚至連一般化學氧化難以處理的氯代物如多氯聯苯(PCB)、DDT等通過PACT-WAO工藝,毒性也降低了99%,大大提高了處理出水的可生化性,使得後續的生化處理能得以順利進行。在溫度為225~240℃,壓力為6.5~7.5Mpa,停留時間為1~1.2h的條件下,有機磷去除率為93~95%,有機硫去除率為80~88%,未經回收甲醇,COD去除率為40~45% 。採用PACT-WAO工藝處理含酚廢水具有較好的應用前景:出水處理效果穩定,可生化性好,不太高的進水濃度可以處理後直接排放;若進水濃度極高可以輔以生化法。 二. pact-wao工藝系統優勢相比其他污水處理工藝及污泥處理流程,PACT-WAO工藝系統具有其獨特的優勢:4.1 無剩餘污泥排放l 消除需處置的生物污泥;l 無剩餘污泥排放,可同時去除生物污泥及污染物質;l 無污泥二次污染問題;l 污泥中的重金屬被氧化為最高氧化態,成為穩定的無機灰份;4.2 無污染氣體外排l 有機物被轉化為CO2、NOX和H2O;l 無粉塵、氮氧化物及硫氧化物排放;l 與傳統污水處理工藝比較,無有害氣體外排;l 由於粉末填料的吸附特徵,高度揮發性的混合物被留在系統里,並最後被生物處理;l 臭氣不會在曝氣過程中逸散出來,無需增設除嗅單元;4.3 出水水質好l 可處理各種高濃度有機廢水和有毒有害廢水l PACT-WAO 系統可有效控制出水的色度和嗅味,l 出水水質經過濾後直接達到回用水水質要求;l 與膜生物反應器不同的是,pact-wao系統還能夠有效去除不可生物降解的可溶性有機物;l 有效的去除污水中的氨氮;4.4 工藝流程簡潔,管理運行方便,運行費用低l 取代傳統的生物處理+活性炭吸附+污泥處理+除臭;l 粉末填料屬液相再生,固體物不需要脫水;l 無污染氣體外排,不需增設除嗅單元;l PACT-WAO 系統所用粉末填料使生物系統更加穩定,更抗干擾和沖擊;l 不會遇到顆粒填料濾池通常所要求的預處理(粗濾)和常見的板結等問題;l 高度的系統靈活性:通過對粉末的投加量、粉末的種類、活性污泥的濃度和粉末的投加點的選擇來保障工藝的最優化和靈活性,針對性的處理各種不同特性的廢水;l 操作的靈活性:PACT-WAO系統可提供最大的操作靈活性,僅僅是粉末的使用量取決於廢水水質的變化和排放或回用的要求;l 污泥無需脫水可直接進行再生,減少新鮮填料的投加量,降低運行費用;l 無剩餘污泥的處理費用,粉末填料再生可大幅降低系統的投加量加及污泥處置成本;l 無除嗅單元,降低投資和運行成本;l PACT-WAO 系統與顆粒填料系統相比,填料用量要少得多;l 粉末填料比顆粒填料的價格低;l 自熱式的再生,減少能耗:燃料是廢活性填料中的生物和被吸附的有機物,只需要啟動蒸汽,通過使用熱交換器提高能量效率。
5. 廢水處理的高級氧化技術怎麼樣
化學氧化法
化學氧化法是利用化學氧化劑的強氧化性,將廢水中的無機物和有機物徹底氧化成無毒的小分子物質或氣體,從而達到處理的目的。化學氧化法可以去除廢水中的絕大多數有機污染物和某些無機物。常見的化學氧化劑為O3、H2O2、ClO2、KMnO4和K2FeO4等。這些氧化劑通常情況下都是強氧化劑,在酸性和鹼性溶液中可以氧化多種有機污染物。特別是可溶性Fe2+和H2O2按一定的比例混合所組成的芬頓(Fenton)試劑,能氧化許多有機物,且操作不需要高溫高壓,處理效果好,但存在一些難以克服的弱點。目前,化學氧化法所需的費用還較高,僅用於飲用水處理、特種工業用水處理、有毒有害高濃度有機廢水的處理以及以回用為目的的廢水深度處理等。
