Ⅰ 工廠自動化的發展史
20世紀40年代開始, 人們開始使用分散式測量儀表和控制裝置, 進行單參數自動調節, 取代了傳統的手工操作。
50 年代,人們開始把檢測與控制儀表集中在中央控制室, 實行車間集中控制, 一些工廠企業初步實現了檢測儀表化和局部自動化.這一階段, 過程式控制制系統結構絕大多數還是單輸入單輸出系統, 受控變數主要是溫度、壓力、流量和液位四種參數, 控制的目的是保持這些參數的穩定, 消除或減少對生產過程的干擾影響.而過程式控制制系統採用的方法是經典控制理論中的頻率法和軌跡法, 主要解決了單輸入單輸出系統的常值控制和系統綜合控制問題.
60 年代, 工業生產的不斷發展, 工廠自動化程度大大提高。在自動化儀表方面, 開始大量採用單元組合儀表.為了滿足定型、靈活、多功能等要求, 還出現了組裝儀表, 以適應比較復雜的模擬和邏輯規律相結合的控制系統需要.與此同時, 開始採用電子計算機對大型設備, 如大型蒸餾塔、大型軋鋼機等, 進行最優控制, 實現了直接數字控制(DDC)及設定值控制(SPC)。在系統方面,出現了包括反饋和前饋的復合控制系統。在過程式控制制理論方面, 除了仍採用經典控制理論解決實際生產過程中的問題外, 現代控制理論也開始得到應用, 控制系統由單變數系統轉向復雜的多變數系統.在此期間, 工廠企業實現了車間或大型裝置的集中控制.
70—90年代, 現代工業生產的迅猛發展, 自動化儀表與硬體的開發, 微計算機的問世, 使生產過程自動化進入了新的高水平階段。對整個工廠或整個工藝流程的集中控制, 應用計算機系統進行多參數綜合控制, 或者用多台計算機對生產過程進行分級綜合控制和參與經營管理, 是這一階段的主要特徵。在新型自動化技術工具方面, 開始採用微機控制的智能單元組合儀表, 顯示和調節儀表, 以適應各種復雜控制系統的需要.現代控制理論中的狀態反饋、最優控制和自適應控制等設計方法和特殊控制規律, 在過程式控制制中得到了廣泛應用, 自動化技術呈現出一派欣欣向榮的新景象.
進入21世紀以來,「以人為本」、「節能環保」的觀念深入人心,對工廠自動化提出了新的要求。隨著計算機技術、無線技術、現場匯流排技術、工業乙太網技術、IT技術、機器人技術,感測器技術以及安全技術等科學技術的不斷發展與創新,工廠自動化在經歷了單機自動化、車間自動化、全廠集中控制等幾個重要階段之後正向工廠綜合自動化 (又稱全盤自動化)發展,即把過程式控制制.監督控制 、產品設計 、質量監測 、工廠管理等方面融為一體,運用現代控制理論。大系統理論、人工智慧、4C ( Computer 、Commu -Iieation、CRT、Contro1)技術,實現優化控制、分級控制、分散控制、測試自動化、建築物自動化、信息處理與經營決策自動化,以便進一步提高工作效率,保證質量與安全,節約能源和原材料。
Ⅱ 簡述自動控制系統發展的四個階段
1、早期控制
早在古代,勞動人民就憑借生產實踐中積累的豐富經驗和對反饋的直觀認識,發明了許多著閃爍控制理論智慧火花的傑作。如果要追溯自動控制技術的發展史,早在兩千年前人類就有了自動控制技術的萌芽。
2、經典控制理論
自動控制理論是與人類社會發展密切聯系的一門學科,是自動控制科學的核心自從19世紀Maxwell對具有調速器的蒸汽發動機系統進行線性常微分方程描述及穩定性分析以來。
經過20世紀初Nyquist,Bode,Harris,Evans,Wienner,Nichols等人的傑出貢獻,終於形成了經典反饋控制理論基礎,並於50年代趨於成熟。
特點是以傳遞函數為數學工具,採用頻域方法,主要研究單輸入單輸出線性定常控制系統的分析與設計,但它存在著一定的局限性,即對多輸入多輸出系統不宜用經典控制理論解決,特別是對非線性時變系統更是無能為力。
3、現代控制理論
隨著20世紀40年代中期計算機的出現及其應用領域的不斷擴展,促進了自動控制理論朝著更為復雜也更為嚴密的方向發展,特別是在Kalman提出的可控性和可觀測性概念以及提出的極大值理論的基礎上,在20世紀5060年代開始出現了以狀態空間分析(應用線性代數)為基礎的現代控制理論。
現代控制理論本質上是一種時域法,其研究內容非常廣泛,主要包括三個基本內容:多變數線性系統理論最優控制理論以及最優估計與系統辨識理論現代控制理論從理論上解決了系統的可控性可觀測性穩定性以及許多復雜系統的控制問題。
4、智能控制理論
隨著現代科學技術的迅速發展,生產系統的規模越來越大,形成了復雜的大系統,導致了控制對象控制器以及控制任務和目的的日益復雜化,從而導致現代控制理論的成果很少在實際中得到應用經典控制理論現代控制理論在應用中遇到了不少難題,影響了它們的實際應用,其主要原因有三:
1)精確的數學模型難以獲得此類控制系統的設計和分析都是建立在精確的數學模型的基礎上的,而實際系統由於存在不確定性不完全性模糊性時變性非線性等因素,一般很難獲得精確的數學模型;
2)假設過於苛刻研究這些系統時,人們必須提出一些比較苛刻的假設,而這些假設在應用中往往與實際不符;
3)控制系統過於復雜為了提高控制性能,整個控制系統變得極為復雜,這不僅增加了設備投資,也降低了系統的可靠性
第三代控制理論即智能控制理論就是在這樣的背景下提出來的,它是人工智慧和自動控制交叉的產物,是當今自動控制科學的出路之一。
(2)微機型自動裝置發展史擴展閱讀
自動控制系統的未來發展前景:
現代化工廠向規模集約化方向發展時,生產工藝對控制系統的可靠性、運算能力、擴展能力、開放性、操作及監控水平等方面提出了越來越高的要求。
傳統的DCS系統已經不能滿足現代工業自動化控制的設計標准和要求。隨著工業自動化控制理論、計算機技術和現代通信技術的迅速發展,自動控制系統的未來發展方向將向智能化、網路化、全集成自動化等方向發展。
Ⅲ 誰知道微機繼電保護的發展史
※ 20世紀60年代末期,開始倡議用計算機構成繼電保護。
※ 20世紀70年代,掀起了研究熱潮。
※ 20世紀70年代末期,開始進入實用化階段。
※ 1979年後,推出各種定型的商業性微機保護產品,並迅
速推廣。
※ 70年代後半期開始,對國外計算機繼電保護的發展作了廣泛的介紹和綜述分析。
※ 70年代末至80年代初廣泛地開展各種演算法以至樣機的研製。
※ 1984年,華北電力學院楊奇遜教授主持研製的第一套微機距離保護樣機在河北馬頭電廠投入試運行。
※ 1986年,全國第一台微機高壓線路保護裝置投入試運行。
※ 1987年9月26日,微機距離保護經受人工短路考驗。
※ 目前,高中壓等級繼電保護設備幾乎均為微機保護產品。
※ 在微機保護和網路通信等技術結合後,變電站自動化、配電網自動化系統也已在全國系統中廣泛應用。
※ 未來幾年內,微機保護發展趨勢:
a)從應用上,向高可靠性、簡便性、開放性、通用性、靈活性和動作過程透明化方向發展。
b)從原理上,向智能化、模塊化、網路化和綜合化方向發展。
Ⅳ 電子計算機的詳細發展史
計算機是新技術革命的一支主力,也是推動社會向現代化邁進的活躍因素。計算機科學與技術是第二次世界大戰以來發展最快、影響最為深遠的新興學科之一。計算機產業已在世界范圍內發展成為一種極富生命力的戰略產業。
現代計算機是一種按程序自動進行信息處理的通用工具,它的處理對象是信息,處理結果也是信息。利用計算機解決科學計算、工程設計、經營管理、過程式控制制或人工智慧等各種問題的方法,都是按照一定的演算法進行的。這種演算法是定義精確的一系列規則,它指出怎樣以給定的輸入信息經過有限的步驟產生所需要的輸出信息。
信息處理的一般過程,是計算機使用者針對待解抉的問題,事先編製程序並存入計算機內,然後利用存儲程序指揮、控制計算機自動進行各種基本操作,直至獲得預期的處理結果。計算機自動工作的基礎在於這種存儲程序方式,其通用性的基礎則在於利用計算機進行信息處理的共性方法。
計算機的歷史
現代計算機的誕生和發展 現代計算機問世之前,計算機的發展經歷了機械式計算機、機電式計算機和萌芽期的電子計算機三個階段。
早在17世紀,歐洲一批數學家就已開始設計和製造以數字形式進行基本運算的數字計算機。1642年,法國數學家帕斯卡採用與鍾表類似的齒輪傳動裝置,製成了最早的十進制加法器。1678年,德國數學家萊布尼茲製成的計算機,進一步解決了十進制數的乘、除運算。
英國數學家巴貝奇在1822年製作差分機模型時提出一個設想,每次完成一次算術運算將發展為自動完成某個特定的完整運算過程。1884年,巴貝奇設計了一種程序控制的通用分析機。這台分析機雖然已經描繪出有關程序控制方式計算機的雛型,但限於當時的技術條件而未能實現。
巴貝奇的設想提出以後的一百多年期間,電磁學、電工學、電子學不斷取得重大進展,在元件、器件方面接連發明了真空二極體和真空三極體;在系統技術方面,相繼發明了無線電報、電視和雷達……。所有這些成就為現代計算機的發展准備了技術和物質條件。
與此同時,數學、物理也相應地蓬勃發展。到了20世紀30年代,物理學的各個領域經歷著定量化的階段,描述各種物理過程的數學方程,其中有的用經典的分析方法已根難解決。於是,數值分析受到了重視,研究出各種數值積分,數值微分,以及微分方程數值解法,把計算過程歸結為巨量的基本運算,從而奠定了現代計算機的數值演算法基礎。
社會上對先進計算工具多方面迫切的需要,是促使現代計算機誕生的根本動力。20世紀以後,各個科學領域和技術部門的計算困難堆積如山,已經阻礙了學科的繼續發展。特別是第二次世界大戰爆發前後,軍事科學技術對高速計算工具的需要尤為迫切。在此期間,德國、美國、英國部在進行計算機的開拓工作,幾乎同時開始了機電式計算機和電子計算機的研究。
德國的朱賽最先採用電氣元件製造計算機。他在1941年製成的全自動繼電器計算機Z-3,已具備浮點記數、二進制運算、數字存儲地址的指令形式等現代計算機的特徵。在美國,1940~1947年期間也相繼製成了繼電器計算機MARK-1、MARK-2、Model-1、Model-5等。不過,繼電器的開關速度大約為百分之一秒,使計算機的運算速度受到很大限制。
電子計算機的開拓過程,經歷了從製作部件到整機從專用機到通用機、從「外加式程序」到「存儲程序」的演變。1938年,美籍保加利亞學者阿塔納索夫首先製成了電子計算機的運算部件。1943年,英國外交部通信處製成了「巨人」電子計算機。這是一種專用的密碼分析機,在第二次世界大戰中得到了應用。
1946年2月美國賓夕法尼亞大學莫爾學院製成的大型電子數字積分計算機(ENIAC),最初也專門用於火炮彈道計算,後經多次改進而成為能進行各種科學計算的通用計算機。這台完全採用電子線路執行算術運算、邏輯運算和信息存儲的計算機,運算速度比繼電器計算機快1000倍。這就是人們常常提到的世界上第一台電子計算機。但是,這種計算機的程序仍然是外加式的,存儲容量也太小,尚未完全具備現代計算機的主要特徵。
新的重大突破是由數學家馮·諾伊曼領導的設計小組完成的。1945年3月他們發表了一個全新的存儲程序式通用電子計算機方案—電子離散變數自動計算機(EDVAC)。隨後於1946年6月,馮·諾伊曼等人提出了更為完善的設計報告《電子計算機裝置邏輯結構初探》。同年7~8月間,他們又在莫爾學院為美國和英國二十多個機構的專家講授了專門課程《電子計算機設計的理論和技術》,推動了存儲程序式計算機的設計與製造。
1949年,英國劍橋大學數學實驗室率先製成電子離散時序自動計算機(EDSAC);美國則於1950年製成了東部標准自動計算機(SFAC)等。至此,電子計算機發展的萌芽時期遂告結束,開始了現代計算機的發展時期。
在創制數字計算機的同時,還研製了另一類重要的計算工具——模擬計算機。物理學家在總結自然規律時,常用數學方程描述某一過程;相反,解數學方程的過程,也有可能採用物理過程模擬方法,對數發明以後,1620年製成的計算尺,己把乘法、除法化為加法、減法進行計算。麥克斯韋巧妙地把積分(面積)的計算轉變為長度的測量,於1855年製成了積分儀。
19世紀數學物理的另一項重大成就——傅里葉分析,對模擬機的發展起到了直接的推動作用。19世紀後期和20世紀前期,相繼製成了多種計算傅里葉系數的分析機和解微分方程的微分分析機等。但是當試圖推廣微分分析機解偏微分方程和用模擬機解決一般科學計算問題時,人們逐漸認識到模擬機在通用性和精確度等方面的局限性,並將主要精力轉向了數字計算機。
電子數字計算機問世以後,模擬計算機仍然繼續有所發展,並且與數字計算機相結合而產生了混合式計算機。模擬機和混合機已發展成為現代計算機的特殊品種,即用在特定領域的高效信息處理工具或模擬工具。
20世紀中期以來,計算機一直處於高速度發展時期,計算機由僅包含硬體發展到包含硬體、軟體和固件三類子系統的計算機系統。計算機系統的性能—價格比,平均每10年提高兩個數量級。計算機種類也一再分化,發展成微型計算機、小型計算機、通用計算機(包括巨型、大型和中型計算機),以及各種專用機(如各種控制計算機、模擬—數字混合計算機)等。
計算機器件從電子管到晶體管,再從分立元件到集成電路以至微處理器,促使計算機的發展出現了三次飛躍。
在電子管計算機時期(1946~1959),計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類。
到了晶體管計算機時期(1959~1964),主存儲器均採用磁心存儲器,磁鼓和磁碟開始用作主要的輔助存儲器。不僅科學計算用計算機繼續發展,而且中、小型計算機,特別是廉價的小型數據處理用計算機開始大量生產。
1964年,在集成電路計算機發展的同時,計算機也進入了產品系列化的發展時期。半導體存儲器逐步取代了磁心存儲器的主存儲器地位,磁碟成了不可缺少的輔助存儲器,並且開始普遍採用虛擬存儲技術。隨著各種半導體只讀存儲器和可改寫的只讀存儲器的迅速發展,以及微程序技術的發展和應用,計算機系統中開始出現固件子系統。
20世紀70年代以後,計算機用集成電路的集成度迅速從中小規模發展到大規模、超大規模的水平,微處理器和微型計算機應運而生,各類計算機的性能迅速提高。隨著字長4位、8位、16位、32位和64位的微型計算機相繼問世和廣泛應用,對小型計算機、通用計算機和專用計算機的需求量也相應增長了。