化學催化氧化法是在傳統的濕式氧化處理工藝中,加入適宜的催化劑以降低反應所需的溫度與壓力,提高氧化分解能力,縮短反應時間,防止設備腐蝕和降低成本。
化學催化氧化法主要應用於石油煉制和化學工業廢水的處理,它對於氣態污染物、液態污染物、固態污染物的處理都有成功的實例。在氣態污染物的治理中,SO2和NOx的催化轉化及有機廢水的治理都用過這種方法。
濕式氧化技術是從20世紀50年代發展起來的一種處理有毒有害、高濃度有機廢水的有效水處理方法。
超臨界水氧化法的主要原理是利用超臨界水作為介質來氧化分解有機物[6]。有機污染物在超臨界水中進行的氧化過程,速度很快且比較完全徹底。有機碳轉化成CO2,氫轉化成H2O,鹵素原子轉化為鹵離子,硫和磷分別轉化為SO42-和PO43-,氮轉化為N2或NO3-和NO2-。同時,超臨界水的氧化過程中釋放出大量的熱,反應一旦開始,可以自己維持,無需外界能量的提供[7]。為了加快反應速率、減少反應時間,降低反應溫度,優化反應程序,使超臨界水氧化法能充分發揮出自身的優勢,許多學者將催化劑引入超臨界水氧化技術,開發了超臨界濕式氧化技術,它已成為一個重要的研究方向。
光催化氧化降解水中有機污染物具有能耗低、操作簡便、反應條件溫和、可減少二次污染等突出優點,同時它對於高濃度的有機工業廢水具有很強的凈化能力,另外它的重要意義還在於它可以充分利用太陽能,對於節約能源、保護環境、維持生態平衡、實現可持續發展具有重大意義。在染料廢水、表面活性劑、農葯廢水、含油廢水、氰化物制葯廢水、有機磷化合物、多環芳烴等廢水處理中,都能有效地進行光催化反應使其轉化為無機小分子,達到完全無機化的目的。同樣,光催化反應對許多無機物,如CN-、Au(CN)4-、I-、SCN-、Cr2O72-、Hg(CH3)2、Hg2+等的去除也有廣泛的應用前景[10]。許多國外學者開展了使用光助Fenton試劑降解典型有機污染物的研究,如4-CP、硝基酚、苯酚和苯甲醚、甲基對硫磷,也有開展於對垃圾滲濾液的降解處理研究等。國內學者王怡中等利用懸浮式反應器研究了活性艷紅、活性黃、陽離子桃紅等8種染料廢水的光降解實驗。結果表明:在TiO2投量為1 g/L,光照4 h後,各種染料廢水的降解率均達到90%以上。周祖飛等研究了萘乙酸的光降解,在TiO2投量為0.10 g/L,254 nm紫外光照及曝氣條件下,初始質量濃度50 mg /L的萘乙酸經3 h光照後,降至6 mg / L以下。雷樂成等利用光助Fenton試劑對PVA退漿廢水進行了研究,表明光助Fenton試劑氧化PVA廢水中的DOC去除率大於90%。
電化學氧化法是使污染物在電極上發生直接的電化學反應,或者利用電極表面產生的強氧化性活性物種使污染物發生氧化還原反應,生成無害物的過程。前者叫直接電化學反應,後者叫間接電化學反應。直接電化學反應通過陽極氧化可使有機污染物和部分無機污染物轉化為無害物質,陰極還原則可從水中去除重金屬離子。這兩個過程同時伴生放出H2與O2,使電流效率降低,但通過電極材料的選擇和電位控制可加以防止。間接電化學反應可利用電化學反應產生的氧化還原劑使污染物轉化為無害物,這時產生的氧化還原劑是污染物與電極交換電子的中介體。這種中介體可以是催化劑,也可以是電化學產生的短壽命中間體。此外,近年來也有人利用O2在陰極還原為H2O2,而後生成(·OH),進而氧化有機物的新方法出現,可用於處理苯酚、苯胺、醛類及氰化物。
6. 實驗室廢水設備,廢水15噸,一般價格多少錢一套
中環清源設計的:
實驗室廢水處理流程由廢水收集、自動調pH、自動加葯裝置版、混凝氣浮裝置、重權金屬去除裝置、新型微電解裝置、電化學催化氧化處理裝置、臭氧催化氧化處理裝置、光催化氧化處理裝置、新型生物處理裝置、吸附過濾裝置、新型膜過濾裝置和復合消毒處理裝置等單元組成,形成一個完整的綜合廢水處理系統。
這一套下來10萬以內,根據客戶需求定做 價格略有不同
希望我的回答能幫助到你
7. 污水處理中微電解的原理
微電解技術是處理高濃度有機廢水的一種理想的工藝,同時又被稱為內電解法。在不同點的情況之下,利用填充在廢水中的微電解材料自身生產的一點二伏的電位差對廢水進行點解處理,從而達到降解有機污染物的目的,當系統桶水之後設備中會形成無數的微電池系統,在作用空間中構成一個電場。
微電解的工作原理基於電化學,氧化還原,物理吸附以及絮凝沉澱的共同作用對於廢水進行處理。該方法適用范圍廣、處理的效果好、成本低廉、操作維護方便、不需要消耗電力資源等優點。本工藝用於難降解高濃度廢水的處理可以大幅度的降低cod和色度,提高廢水的可生化性,同時可以對氨氮的脫除具有很好的效果。傳統上的微電解工藝所採用的微電解材料一般為鐵屑和木炭,使用之前要加酸鹼活化,使用的過程中很容易鈍化板結,同時又因為鐵與碳是物理接觸,所以他們之間很容易形成隔離層使微電解不能繼續進行而失去作用,這就導致了頻繁的更換為電解材料,不但工作量大,成本高同時還影響了廢水的處理效果和效率。
二、鐵碳微電解原理鐵炭填料反應原理(即鐵炭填料處理高難度工業有機廢水原理):
(1)電子流動:利用鐵元素和碳元素之間的電位差,鐵元素與碳元素之間存在一個自然地1.4V的電位差。當鐵碳填料浸泡在廢水溶液中的時候,廢水溶液充當導電溶液,廢微電解填料價格多少水中的污染物質充當電解質。在鐵碳之間自然電位差形成的微弱電場之下,鐵會釋放出電子,電子在電場的作用之下由陽極向陰極移動。電子在移動的過程中會有穿過污染物質的概率,特別是長鏈物質或者是含有苯環的物質被電子穿過的概率更高。長鏈物質或者是含有苯環物質的碳鏈是通過成對電子相互連接的,當溶液中的單個電子穿插的時候,單個電子就會被碳鏈中的成對電子吸引住,從而微電解填料價格多少形成3電子結構,而這種3電子結構是一種非常不穩定的結構,存在一定的時間之後這種3電子結構就會自動爆炸,從而長鏈物質被分成2段。電子繼續穿插,鍛煉之後的碳鏈又會被分割,這樣碳鏈就會越來越短。這樣難降解物質就會轉化為容易降解的物質。同時能夠降低COD。
(2)還原性:當鐵碳填料浸泡在廢水溶液中的時候,作為陽極的鐵會失去電子從而變成鐵離子,新生成的鐵離子具有非常強的還原性,可以將廢水中的難降解物質進行還原反應。
(3)氧化性:電子在廢水中穿插的時候,也會穿過水分子,水分子被分解的時候就會產生大量的氫自由基、氧自由基、和氫氧自由基,這些新生態的自由基具有非常強的氧化性,可以將廢水中的有機物徹底氧化為二氧化碳和水。從而徹底降低COD。
(4)電泳:電子在廢水中運動的時候會吸附帶微電解填料價格多少正電的污染顆粒,吸附在電子上面的污染物質運動到陰極之後會被中和然後就會沉到底部被除去。
(5)絮凝作用:鐵失電子之後會形成鐵離子,新生態的鐵離子再加入鹼液之後會形成氫氧化亞鐵,氫氧化亞鐵是良好的絮凝劑,可以吸附廢水中的大量有機物絮凝沉澱。