微型計算機在社會上大量應用後,一座辦公樓、一所學校、一個倉庫常常擁有數十台以至數百台計算機。實現它們互連的局部網隨即興起,進一步推動了計算機應用系統從集中式系統向分布式系統的發展。
在電子管計算機時期,一些計算機配置了匯編語言和子程序庫,科學計算用的高級語言FORTRAN初露頭角。在晶體管計算機階段,事務處理的COBOL語言、科學計算機用的ALGOL語言,和符號處理用的LISP等高級語言開始進入實用階段。操作系統初步成型,使計算機的使用方式由手工操作改變為自動作業管理。
進入集成電路計算機發展時期以後,在計算機中形成了相當規模的軟體子系統,高級語言種類進一步增加,操作系統日趨完善,具備批量處理、分時處理、實時處理等多種功能。資料庫管理系統、通信處理程序、網路軟體等也不斷增添到軟體子系統中。軟體子系統的功能不斷增強,明顯地改變了計算機的使用屬性,使用效率顯著提高。
在現代計算機中,外圍設備的價值一般已超過計算機硬體子系統的一半以上,其技術水平在很大程度上決定著計算機的技術面貌。外圍設備技術的綜合性很強,既依賴於電子學、機械學、光學、磁學等多門學科知識的綜合,又取決於精密機械工藝、電氣和電子加工工藝以及計量的技術和工藝水平等。
外圍設備包括輔助存儲器和輸入輸出設備兩大類。輔助存儲器包括磁碟、磁鼓、磁帶、激光存儲器、海量存儲器和縮微存儲器等;輸入輸出設備又分為輸入、輸出、轉換、、模式信息處理設備和終端設備。在這些品種繁多的設備中,對計算機技術面貌影響最大的是磁碟、終端設備、模式信息處理設備和轉換設備等。
新一代計算機是把信息採集存儲處理、通信和人工智慧結合在一起的智能計算機系統。它不僅能進行一般信息處理,而且能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,將能幫助人類開拓未知的領域和獲得新的知識。
計算技術在中國的發展 在人類文明發展的歷史上中國曾經在早期計算工具的發明創造方面寫過光輝的一頁。遠在商代,中國就創造了十進制記數方法,領先於世界千餘年。到了周代,發明了當時最先進的計算工具——算籌。這是一種用竹、木或骨製成的顏色不同的小棍。計算每一個數學問題時,通常編出一套歌訣形式的演算法,一邊計算,一邊不斷地重新布棍。中國古代數學家祖沖之,就是用算籌計算出圓周率在3.1415926和3.1415927之間。這一結果比西方早一千年。
珠算盤是中國的又一獨創,也是計算工具發展史上的第一項重大發明。這種輕巧靈活、攜帶方便、與人民生活關系密切的計算工具,最初大約出現於漢朝,到元朝時漸趨成熟。珠算盤不僅對中國經濟的發展起過有益的作用,而且傳到日本、朝鮮、東南亞等地區,經受了歷史的考驗,至今仍在使用。
中國發明創造指南車、水運渾象儀、記里鼓車、提花機等,不僅對自動控制機械的發展有卓越的貢獻,而且對計算工具的演進產生了直接或間接的影響。例如,張衡製作的水運渾象儀,可以自動地與地球運轉同步,後經唐、宋兩代的改進,遂成為世界上最早的天文鍾。
記里鼓車則是世界上最早的自動計數裝置。提花機原理劉計算機程序控制的發展有過間接的影響。中國古代用陽、陰兩爻構成八卦,也對計算技術的發展有過直接的影響。萊布尼茲寫過研究八卦的論文,系統地提出了二進制算術運演算法則。他認為,世界上最早的二進製表示法就是中國的八卦。
經過漫長的沉寂,新中國成立後,中國計算技術邁入了新的發展時期,先後建立了研究機構,在高等院校建立了計算技術與裝置專業和計算數學專業,並且著手創建中國計算機製造業。
1958年和1959年,中國先後製成第一台小型和大型電子管計算機。60年代中期,中國研製成功一批晶體管計算機,並配製了ALGOL等語言的編譯程序和其他系統軟體。60年代後期,中國開始研究集成電路計算機。70年代,中國已批量生產小型集成電路計算機。80年代以後,中國開始重點研製微型計算機系統並推廣應用;在大型計算機、特別是巨型計算機技術方面也取得了重要進展;建立了計算機服務業,逐步健全了計算機產業結構。
在計算機科學與技術的研究方面,中國在有限元計算方法、數學定理的機器證明、漢字信息處理、計算機系統結構和軟體等方面都有所建樹。在計算機應用方面,中國在科學計算與工程設計領域取得了顯著成就。在有關經營管理和過程式控制制等方面,計算機應用研究和實踐也日益活躍。
計算機科學與技術
計算機科學與技術是一門實用性很強、發展極其迅速的面向廣大社會的技術學科,它建立在數學、電子學 (特別是微電子學)、磁學、光學、精密機械等多門學科的基礎之上。但是,它並不是簡單地應用某些學科的知識,而是經過高度綜合形成一整套有關信息表示、變換、存儲、處理、控制和利用的理論、方法和技術。
計算機科學是研究計算機及其周圍各種現象與規模的科學,主要包括理論計算機科學、計算機系統結構、軟體和人工智慧等。計算機技術則泛指計算機領域中所應用的技術方法和技術手段,包括計算機的系統技術、軟體技術、部件技術、器件技術和組裝技術等。計算機科學與技術包括五個分支學科,即理論計算機科學、計算機系統結構、計算機組織與實現、計算機軟體和計算機應用。
理論計算機學 是研究計算機基本理論的學科。在幾千年的數學發展中,人們研究了各式各樣的計算,創立了許多演算法。但是,以計算或演算法本身的性質為研究對象的數學理論,卻是在20世紀30年代才發展起來的。
當時,由幾位數理邏輯學者建立的演算法理論,即可計算性理論或稱遞歸函數論,對20世紀40年代現代計算機設計思想的形成產生過影響。此後,關於現實計算機及其程序的數學模型性質的研究,以及計算復雜性的研究等不斷有所發展。
理論計算機科學包括自動機論、形式語言理論、程序理論、演算法分析,以及計算復雜性理論等。自動機是現實自動計算機的數學模型,或者說是現實計算機程序的模型,自動機理論的任務就在於研究這種抽象機器的模型;程序設計語言是一種形式語言,形式語言理論根據語言表達能力的強弱分為O~3型語言,與圖靈機等四類自動機逐一對應;程序理論是研究程序邏輯、程序復雜性、程序正確性證明、程序驗證、程序綜合、形式語言學,以及程序設計方法的理論基礎;演算法分析研究各種特定演算法的性質。計算復雜性理論研究演算法復雜性的一般性質。
計算機系統結構 程序設計者所見的計算機屬性,著重於計算機的概念結構和功能特性,硬體、軟體和固件子系統的功能分配及其界面的確定。使用高級語言的程序設計者所見到的計算機屬性,主要是軟體子系統和固件子系統的屬性,包括程序語言以及操作系統、資料庫管理系統、網路軟體等的用戶界面。使用機器語言的程序設計者所見到的計算機屬性,則是硬體子系統的概念結構(硬體子系統結構)及其功能特性,包括指令系統(機器語言),以及寄存器定義、中斷機構、輸入輸出方式、機器工作狀態等。
硬體子系統的典型結構是馮·諾伊曼結構,它由運算器控制器、存儲器和輸入、輸出設備組成,採用「指令驅動」方式。當初,它是為解非線性、微分方程而設計的,並未預見到高級語言、操作系統等的出現,以及適應其他應用環境的特殊要求。在相當長的一段時間內,軟體子系統都是以這種馮·諾伊曼結構為基礎而發展的。但是,其間不相適應的情況逐漸暴露出來,從而推動了計算機系統結構的變革。