8. 學校實驗室廢水綜合處理裝置哪個廠家的好用
實驗室廢水含有酸、鹼、有機污染物、重金屬離子、病原微生物,PH 值變化幅度大,回COD 濃度高,主要分為答三大類: 1、有機廢水:主要來源是實驗試劑、溶劑; 2、無機廢水:主要來源是酸鹼試劑、重金屬試劑; 3、生物致病廢水:主要來源是微生物培養、血液生化實驗,血站、疾控中心等; 實驗室廢水排放標准:【GB8978-1996】《污水綜合排放標准》; 主要檢測指標是:重金屬、PH值、懸浮物、色度、COD、大腸桿菌等。 實驗室廢水處理比較成熟的方法及設備: 1、重金屬混凝共沉工藝:去除重金屬、懸浮物、色度; 2、PH自動調節工藝:酸鹼廢水自動調節PH值; 3、臭氧氧化消毒工藝:有機廢水降解、去除COD、殺滅大腸桿菌; 4、醫療廢水按要求還要投二氧化氯; 5、實驗室廢水處理凈化裝置:一體化組合工藝處理,全自動運行
9. 「紫外催化濕式氧化技術」已經被哪家公司申請了專利 專利號是多少
【相關發明專利】:紫外催化濕式氧化降解污染物的方法及裝置(已失效)
【專利基本信息】
發明專利申請號:CN201010216558.5
發明專利申請日:2010-07-05
發明專利公開/公告號:CN101863526A
發明專利公開/公告日:2010-10-20
發明專利申請/專利權人:李朝林
發明/設計人:李朝林 ;陸鋼 ;劉鵬 ;崔海波
發明專利摘要:
本發明公開了一種常溫常壓條件下,快速、高效降解污染物的紫外催化濕式氧化降解污染物的方法,並為實現該方法設計了一種典型裝置。該方法在反應體系中引入紫外光、氧化劑和催化劑,利用它們的協同催化氧化作用,使濕式氧化反應可以在常溫常壓的溫和條件下進行。與傳統催化濕式氧化法需在高溫和高壓的反應條件相比,本發明方法可以在溫度25-80℃和常壓條件下,利用其強氧化性將高濃度有毒有害廢水中有機污染物分解成CO2和水等無害成份,多種代表性高濃度有機廢水處理後CODCr去除率均可達到95%以上,可生化性也有明顯提高。本方法反應溫和、處理效率高、降解徹底、工藝清潔綠色和節省能源,應用前景廣闊。
【相關實用新型專利】:紫外催化濕式氧化降解污染物的裝置
【專利基本信息如下】
實用新型專利申請號:CN201020246617.9
實用新型專利申請日:2010-07-05
實用新型專利公開/公告號:CN201770512U
實用新型專利公開/公告日:2011-03-23
實用新型專利申請/專利權人:李朝林
實用新型專利發明/設計人:李朝林;陸鋼;劉鵬;崔海波
實用新型專利摘要:
一種紫外催化濕式氧化降解污染物的裝置,該裝置包括盛裝廢水用的反應池,反應池內設有紫外光源,反應池底部設有曝氣裝置,反應池上方設有用於存儲催化劑用的葯品貯槽,反應池內還設有與葯品貯槽連通的加葯裝置,反應池內設有控制裝置,反應池內設有測量池,反應池外側安裝有液位儀。本實用新型在反應體系中引入紫外光、氧化劑和催化劑,利用它們的協同催化氧化作用,使濕式氧化反應可以在常溫常壓的溫和條件下進行。與傳統催化濕式氧化法相比,本實用新型可以在溫度25-80℃和常壓條件下,利用其強氧化性將高濃度有毒有害廢水中有機污染物分解成CO2和水等無害成份,多種代表性高濃度有機廢水處理後CODcr去除率均可達到95%以上。
10. 如何降低廢水的cod