計算機組織與實現 是研究組成計算機的功能、部件間的相互連接和相互作用,以及有關計算機實現的技術,均屬於計算機組織與實現的任務。
在計算機系統結構確定分配給硬子系統的功能及其概念結構之後,計算機組織的任務就是研究各組成部分的內部構造和相互聯系,以實現機器指令級的各種功能和特性。這種相互聯系包括各功能部件的布置、相互連接和相互作用。
隨著計算機功能的擴展和性能的提高,計算機包含的功能部件也日益增多,其間的互連結構日趨復雜。現代已有三類互連方式,分別以中央處理器、存儲器或通信子系統為中心,與其他部件互連。以通信子系統為中心的組織方式,使計算機技術與通信技術緊密結合,形成了計算機網路、分布計算機系統等重要的計算機研究與應用領域。
與計算實現有關的技術范圍相當廣泛,包括計算機的元件、器件技術,數字電路技術,組裝技術以及有關的製造技術和工藝等。
軟體 軟體的研究領域主要包括程序設計、基礎軟體、軟體工程三個方面。程序設計指設計和編製程序的過程,是軟體研究和發展的基礎環節。程序設計研究的內容,包括有關的基本概念、規范、工具、方法以及方法學等。這個領域發展的特點是:從順序程序設計過渡到並發程序設計和分幣程序設計;從非結構程序設計方法過渡到結構程序設計方法;從低級語言工具過渡到高級語言工具;從具體方法過渡到方法學。
基礎軟體指計算機系統中起基礎作用的軟體。計算機的軟體子系統可以分為兩層:靠近硬體子系統的一層稱為系統軟體,使用頻繁,但與具體應用領域無關;另一層則與具體應用領域直接有關,稱為應用軟體;此外還有支援其他軟體的研究與維護的軟體,專門稱為支援軟體。
軟體工程是採用工程方法研究和維護軟體的過程,以及有關的技術。軟體研究和維護的全過程,包括概念形成、要求定義、設計、實現、調試、交付使用,以及有關校正性、適應性、完善性等三層意義的維護。軟體工程的研究內容涉及上述全過程有關的對象、結構、方法、工具和管理等方面。
軟體目動研究系統的任務是:在軟體工程中採用形式方法:使軟體研究與維護過程中的各種工作盡可能多地由計算機自動完成;創造一種適應軟體發展的軟體、固件與硬體高度綜合的高效能計算機。
計算機產業
計算機產業包括兩大部門,即計算機製造業和計算機服務業。後者又稱為信息處理產業或信息服務業。計算機產業是一種省能源、省資源、附加價值高、知識和技術密集的產業,對於國民經濟的發展、國防實力和社會進步均有巨大影響。因此,不少國家採取促進計算機產業興旺發達的政策。
計算機製造業包括生產各種計算機系統、外圍設備終端設備,以及有關裝置、元件、器件和材料的製造。計算機作為工業產品,要求產品有繼承性,有很高的性能-價格比和綜合性能。計算機的繼承性特別體現在軟體兼容性方面,這能使用戶和廠家把過去研製的軟體用在新產品上,使價格很高的軟體財富繼續發揮作用,減少用戶再次研製軟體的時間和費用。提高性能-價格比是計算機產品更新的目標和動力。
計算機製造業提供的計算機產品,一般僅包括硬體子系統和部分軟體子系統。通常,軟體子系統中缺少適應各種特定應用環境的應用軟體。為了使計算機在特定環境中發揮效能,還需要設計應用系統和研製應用軟體此外,計算機的運行和維護,需要有掌握專業知識的技術人員,這常常是一股用戶所作不到的。
針對這些社會需要,一些計算機製造廠家十分重視向用戶提供各種技術服務和銷售服務。一些獨立於計算機製造廠家的計算機服務機構,也在50年代開始出現。到60年代末期,計算機服務業在世界范圍內已形成為獨立的行業。
計算機的發展與應用
計算機科學與技術的各門學科相結合,改進了研究工具和研究方法,促進了各門學科的發展。過去,人們主要通過實驗和理論兩種途徑進行科學技術研究。現在,計算和模擬已成為研究工作的第三條途徑。
計算機與有關的實驗觀測儀器相結合,可對實驗數據進行現場記錄、整理、加工、分析和繪制圖表,顯著地提高實驗工作的質量和效率。計算機輔助設計已成為工程設計優質化、自動化的重要手段。在理論研究方面,計算機是人類大腦的延伸,可代替人腦的若干功能並加以強化。古老的數學靠紙和筆運算,現在計算機成了新的工具,數學定理證明之類的繁重腦力勞動,已可能由計算機來完成或部分完成。
計算和模擬作為一種新的研究手段,常使一些學科衍生出新的分支學科。例如,空氣動力學、氣象學、彈性結構力學和應用分析等所面臨的「計算障礙」,在有了高速計算機和有關的計算方法之後開始有所突破,並衍生出計算空氣動力學、氣象數值預報等邊緣分支學科。利用計算機進行定量研究,不僅在自然科學中發揮了重大的作用,在社會科學和人文學科中也是如此。例如,在人口普查、社會調查和自然語言研究方面,計算機就是一種很得力的工具。
計算機在各行各業中的廣泛應用,常常產生顯著的經濟效益和社會效益,從而引起產業結構、產品結構、經營管理和服務方式等方面的重大變革。在產業結構中已出觀了計算機製造業和計算機服務業,以及知識產業等新的行業。
微處理器和微計算機已嵌入機電設備、電子設備、通信設備、儀器儀表和家用電器中,使這些產品向智能化方向發展。計算機被引入各種生產過程系統中,使化工、石油、鋼鐵、電力、機械、造紙、水泥等生產過程的自動化水平大大提高,勞動生產率上升、質量提高、成本下降。計算機嵌入各種武器裝備和武器系統干,可顯著提高其作戰效果。
經營管理方面,計算機可用於完成統計、計劃、查詢、庫存管理、市場分析、輔助決策等,使經營管理工作科學化和高效化,從而加速資金周轉,降低庫存水準,改善服務質量,縮短新產品研製周期,提高勞動生產率。在辦公室自動化方面,計算機可用於文件的起草、檢索和管理等,顯著提高辦公效率。
計算機還是人們的學習工具和生活工具。藉助家用計算機、個人計算機、計算機網、資料庫系統和各種終端設備,人們可以學習各種課程,獲取各種情報和知識,處理各種生活事務(如訂票、購物、存取款等),甚至可以居家辦公。越來越多的人的工作、學習和生活中將與計算機發生直接的或間接的聯系。普及計算機教育已成為一個重要的問題。
總之,計算機的發展和應用已不僅是一種技術現象而且是一種政治、經濟、軍事和社會現象。世界各國都力圖主動地駕馭這種社會計算機化和信息化的進程,克服計算機化過程中可能出現的消極因素,更順利地向高。 希望我的回答對您有幫助,祝您過得愉快。謝謝。。。(網上摘抄)
Ⅳ 微機的發展史