農葯企業在生產過程中排放的廢水通常含有機氮、有機磷、硫化物、苯環、酚鹽等多種無機物和有機物, 其特徵是污染物成分復雜、濃度高、毒性大、可生化性差, 屬難處理工業廢水, 單純用傳統的物化、生化法處理手段難以使廢水處理後達標排放. 農葯污染面廣,持續時間長,殘留農葯對人體健康影響大。研究表明,通過大氣和飲用水進入人體的農葯僅佔10% ,有90%是通過食物鏈進入人體。殘留在蔬菜、水果等食品上的低劑量農葯對人可產生慢性毒性,並誘導多種神經性疾病。農葯污染水的排放已嚴重破壞了生態環境,農葯的殘留毒性問題越來越受到人們的關注。
農業環境科學學報2007, 26 (增刊) : 256- 260
Journal of Agro- Environm ent Science
農葯廢水處理方法研究進展
肖維林, 董瑞斌
(南昌大學環境科學與工程學院, 鄱陽湖湖泊生態與生物資源利用教育部重點實驗室, 江西南昌330029)
摘要:農葯廢水因毒性大、濃度高、組分復雜,成為工業廢水治理難題之一。根據當前國內外學者在農葯廢水處理方面的研究報道,分別對農葯廢水的主要處理方法(光催化法、超聲波技術、生物法、電解法、氧化法)的研究進展進行了綜述,並在此基礎上介紹了適宜的工藝方法組合。
1 幾種主要的農葯廢水處理方法
1. 1 光催化法
銳鈦型的TiO2 在紫外光的照射下能產生氧化性極強的羥基自由基,能夠氧化降解有機物,使其轉化為CO2、H2O以及無機物,降解速度快,無二次污染,為降解處理農葯廢水提供了新思路[ 2 ] 。對於光催化降解有機物目前關注的問題,一方面是降解過程中的影響因素和降解過程的轉化問題[ 3~5 ] ,對納米TiO2 的固載化和反應分離一體化成為光催化領域中具有挑戰性的課題之一,另一方面是提高制備催化劑催化效率的問題[ 6 ] 。
陳士夫等[ 5 ]在玻璃纖維、玻璃珠、玻璃片上負載TiO2 薄膜光催化劑,並用於有機磷農葯的降解,取得了滿意的結果。梁喜珍[ 7 ]通過研究TiO2 光催化降解有機磷農葯樂果廢水的影響因素,獲得了適宜的工藝
條件。潘健民[ 8 ]通過對納米TiO2 及其復合材料光催化降解有機磷農葯進行的研究,分析了在不同催化劑、不同濃度AgNO3 浸漬、不同實驗裝置條件下的光催化降解效果,說明TiO2 表面擔載微量的Ag後,不僅能提高納米TiO2 催化活性,而且有較好的絮凝作用,使TiO2 與處理後的水易分離,後處理更方便。葛湘鋒[ 2 ]研究發現光催化降解在一定條件下符合零級動力學反應模式,而且反應速率常數和反應物起始濃度也呈線形關系,當反應物濃度增長過快達到一定值時,其反應速率常數明顯下降,反應物濃度過高時,則降解反應不再符合零級反應。
目前採用的光催化體系多為高壓燈、高壓氙燈、黑光燈、紫外線殺菌燈等光源,能量消耗大。若能對納米TiO2 進行有效、穩定地敏化,擴展其吸收光譜范圍,能以太陽光直接作為光源, 則將大大降低成本[ 9、10 ] 。
1. 2 超聲波技術
超聲波是頻率大於20 kHz的聲波,超聲波誘導降解有機物的原理是在超聲波的作用下液體產生空化作用[ 11 ] ,即在超聲波負壓相作用下,產生一些極端條件使有機物發生化學鍵斷裂、水相燃燒、高溫分解
或自由基反應。