、計算機的發展史 1946年美國賓夕法尼亞大學為了彈道設計的需要設計了世界上第一台數字電子計算機。它的運算速度不高,卻是一個龐然大物――――18000個電子管、1500個繼電器、佔地300平方米、重30噸、消耗功率為50KW、價值48萬美元。雖然它既大又貴,但卻是現在各種計算機的先驅,為發展至今的數字電子計算機奠定了基礎。 自第一台計算機問世以來,隨著電子器件的不斷發展、更新,計算機的發展日新月異,至今已發展了四代。 一般來說,電子計算機發展歷程的各個階段,是以所採用的電子器件的不同來劃分的,即電子管、晶體管、中小規模集成電路和大規模及超大規模集成電路計算機。 微型計算機屬於第四代電子計算機產品,即大規模及超大規模集成電路計算機,是集成電路技術不斷發展,晶元集成度不斷提高的產物。 年代 基本器件 應用范圍 1946――1958 電子管 科研院校進行科學運算 1958――1964 晶體管 工礦企業、機關事務進行數據處理工業控制 1964――1971 集成電路 出現了小型機 1971――今 LSI、VLSI 深入到社會的各個領域,出現了微機 三、微機的發展史 微機的發展與LSI緊密相連。自1971年第一台計算機(INTEL4004)問世以來微機的發展突飛猛進。微機系統的核心部件為CPU,因此我們主要以CPU的發展、演變過程為線索,來介紹微機系統的發展過程,主要以Intel公司的CPU為主線。 第一代:4位及低檔8位微處理器 2; 1971年,Intel公司推出第一片4位微處理器Intel4004,以其為核心組成了一台高級袖珍計算機。隨後出現的Intel4040,是第一片通用的4位微處理器。 2; 1972年,Intel8008,8位,集成度約2000管/片,時鍾頻率1MHz。 第二代:中、低檔8位微處理器 2; 1973年~1974年,Intel8008、M6800、Rockwell6502,8位,集成度5000管/片,時鍾頻率2~4MHz。 這一時期,微處理器的設計和生產技術已經相當成熟,組成微機系統的其它部件也愈來愈齊全,系統朝著提高集成度、提高功能與速度,減少組成系統所需的晶元數量的方向發展。 第三代:高、中檔8位微處理器 2; 1975年~1976年,Z-80,Intel8085,8位,時鍾頻率2~4MHz,集成度約10000管/片,還出現了一系列單片機。 第四代:16及低檔32位微處理器 2; 1978年,Intel首次推出16位處理器8086(時鍾頻率達到4~8MHz),8086的內部和外部數據匯流排都是16位,地址匯流排為20位,可直接訪問1MB內 存單元。 2; 1979年,Intel又推出8086的姊妹晶元8088(時鍾頻率達到48MHz),集成度達到2萬~6萬管/片。它與8086不同的是外部數據匯流排為8位(地址線為20位)。 2; 1982年,Intel推出了80286(時鍾頻率為10MHz),該晶元仍然為16位結構,但地址匯流排擴展到24位,可訪問16MB內存,其工作頻率也較8086提高了許多。80286向後兼容8086的指令集和工作模式(實模式),並增加了部分新指令和一種新的工作模式——保護模式。 2; 1985年,Intel又推出了32位處理器80386(時鍾頻率為20MHZ),該晶元的內外部數據線及地址匯流排都是32位,可訪問4GB內存,並支持分頁機制。除了實模式和保護模式外,80386又增加了一種「虛擬8086」的工作模式,可以在操作系統控制下模擬多個8086同時工作。 2; 1989年推出了80486(時鍾頻率為30~40MHz),集成度達到15萬~50萬管/片(168個腳),甚至上百萬管/片,因此被稱為超級微型機。早期的80486相當於把80386和完成浮點運算的數學協處理器80387以及8kB的高速緩存集成到一起,這種片內高速緩存稱為一級(L1)緩存,80486還支持主板上的二級(L2)緩存。後期推出的80486 DX2首次引入了倍頻的概念,有效緩解了外部設備的製造工藝跟不上CPU主頻發展速度的矛盾。 第五代:高檔32位微處理器 2; 1993年,Intel公司推出了新一代高性能處理器Pentium(奔騰),Pentium最大的改進是它擁有超標量結構(支持在一個時鍾周期內執行一至多條指令),且一級緩存的容量增加到了16kB,這些改進大大提升了CPU的性能,使得<span lang=E
Ⅵ 微型計算機系統的發展
計算機從誕生到現在不過半個多世紀, 但是它的發展速度是驚人的, 它把人 類的計算速度提高了數千億倍。計算機的發展先後經歷了電子管、 晶體管、 大規模集成電路和超大規模集成電路為主要器件的四個發展時代。 預計在不久的將來,將誕生以超導器件、電子模擬、集成光路等技術支撐的第五代計算機。計算機總的發展趨勢是朝著巨型化、微型化、網路化、智能化、多媒體化發展。1946年2月,在美國賓夕法尼亞大學誕生了世界上第一台計算機ENIAC(Electronic Numerical Integrator and Computer)。這台計算機由電子管組成,每秒可進行5000次的加法運算,而且採用了著名的數學家馮·諾依曼(Von.Neumann,美籍匈牙利人) 的「存儲程序」 的設計思想, 即採用二進制計算、存儲程序並在程序控制下自動執行的思想。以後,這種模式的計算機被稱為「馮 · 諾依曼機」 。 計算機發展至今, 一直沿用「存儲程序」 的思想。這是計算機科學發展史上的一個重要里程碑,它奠定了計算機發展的科學基礎。 1、中央處理器
中央處理器(Central Processing Unit,CPU)製作在一塊集成電路晶元上,也稱為微處理器(Micro Processor Unit,MPU)。計算機利用中央處理器處理數據,利用存儲器來存儲數據。CPU是計算機硬體的核心,主要包括運算器和控制器兩大部分,控制著整個計算機系統的工作。計算機的性能主要取決於CPU的性能。
運算器又稱為算術邏輯單元(Arithmetic Logic Unit,ALU)。操作時,控制器從存儲器取出數據,運算器進行算術運算或邏輯運算,並把處理後的結果送回存儲器。
控制器的主要作用是使整個計算機能夠自動的運行。執行程序時,控制器從主存中取出相應的指令數據,然後向其他功能部件發出指令所需的控制信號,完成相應的操作,再從主存中取出下一條指令執行,如此循環,直到程序完成。
2、存儲器
存儲器是計算機中的記憶存儲部件。存儲器既能夠接受和保存數據,又能夠向其他部件提供數據。存儲器分為內存和外存兩大類。
在計算機系統中,習慣上把內存、CPU合稱為主機。
(1)內存
內存儲器分為隨機讀/寫存儲器(Random Access Memory,RAM)、只讀存儲器(Read OnlyMemory,ROM)和高速緩沖存儲器(Cache)三類。內存一般指的是RAM。
(2)外存儲器
外存儲器主要包括硬碟、光碟、U盤和移動硬碟等。
3、輸入設備
輸入設備主要包括鍵盤、滑鼠等。
(1)鍵盤
鍵盤是計算機的標准輸入設備。通過鍵盤可以向計算機輸入各種指令、程序、數據等。
(2)滑鼠
滑鼠是微機的標准輸入設備,使用滑鼠可以方便地對圖形界面中的圖標和菜單等進行可視化操作。目前微機上使用的主要是第2代光電滑鼠,採用即插即拔的USB介面。
4、輸出設備
輸出設備主要有顯示器和列印機等。
(1)顯示器
顯示器是微機必備的「軟拷貝」輸出設備,比較常見的是陰極射線管顯示器(Cathode Ray Tube,CRT)和液晶顯示器(Liquid Crystal Display,LCD)
(2)列印機
列印機是微機的常用的「硬拷貝」輸出設備。在顯示器上輸出的圖像只能當時查看。為了將圖像長久保存,就需要使用列印機輸出。 硬體是組成計算機的基礎,軟體才是計算機的靈魂。計算機的硬體系統上只有安裝了軟體後,才能發揮其應有的作用。使用不同的軟體,計算機可以完成各種不同的工作。配備上軟體的計算機才成為完整的計算機系統。
針對某一需要而為計算機編制的指令序列成為程序。程序連同有關的說明文檔構成軟體。微型計算機系統的軟體分為兩大類,即系統軟體和應用軟體。系統軟體支持機器運行,應用軟體滿足業務需求。