鍾愛國等[ 12、13 ]研究表明,在甲胺磷濃度為1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、溫度30 ℃、Fe2 + >50 mg·L - 1、充O2 至飽和的條件下,用低頻超聲波(80W·cm- 2 )連續輻照120 min,甲胺磷去除率達到99. 3% ,乙醯甲胺磷的去除率達到99. 9%。孫紅傑等[ 14 ]研究了各種因素超聲波頻率、功率、聲強、變幅桿直徑和溶液初始pH等對超聲降解甲胺磷農葯廢水的影響。Kotronarou等[ 15 ]得出對硫磷在超聲條件下可以被完全降解為PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反應溫度為20 ℃、pH為7. 4時,對硫磷無催化水解半衰期為108 d,其有毒代謝產物對氧磷水解半衰期為144 d。Cristina等[ 16 ]對馬拉磷農葯在超聲波輻射下, 82μmol·L - 1的馬拉磷溶液30 min內pH從6下降到4, 2 h內所有的馬拉磷全部降解,產物均為無機小分子。
蔣永生、傅敏等[ 17、18 ]報道了用超聲波降解模擬廢水中低濃度樂果的試驗表明,輻射時間延長,降解率增加,加入H2O2 可明顯提高樂果的降解率,在溶液初始濃度較低的范圍內,降解速率隨濃度增大而加快,
濃度增大到一定值後,降解速率變化不明顯,超聲降解時溶液溫度控制在15~60 ℃為宜。謝冰等[ 19 ]對久效磷和亞磷酸三甲酯生產過程中產生的廢水進行了超聲氣浮預處理,可降低其COD和毒性,提高其可生化性,再經以光合細菌為主的生化處理,可使其COD降至200 mg·L - 1。
王宏青等[ 20 ] 研究表明: 滅多威經超聲作用35min,可被完全轉換為無機物,其降解過程為假一級反應;濃度增加時,降解減慢; Fe2 +和H2O2 對降解有促進作用,且Fe2 +促進作用比H2O2 的大;採用不同氣體飽和溶液時,降解率的大小順序為Ar >O2 >Air >N2。紅外光譜表明降解產物為SO4
2 - 、NO3- 和CO2。
目前有關超聲輻射降解有機污染物的研究,大多屬於實驗室研究,還缺乏系統的研究,更缺少中試數據[ 21 ] 。
1. 3 生物法
在國內,農葯廠家大多建有生化處理裝置,但目前幾乎沒有一家能夠獲得理想的處理效果。因此,對這類廢水的生化處理研究是十分必要的。已有大量研究表明真菌、細菌、藻類等微生物對有農葯有很好的降解作用。
程潔紅[ 22 ]從土壤中分離得到以多菌靈生產農葯廢水為惟一碳源生長的13株菌,經鑒定為假單胞菌屬( Pseudom onas sp. ) ,研究了SBR 工藝運行的最佳條件,所篩選的菌株對多菌靈農葯廢水的COD去除率為52. 3%。張德詠,譚新球[ 23 ]從生產甲胺磷農葯的廢水中篩選具有促生活性及可降解甲胺磷的光合細菌菌株, 培養後第7 d, 該菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,樂果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,該菌株也能夠以三唑磷、辛硫磷作為惟一碳源生長。
生物膜法將微生物細胞固定在填料上,微生物附著於填料生長、繁殖,在其上形成膜狀生物污泥。與常規的活性污泥法相比,生物膜具有生物體積濃度大、存活世代長、微生物種類繁多等優點,尤其適宜於特種菌在廢水體系中的應用[ 24~26 ] 。王軍、劉寶章[ 27 ]利用半軟性填料進行掛膜,處理菊酯類、雜環類綜合農葯廢水。當進水CODCr為6 810、3 130、1 890mg·L - 1時,經過24 h的作用,細菌膜對CODCr的降解率分別達到24. 8%、43. 5%、53. 4%。
1. 4 電解法
鐵炭微電解法是絮凝、吸附、架橋、卷掃、共沉、電沉積、電化學還原等多種作用綜合效應的結果[ 28 ] ,能有效地去除污染物提高廢水的可生化性。新產生的鐵表面及反應中產生的大量初生態的Fe2 +和原子H具有高化學活性,能改變廢水中許多有機物的結構和特性,使有機物發生斷鏈、開環[ 29 ] ;微電池電極周圍的電場效應也能使溶液中的帶電離子和膠體附集並沉積在電極上而除去;另外反應產生的Fe2 + 、Fe3 +及
其水合物具有強烈的吸附絮凝活性,能進一步提高處理效果。
雍文彬[ 30 ]採用鐵屑微電解法能有效去除農葯生產廢水中的COD、色度、As、氨氮、有機磷和總磷,去除率分別可達76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。張樹艷[ 31 ]採用鐵炭微電解法對幾種農葯配水進行處理,試驗結果表明,最佳反應條件下,廢水的CODC r 去除率都可達67%以上;最佳反應條件:鐵/水比為(0. 25~0. 375) ∶1,鐵/炭比為( 1~3) ∶1, pH3~4,反應時間1~1. 5 h。廢水經微電解處理,然後進行Fenton試劑氧化,則微電解出水中Fe2 + 可作為Fenton的鐵源,且微電
解時有機污染物的初級降解也有利於後續Fenton反應的進行。吳慧芳[ 32 ]採用微電解和Fenton試劑氧化兩種物化手段對菊酯、氯苯BOD5 /CODCr = 0. 03)和對鄰硝氯苯(BOD5 /CODCr = 0. 05) 3種廢水按比例配製而成的綜合農葯廢水進行預處理,結果表明:在廢水pH為2~2. 5時,經微電解處理後,BOD5 /CODCr比值達0. 45以上,可生化性提高; Fenton試劑對綜合農葯廢水CODCr去除率為60%左右,色度去除率接近
100%。劉占孟[ 33 ]以活性炭-納米二氧化鈦為電催化劑,對甲胺磷溶液的電催化氧化降解規律進行研究表明,該工藝能有效去除廢水中的有機物,納米二氧化鈦催化劑的催化效果顯著。電解效果隨著電解時間的延
長、催化劑的增加而升高,低pH有利於電催化氧化過程中H2O2 和·OH 的生成。王永廣[ 34 ] 採用電解/UASB /SBR工藝處理生化性差、氯離子濃度高的氟磺胺草醚農葯廢水。設計電流密度取30. 0 A·m- 2 ,該工程的電費為2. 30 元·m- 3 ,葯劑費為0. 30 元·m- 3 ,人工費為1. 50元·m- 3 ,運行成本為4. 10元·m- 3 , COD去除率> 97%。
1. 5 氧化法
深度氧化技術(AOPs)可通過氧化劑的組合產生具有高度氧化活性的·OH,被認為是處理難降解有機污染物的最佳技術。
引入紫外線、雙氧水聯合作用和調控反應體系pH,可進一步提高臭氧深度氧化法的效率。陳愛因[ 35 ]研究表明,紫外光催化臭氧化降解農葯2, 4-二氯苯氧乙酸(2, 4- D)廢水成效顯著,臭氧/紫外(UV)深度氧化法(比較單獨臭氧化、臭氧/紫外、臭氧/雙氧水、臭氧/雙氧水/紫外4種臭氧化過程)是最好的臭氧化處理方法。2, 4- D 200 mg·L - 1的水樣,反應30min, 2, 4- D降解完全, 75 min時礦化率達75%以上。鹼性反應氛圍有利於臭氧化反應進行。雙氧水的引入對2, 4- D降解無明顯促進作用,這是因為雙氧水分解消耗OH- ,沒有緩沖的反應體系pH降低,限制了雙氧水的分解和·OH自由基鏈反應。文獻[ 36 ]表明添加H2O2 對光解效果有一定改善作用,投加量達到75 mg·L - 1時,水樣的COD去除率由零投加時