1、系統軟體
系統軟體是指由計算機生產廠或「第三方」為管理計算機系統的硬體和支持應用軟體運行而提供的基本軟體,最常用的有操作系統、程序設計語言、資料庫管理系統、聯網及通信軟體等。
(1)操作系統
操作系統(Operating System,OS)是微機最基本、最重要的系統軟體。它負責管理計算機系統的各種硬體資源(例如CPU、內存空間,磁碟空間、外部設備等),並且負責將用戶對機器的管理命令轉換為機器內部的實際操作。例如WIndowsXP、Windows2000等。
(2)程序設計語言
計算機語言分為機器語言、匯編語言和高級語言。機器語言的運算效率是所有語言中最高的;匯編語言是「面向機器」的語言;高級語言不能直接控制計算機的各種操作,編譯程序產生的目標程序往往比較龐大、程序難以優化,所以運行速度較慢。
(3)資料庫管理系統
資料庫管理系統(DateBase Management System,DBMS)是安裝在操作系統之上的一種對數據進行統一管理的系統軟體,主要用於建立、使用和維護資料庫。微機上比較著名的資料庫管理系統有Access、Oracle、SQL server、Sybase等。Access是小型資料庫管理系統,適合於一般的商務活動,而SQL Server是大型資料庫管理系統,適用於中小企業的業務應用。
(4)聯網和網路管理系統軟體
網路上的信息資源要比單機上豐富得多,因此出現了專門用於聯網和網路管理系統軟體。例如著名的網路操作系統NetWare、UNIX、Linux、WindowsNT等。
2、應用軟體
應用軟體是指除了系統軟體以外,利用計算機為解決某類問題而設計的程序的集合,主要包括信息管理軟體、輔助設計軟體、實時控制軟體等。
(1)辦公軟體
微型計算機的一個很重要的工作就是日常辦公,微軟開發的Office2003辦公軟體包含WOrd文字處理軟體、電子表格Excel、演示文稿PowerPoint和資料庫管理系統Access等組件。這些組件協同使用,基本可以滿足日常辦公的也許需要。
(2)工具軟體
常用的工具軟體有壓縮/解壓縮工具、殺毒工具、下載工具、數據備份與恢復工具、多媒體播放工具以及網路聊天工具等。例如Winrar、Winzip、Rising、Ghost、Thunder、QQ等。
(3)信息管理軟體
信息管理軟體用於對信息進行輸入、存儲、修改、檢索等,例如工資管理軟體、人事管理軟體、倉庫管理軟體等。這種軟體一般需要資料庫管理系統進行後台支持,使用可視化高級語言進行前台開發,形成客戶機/伺服器(Cliet/Server,C/S)或瀏覽器/伺服器(Browse/Server,B/S)體系結構,簡稱MIS(Management Information System,MIS)。
(4)輔助設計軟體
輔助設計軟體用於高效地繪制、修改工程圖紙,進行設計中的常規計算,幫助用戶尋求好的設計方案,例如二維繪圖設計、三維幾何造型設計等。這種軟體一般需要AutoCAD和程序設計語言、資料庫管理系統等的支持。
(5)實時控制軟體
實施控制軟體用於隨時獲取生產裝置、飛行器等的運行狀態信息,並以此為依據按預定的方案對其實施自動或半自動控制。這種軟體需要匯編語言或C語言的支持。
Ⅶ 微機繼電保護測試儀的發展歷史
微機繼電保護測試儀是一個新型智能化測試儀器
可對各類型電壓、電流、頻率、功率、阻抗、諧波、差動、同期等繼電器以手動或自動方式進行測試,可模擬各種故障類型進行距離、零序保護裝置定值校驗和保護裝置的整組試驗,可自動掃描微機和數字型變壓器、發變組差動保護比率制動曲線,具備GPS觸發功能。
繼電保護微機型測試裝置是保證電力系統安全可靠運行的一種重要測試工具。隨著計算機技術、微電子技術、電力電子技術的飛速發展,應用最新技術成果不斷推出新型高性能微機繼電保護測試裝置是技術進步的必然趨勢。繼電保護測試裝置是保證電力系統安全可靠運行的一種重要測試工具。隨著現代電力系統規模的不斷擴大,對電力系統運行和管理的可靠性、高效性要求的不斷提高,繼電保護人員的測試工作變得更加頻繁和復雜。在計算機技術、微電子技術、電力電子技術飛速發展的今天,應用最新技術成果不斷推出新型高性能繼電保護測試儀是技術進步的必然趨勢,也是時代賦予我們的責任。繼電保護測試儀是在參照中華人民共和國電力行業標准《繼電保護微機型試驗裝置技術條件》(DL/T 624 ─ 1997)的基礎上,充分使用現代先進的微電子技術和器件實現的一種新型小型化微機繼電保護測試儀。它採用可單機獨立運行,亦可聯接其它電腦運行的先進結構,主機內置高性能工控機和高速數字信號處理器,真16位DAC模塊、新型模塊式高保真大功率功放,自帶TFT真彩色LCD顯示器和嵌入式微機鍵盤。既可以單機獨立操作,也可以連接筆記本電腦操作。操作功能強大,體積小,精度高。既具有大型測試儀優越的性能、先進的功能,又具有小型測試儀小巧靈活、操作簡便、可靠性高。
GYWJB-3微機繼電保護測試儀 由於是六相電流,八相電壓輸出,可方便對備自投裝置和微機差動保護裝置進行試驗、針對性各類繼電器校驗程序,強大的功能測試軟體更能提供多種校驗和搜索方式的成套微機保護和自動裝置的自動試驗程序:線路保護、差動保護、阻抗保護、低周、同期、備自投等。
產品特性
各類故障模擬程序,能真實模擬和回放現場實際的各類故障、暫態過程、系統振盪、重合閘動作行為。
技術參數
交流電流源
單相輸出:6×30A
六相並聯:180A
最大輸出功率:≥300VA/相
各相輸出電流幅值、頻率和相位可以獨立調節
輸出精度:
0.1A~0.5A:±10mA
0.5A~10A:±0.1%
10A~30A:±0.2%
分辨力:
0.1A~10A:1mA
10A~30A:10mA
連續輸出時間:
在0~5A 范圍內,能連續輸出
在5A~10A 范圍內,連續輸出時間 ≥70秒
在10A~20A 范圍內,連續輸出時間 ≥15秒
在20A~30A 范圍內,連續輸出時間 ≥5秒
交流電壓源
單相輸出:8×120V
最大輸出功率:≥60VA/相
六相有共用中性點的電壓源
各相輸出幅度、頻率、相位可以獨立調節
輸出精度:
1V~5V:±10mV
5V~120V:±0.1%
l 分辨力:
1V~10V:1mV
10V~120V:10mV
直流電流源
單相輸出:-10A~+10A
最大輸出功率:≥200VA
輸出精度:
±0.5A~±1A:±10mA
±1A~±10A:±0.2%
分辨力:
±0.5A~±1A:1mA
±1A~±10A:10mA
直流電壓源
單相輸出:-150V~+150V
最大輸出功率:≥100VA
輸出精度:
±1V~±10V:±10mV
±10V~±150V:±0.2%
分辨力:
±1V~±10V:1mV
±10V~±150V:10mV
交流電壓、電流源角度
相角范圍:0°~ 360°
相角精度:±0.2°
相角分辨力:0.1°
交流電壓、電流源頻率
頻率范圍:1~2000Hz
頻率精度:
1Hz~100Hz:±0.001Hz
100Hz~2000Hz:±0.01Hz
頻率分辨力:1mHz
能輸出2~40次任意幅值的諧波
Ⅷ 微機的發展歷史
計算機的歷史
現代計算機的誕生和發展 現代計算機問世之前,計算機的發展經歷了機械式計算機、機電式計算機和萌芽期的電子計算機三個階段。
早在17世紀,歐洲一批數學家就已開始設計和製造以數字形式進行基本運算的數字計算機。1642年,法國數學家帕斯卡採用與鍾表類似的齒輪傳動裝置,製成了最早的十進制加法器。1678年,德國數學家萊布尼茲製成的計算機,進一步解決了十進制數的乘、除運算。
英國數學家巴貝奇在1822年製作差分機模型時提出一個設想,每次完成一次算術運算將發展為自動完成某個特定的完整運算過程。1884年,巴貝奇設計了一種程序控制的通用分析機。這台分析機雖然已經描繪出有關程序控制方式計算機的雛型,但限於當時的技術條件而未能實現。
巴貝奇的設想提出以後的一百多年期間,電磁學、電工學、電子學不斷取得重大進展,在元件、器件方面接連發明了真空二極體和真空三極體;在系統技術方面,相繼發明了無線電報、電視和雷達……。所有這些成就為現代計算機的發展准備了技術和物質條件。
與此同時,數學、物理也相應地蓬勃發展。到了20世紀30年代,物理學的各個領域經歷著定量化的階段,描述各種物理過程的數學方程,其中有的用經典的分析方法已根難解決。於是,數值分析受到了重視,研究出各種數值積分,數值微分,以及微分方程數值解法,把計算過程歸結為巨量的基本運算,從而奠定了現代計算機的數值演算法基礎。
社會上對先進計算工具多方面迫切的需要,是促使現代計算機誕生的根本動力。20世紀以後,各個科學領域和技術部門的計算困難堆積如山,已經阻礙了學科的繼續發展。特別是第二次世界大戰爆發前後,軍事科學技術對高速計算工具的需要尤為迫切。在此期間,德國、美國、英國部在進行計算機的開拓工作,幾乎同時開始了機電式計算機和電子計算機的研究。
德國的朱賽最先採用電氣元件製造計算機。他在1941年製成的全自動繼電器計算機Z-3,已具備浮點記數、二進制運算、數字存儲地址的指令形式等現代計算機的特徵。在美國,1940~1947年期間也相繼製成了繼電器計算機MARK-1、MARK-2、Model-1、Model-5等。不過,繼電器的開關速度大約為百分之一秒,使計算機的運算速度受到很大限制。
電子計算機的開拓過程,經歷了從製作部件到整機從專用機到通用機、從「外加式程序」到「存儲程序」的演變。1938年,美籍保加利亞學者阿塔納索夫首先製成了電子計算機的運算部件。1943年,英國外交部通信處製成了「巨人」電子計算機。這是一種專用的密碼分析機,在第二次世界大戰中得到了應用。
1946年2月美國賓夕法尼亞大學莫爾學院製成的大型電子數字積分計算機(ENIAC),最初也專門用於火炮彈道計算,後經多次改進而成為能進行各種科學計算的通用計算機。這台完全採用電子線路執行算術運算、邏輯運算和信息存儲的計算機,運算速度比繼電器計算機快1000倍。這就是人們常常提到的世界上第一台電子計算機。但是,這種計算機的程序仍然是外加式的,存儲容量也太小,尚未完全具備現代計算機的主要特徵。
新的重大突破是由數學家馮·諾伊曼領導的設計小組完成的。1945年3月他們發表了一個全新的存儲程序式通用電子計算機方案—電子離散變數自動計算機(EDVAC)。隨後於1946年6月,馮·諾伊曼等人提出了更為完善的設計報告《電子計算機裝置邏輯結構初探》。同年7~8月間,他們又在莫爾學院為美國和英國二十多個機構的專家講授了專門課程《電子計算機設計的理論和技術》,推動了存儲程序式計算機的設計與製造。
1949年,英國劍橋大學數學實驗室率先製成電子離散時序自動計算機(EDSAC);美國則於1950年製成了東部標准自動計算機(SFAC)等。至此,電子計算機發展的萌芽時期遂告結束,開始了現代計算機的發展時期。
在創制數字計算機的同時,還研製了另一類重要的計算工具——模擬計算機。物理學家在總結自然規律時,常用數學方程描述某一過程;相反,解數學方程的過程,也有可能採用物理過程模擬方法,對數發明以後,1620年製成的計算尺,己把乘法、除法化為加法、減法進行計算。麥克斯韋巧妙地把積分(面積)的計算轉變為長度的測量,於1855年製成了積分儀。
19世紀數學物理的另一項重大成就——傅里葉分析,對模擬機的發展起到了直接的推動作用。19世紀後期和20世紀前期,相繼製成了多種計算傅里葉系數的分析機和解微分方程的微分分析機等。但是當試圖推廣微分分析機解偏微分方程和用模擬機解決一般科學計算問題時,人們逐漸認識到模擬機在通用性和精確度等方面的局限性,並將主要精力轉向了數字計算機。
電子數字計算機問世以後,模擬計算機仍然繼續有所發展,並且與數字計算機相結合而產生了混合式計算機。模擬機和混合機已發展成為現代計算機的特殊品種,即用在特定領域的高效信息處理工具或模擬工具。
20世紀中期以來,計算機一直處於高速度發展時期,計算機由僅包含硬體發展到包含硬體、軟體和固件三類子系統的計算機系統。計算機系統的性能—價格比,平均每10年提高兩個數量級。計算機種類也一再分化,發展成微型計算機、小型計算機、通用計算機(包括巨型、大型和中型計算機),以及各種專用機(如各種控制計算機、模擬—數字混合計算機)等。
計算機器件從電子管到晶體管,再從分立元件到集成電路以至微處理器,促使計算機的發展出現了三次飛躍。
在電子管計算機時期(1946~1959),計算機主要用於科學計算。主存儲器是決定計算機技術面貌的主要因素。當時,主存儲器有水銀延遲線存儲器、陰極射線示波管靜電存儲器、磁鼓和磁心存儲器等類型,通常按此對計算機進行分類。
到了晶體管計算機時期(1959~1964),主存儲器均採用磁心存儲器,磁鼓和磁碟開始用作主要的輔助存儲器。不僅科學計算用計算機繼續發展,而且中、小型計算機,特別是廉價的小型數據處理用計算機開始大量生產。
1964年,在集成電路計算機發展的同時,計算機也進入了產品系列化的發展時期。半導體存儲器逐步取代了磁心存儲器的主存儲器地位,磁碟成了不可缺少的輔助存儲器,並且開始普遍採用虛擬存儲技術。隨著各種半導體只讀存儲器和可改寫的只讀存儲器的迅速發展,以及微程序技術的發展和應用,計算機系統中開始出現固件子系統。
20世紀70年代以後,計算機用集成電路的集成度迅速從中小規模發展到大規模、超大規模的水平,微處理器和微型計算機應運而生,各類計算機的性能迅速提高。隨著字長4位、8位、16位、32位和64位的微型計算機相繼問世和廣泛應用,對小型計算機、通用計算機和專用計算機的需求量也相應增長了。
微型計算機在社會上大量應用後,一座辦公樓、一所學校、一個倉庫常常擁有數十台以至數百台計算機。實現它們互連的局部網隨即興起,進一步推動了計算機應用系統從集中式系統向分布式系統的發展。
在電子管計算機時期,一些計算機配置了匯編語言和子程序庫,科學計算用的高級語言FORTRAN初露頭角。在晶體管計算機階段,事務處理的COBOL語言、科學計算機用的ALGOL語言,和符號處理用的LISP等高級語言開始進入實用階段。操作系統初步成型,使計算機的使用方式由手工操作改變為自動作業管理。