的20%提高到40% ,但過量投加對處理效果沒有進一步促進作用。曝氣能促進光解效果,特別對UV /Fenton工藝作用更為顯著,光解水樣2 h後,曝氣條件下的COD 去除率可從不曝氣條件下的30%提高到80%。
催化濕式氧化能實現有機污染物的高效降解,同時可以大大降低反應的溫度和壓力,為高濃度難生物降解的有機廢水的處理提供了一種高效的新型技術。催化劑是催化濕式氧化的核心,諸多學者致力於研究開發新型高效的催化劑。韓利華等[ 37 ]以Cu和Ce為活性組分,制備了Cu /Ce復合金屬氧化物,比較了均相-多相催化劑的催化性能。韓玉英[ 38 ]在催化濕式氧化法處理吡蟲啉農葯廢水中,分別用硝酸亞鈰和硝酸銅作催化劑,反應一定時間後COD去除率分別達到80%和95. 5%。用硝酸銅作催化劑處理吡蟲啉農葯廢水具有較高的活性,但Cu2 + 有較高的溶出量。張翼、馬軍[ 39 ]在廢水中加入2種自製的催化劑,結果表明,只用臭氧處理的情況下7 d後有機磷的去除率為78. 03%; 在催化劑A 存在下, 去除率可達93. 85%;在催化劑B存在下,去除率可達為88. 35%。在室溫和中性介質中均屬於一級反應。
ClO2 是一種強氧化劑,鹼性條件下氰根(CN- )先被氧化為氯酸鹽,氯酸鹽進一步被氧化為碳酸鹽和氮氣,從而徹底消除氰化物毒性。陳莉榮[ 4 0 ]將含氰農葯廢水空氣吹脫除氨後,採用ClO2 作為氰化物的氧化劑,氰化物濃度為60~80 mg·L - 1 , pH為11. 5左右時,按ClO2 ∶CN- ≥3. 5 (質量比)投葯,氰化物的去除率達97%以上,氧化後廢水經生物處理系統進一步處理後各項指標都能達排放標准要求。
2 農葯廢水處理工藝方法組合
在處理實際廢水時,由於水中的有機污染物呈現出復雜多樣的特點,僅採用單一的處理工藝往往達不到預期目的。在處理實際廢水時,可以綜合考慮技術特點與具體廢水水質情況來選擇適宜的工藝組合形式。
文獻[ 41 ]研究表明,難降解有機磷農葯廢水經80 min光催化氧化後,在生物段的COD去除率可達85%以上。李耀中[ 4 2 ]設計了一種流化床光催化反應器與過濾預處理相組合的中試系統,制備了一種以30~40目耐火磚顆粒為載體的負載型TiO2 光催化劑,以高壓汞燈為光源,結果表明,光照150 min後該系統對配製的農葯廢水的COD 去除率≥70%, BOD5 /
COD值可提高至0. 4以上。張仲燕[ 4 3 ]以一個生產多種染料和農葯中間體的化工廠為研究對象,採用中和- 混凝- 催化氧化的組合工藝並嚴格控制良好的處理條件, 對CODCr含量為7 000~14 000 mg·L - 1的高
濃度廢水可以降至CODCr為300~500 mg·L - 1 , pH、SS和色度均達到排放標准。文獻[ 44 ]研究發現,光電結合工藝存在一定的協同效應,遠大於光催化和電催化單獨處理效率的簡單加和。加入少量Na2 SO4 或
NaCl提高電解質質量濃度後, COD去除率迅速提高到80%以上,且加入NaCl電解質比加入Na2 SO4 能更好地降低廢水的COD,電流越高, COD 去除速率越大。文獻[ 45 ]研究發現將臭氧氧化與生物處理聯用治理含4種農葯的有機廢水,可將其中的阿特拉津、氨基吡啶、米吐爾和對草快分別去除96%、99%、98%和80%。