進入集成電路計算機發展時期以後,在計算機中形成了相當規模的軟體子系統,高級語言種類進一步增加,操作系統日趨完善,具備批量處理、分時處理、實時處理等多種功能。資料庫管理系統、通信處理程序、網路軟體等也不斷增添到軟體子系統中。軟體子系統的功能不斷增強,明顯地改變了計算機的使用屬性,使用效率顯著提高。
在現代計算機中,外圍設備的價值一般已超過計算機硬體子系統的一半以上,其技術水平在很大程度上決定著計算機的技術面貌。外圍設備技術的綜合性很強,既依賴於電子學、機械學、光學、磁學等多門學科知識的綜合,又取決於精密機械工藝、電氣和電子加工工藝以及計量的技術和工藝水平等。
外圍設備包括輔助存儲器和輸入輸出設備兩大類。輔助存儲器包括磁碟、磁鼓、磁帶、激光存儲器、海量存儲器和縮微存儲器等;輸入輸出設備又分為輸入、輸出、轉換、、模式信息處理設備和終端設備。在這些品種繁多的設備中,對計算機技術面貌影響最大的是磁碟、終端設備、模式信息處理設備和轉換設備等。
新一代計算機是把信息採集存儲處理、通信和人工智慧結合在一起的智能計算機系統。它不僅能進行一般信息處理,而且能面向知識處理,具有形式化推理、聯想、學習和解釋的能力,將能幫助人類開拓未知的領域和獲得新的知識。
計算技術在中國的發展 在人類文明發展的歷史上中國曾經在早期計算工具的發明創造方面寫過光輝的一頁。遠在商代,中國就創造了十進制記數方法,領先於世界千餘年。到了周代,發明了當時最先進的計算工具——算籌。這是一種用竹、木或骨製成的顏色不同的小棍。計算每一個數學問題時,通常編出一套歌訣形式的演算法,一邊計算,一邊不斷地重新布棍。中國古代數學家祖沖之,就是用算籌計算出圓周率在3.1415926和3.1415927之間。這一結果比西方早一千年。
珠算盤是中國的又一獨創,也是計算工具發展史上的第一項重大發明。這種輕巧靈活、攜帶方便、與人民生活關系密切的計算工具,最初大約出現於漢朝,到元朝時漸趨成熟。珠算盤不僅對中國經濟的發展起過有益的作用,而且傳到日本、朝鮮、東南亞等地區,經受了歷史的考驗,至今仍在使用。
中國發明創造指南車、水運渾象儀、記里鼓車、提花機等,不僅對自動控制機械的發展有卓越的貢獻,而且對計算工具的演進產生了直接或間接的影響。例如,張衡製作的水運渾象儀,可以自動地與地球運轉同步,後經唐、宋兩代的改進,遂成為世界上最早的天文鍾。
記里鼓車則是世界上最早的自動計數裝置。提花機原理劉計算機程序控制的發展有過間接的影響。中國古代用陽、陰兩爻構成八卦,也對計算技術的發展有過直接的影響。萊布尼茲寫過研究八卦的論文,系統地提出了二進制算術運演算法則。他認為,世界上最早的二進製表示法就是中國的八卦。
經過漫長的沉寂,新中國成立後,中國計算技術邁入了新的發展時期,先後建立了研究機構,在高等院校建立了計算技術與裝置專業和計算數學專業,並且著手創建中國計算機製造業。
1958年和1959年,中國先後製成第一台小型和大型電子管計算機。60年代中期,中國研製成功一批晶體管計算機,並配製了ALGOL等語言的編譯程序和其他系統軟體。60年代後期,中國開始研究集成電路計算機。70年代,中國已批量生產小型集成電路計算機。80年代以後,中國開始重點研製微型計算機系統並推廣應用;在大型計算機、特別是巨型計算機技術方面也取得了重要進展;建立了計算機服務業,逐步健全了計算機產業結構。
在計算機科學與技術的研究方面,中國在有限元計算方法、數學定理的機器證明、漢字信息處理、計算機系統結構和軟體等方面都有所建樹。在計算機應用方面,中國在科學計算與工程設計領域取得了顯著成就。在有關經營管理和過程式控制制等方面,計算機應用研究和實踐也日益活躍。
Ⅸ 簡述自動化的發展歷程。
自動化技術的發展歷史,大致可以劃分為自動化技術形成、局部自動化和綜合自動化三個時期。
社會的需要是自動化技術發展的動力。自動化技術是緊密圍繞著生產、軍事設備的控制以及航空航天工業的需要而形成和發展起來的。1788年,J.瓦特為了解決工業生產中提出的蒸汽機的速度控制問題,把離心式調速器與蒸汽機的閥門連接起來,構成蒸汽機轉速調節系統,使蒸汽機變為既安全又實用的動力裝置。瓦特的這項發明開創了自動調節裝置的研究和應用。在解決隨之出現的自動調節裝置的穩定性的過程中,數學家提出了判定系統穩定性的判據,積累了設計和使用自動調節器的經驗。
20世紀40年代是自動化技術和理論形成的關鍵時期,一批科學家為了解決軍事上提出的火炮控制、魚雷導航、飛機導航等技術問題,逐步形成了以分析和設計單變數控制系統為主要內容的經典控制理論與方法。機械、電氣和電子技術的發展為生產自動化提供了技術手段。1946年,美國福特公司的機械工程師D.S.哈德首先提出用自動化一詞來描述生產過程的自動操作。1947年建立第一個生產自動化研究部門。1952年J.迪博爾德第一本以自動化命名的《自動化》一書出版,他認為「自動化是分析、組織和控制生產過程的手段「。實際上,自動化是將自動控制用於生產過程的結果。50年代以後,自動控製作為提高生產率的一種重要手段開始推廣應用。它在機械製造中的應用形成了機械製造自動化;在石油、化工、冶金等連續生產過程中應用,對大規模的生產設備進行控制和管理,形成了過程自動化。電子計算機的推廣和應用,使自動控制與信息處理相結合,出現了業務管理自動化。
50年代末到60年代初,大量的工程實踐,尤其是航天技術的發展,涉及大量的多輸入多輸出系統的最優控制問題,用經典的控制理論已難於解決,於是產生了以極大值原理、動態規劃和狀態空間法等為核心的現代控制理論。現代控制理論提供了滿足發射第一顆人造衛星的控制手段,保證了其後的若干空間計劃(如導彈的制導、航天器的控制)的實施。控制工作者從過去那種只依據傳遞函數來考慮控制系統的輸入輸出關系,過渡到用狀態空間法來考慮系統內部結構,是控制工作者對控制系統規律認識的一個飛躍。
60年代中期以後,現代控制理論在自動化中的應用,特別是在航空航天領域的應用。產生一些新的控制方法和結構,如自適應和隨機控制、系統辨識、微分對策、分布參數系統等。與此同時,模式識別和人工智慧也發展起來,出現了智能機器人和專家系統。現代控制理論和電子計算機在工業生產中的應用,使生產過程式控制制和管理向綜合最優化發展。
70年代中期,自動化的應用開始面向大規模、復雜的系統,如大型電力系統、交通運輸系統、鋼鐵聯合企業、國民經濟系統等,它不僅要求對現有系統進行最優控制和管理,而且還要對未來系統進行最優籌劃和設計,運用現代控制理論方法已不能取得應有的成效,於是出現了大系統理論與方法。80年代初,隨著計算機網路的迅速發展,管理自動化取得較大進步,出現了管理信息系統、辦公自動化、決策支持系統。與此同時,人類開始綜合利用感測技術、通信技術、計算機、系統控制和人工智慧等新技術和新方法來解決所面臨的工廠自動化、辦公自動化、醫療自動化、農業自動化以及各種復雜的社會經濟問題。研製出柔性製造系統、決策支持系統、智能機器人和專家系統等高級自動化系統。
自動化技術的發展歷史是一部人類以自己的聰明才智延伸和擴展器官功能的歷史,自動化是現代科學技術和現代工業的結晶,它的發展充分體現了科學技術的綜合作用。