⑴ 哈伯不懈合成氨
完成氮的固定
19世紀中期,人們對植物生長的機理已經有了一定認識,越來越認識到氮元素對於生物的重要作用。氮是一切生物蛋白質組成中不可缺少的元素,因而它在自然界中對人類以及其他生物的生存有很重要的意義。自然界中氮的總含量約佔地殼全部質量的0.04%,大部分是以游離狀態存在於大氣中,空氣中含有約78%(體積分數)的氮氣,是空氣的主要組成部分。但是,不論是人還是其他生物(少數生物除外),都不能直接從空氣中吸收這種游離狀態的氮作為養料。植物只能靠根部從土壤中吸收含氮的化合物,轉變成蛋白質;人和動物只能攝食各種植物和動物體內的蛋白質,補充需要。因此生物從自然界索取氮元素作為自身營養的問題最終歸結為植物由土壤吸收含氮化合物的問題。
土壤中含氮化合物主要來源一是動物的排泄物或動植物的遺體進入土壤後轉變形成;二是雷電促使空氣中的氮氣和氧氣化合,形成氮的氧化物,溶於雨水中落進土壤;三是某些細菌,例如與豆科植物共生的根瘤菌,吸收空氣中的氮氣而生成一些含氮的化合物。但是這些來源遠遠不能滿足大規模農業生產的需要,於是如何使大氣中游離的氮轉變成能為植物吸收的氮的化合物,也就是氮的固定,成為化學家們探索的課題。
這個課題在19世紀末首先取得突破。按發明時間先後,第一項是製取氰氨化鈣(CaNCN)。1898年,德國夏洛登堡(Charlottenburg)工業學院教授弗蘭克(Adolf Frank,1834-1916)和他的助手羅特(F.Rother)、卡羅(N.Caro)博士發現碳化鋇在氮氣中加熱後生成氰化鋇和氰氨化鋇,接著發現碳化鈣在氮氣中加熱到1000℃以上也能生成氰氨化鈣:
CaC+N2══CaNCN+C弗蘭克於1900年發現以過熱水蒸氣水解氰氨化鈣可產生氨:
CaNCN+3H2O══CaCO3+2NH3↑這樣,空氣中游離的氮被固定成氰氨化鈣和氨的含氮化合物,均可用作肥料。於是1904年在德國建立了第一個工業生產裝置,1905年義大利也建起工廠,隨後在美國、加拿大相繼建廠。到1921年,氰氨化鈣的世界產量達每年50萬噸。但是從此以後停止建造新工廠,因為由氫和氮直接合成氨的工業興起了。
第二項是氮氣和氧氣直接化合,生成氮的氧化物,溶於水後生成硝酸和亞硝酸,但也很快被合成氨的工業排擠。
第三項就是將氫氣和氮氣直接合成氨。
氨氣,又稱阿摩尼亞(ammonia)氣。這個詞來自古埃及太陽神Ammon(也拼寫成Amon或Amen)。這是由於在古埃及Ammon神殿旁堆積著朝拜人騎的駱駝排泄的糞便和剩餘的供品,經過長時間變化釋放出來含氨的氣體。在自然界中任何一種含氮有機物在沒有空氣的情況下分解時就產生氨。這種分解作用是由於受熱或受細菌的作用發生的。在馬廄里和下水道里可以檢查到刺鼻臭味的氨。
1774年英國化學家普里斯特利(Joseph Piestley,1733-1804)加熱氯化銨(NH4Cl)和氫氧化鈣(Ca(OH)2)的混合物,利用排汞取氣法,首先收集到氨氣,稱它為鹼空氣(alkalineair)。他已認識到氨氣的水溶液具有鹼性。由於氨易溶於水,所以採用排汞取氣法收集。當時他把一切氣體物質都稱為「空氣」。
1784年法國化學家貝托萊(Claude Louis Berthollet,1748-1822)分析了氨氣,確定它是由氮和氫組成的。
最初的氨是來自煉焦工業副產的氨水,因為煤裡面含有2%的氮,在煉焦過程中,一部分氮(約20%~25%)轉變成氨,含在煤氣中,用水把它洗出來,就是粗氨水,含氨不過1%,人們直接把含氨的煤氣通入硫酸,製得硫酸銨((NH4)2SO4),作為肥料。
自從19世紀以來,很多化學家試圖由氮氣和氫氣合成氨,採用催化劑、電弧、高溫、高壓等手段進行試驗,一直未能成功,以致有人認為氮氣和氫氣合成氨是不可能實現的。這是因為氮氣和氫氣化合成氨是可逆反應:
直到19世紀,在化學熱力學、化學動力學和催化劑等這些學科取得一定進展後,才使一些化學家在正確理論指導下,對合成氨的反應進行了有效的研究。
取得成功的是德國化學家哈伯(Fritz Haber,1868-1934)。他在1901-1911年間對氮氣和氫氣直接合成氨進行了不懈地研究,哈伯和他的學生勒羅西尼奧爾(R.Le Rossignol)以及同事們進行了兩萬多次實驗。1904年,他曾在常壓和1000℃條件下將氮氣和氫氣通過鐵,獲得0.012%(體積分數)的氨產物。盡管產物中氨的濃度太低,缺乏經濟效益,但他卻沒有停止實驗。接著根據荷蘭化學家范特荷甫(Jacobus Henricus Van』t Hoff,1852-1911)制定的化學動力學方程,哈伯計算出合成氨反應在常壓和1000℃時的平衡常數,並按法國物理學家勒夏特列(Henry Louis Le Chatelier,1850-1936)提出的質量作用定律,計算出常壓和不同溫度下氨的平衡濃度,1907年又測定了大量合成氨反應平衡的實驗數據。他通過上述工作,認識到合成氨不可能達到像硫酸生產那樣高的轉化率,於是考慮採用反應氣體在高壓下循環加工的辦法,並從這個循環中不斷將生成的氨分離出去,再配合選用有效的催化劑以取得成功。1908年哈伯申請了最初的合成氨專利,首次提出對氨合成氣進行循環的意見,還提出在高壓氣體循環中實現熱能回收的措施。1909年他又申請用鋨和鈾—碳化鈾的混合物作為催化劑的專利;1910年5月他終於在實驗室取得可喜成果。最初用鋨作催化劑,在175千克力/厘米2壓強和550℃溫度下,在氮氣和氫氣反應後的混合氣體中得到8%的氨;以後又用鈾—碳化鈾作為催化劑,在125千克力/厘米2壓強和500℃溫度下獲得10%的氨。1910年5月18日他在德國卡爾斯魯厄(Karlsruhe)(他曾是這個城市工業學院的化學教授)自然科學討論會上發表演講,並展示高壓合成氨實驗裝置,宣告合成氨新工業的前途已經開拓。
賀炳昌。哈伯及世界上第一座合成氨廠。化學通報,1984(9)。
哈伯把成功的實驗運用到工業生產中,與德國聞名的巴迪舍苯胺和純鹼工廠(Badische Anilin and Soda Fabrik(BASF))的化學家博許(Carl Bosch,1874-1940)、拉佩(F.Lappe)、米塔赫(Alwin.Mittash,1869-1953)等人進行合作。博許製成合成氨工業必需的高壓設備;拉佩解決了高溫、高壓下機械方面的一系列難題;米塔赫研製成功用於工業合成氨的含少量三氧化二鋁和鉀鹼助催化的鐵催化劑。他們於1911年在德國路德維希港(Ludwig shafen)附近的奧堡(Oppau)建立起世界上第一座合成氨的工業裝置,設置氨的年生產能力為9000噸,1913年9月9日開工,從此完成了氮的人工固定。哈伯因此榮獲1918年諾貝爾化學獎,博許也榮獲1931年諾貝爾化學獎。
哈伯雖然創造了挽救千百萬飢餓生靈的方法,但卻又設計了一種致人於死地的可怕武器。1915年4月22日下年5時左右,第一次世界大戰爆發,德國將裝有氯氣的近6000個鋼瓶、約180噸氯氣打開散向面向守衛在比利時伊普爾城防線的加拿大盟軍和法裔阿爾及利亞軍隊,造成1.5萬人傷亡,其中5000人死亡,這是有史以來第一次把化學武器用於軍事進攻中,是哈伯策劃的。他的妻子伊梅瓦爾(Clara Immerwahr)是一位化學博士,曾懇求他放棄這項工作,遭到丈夫拒絕後用哈伯的手槍自殺。為此,哈伯遭到後人的譴責和唾罵。
⑵ 弗里茨·哈伯的學術成就
獲得編外講師職位後,哈伯開始從事電化學研究。他的第一項成果,是硝基苯的還原作用。這項研究,使他聲名鵲起。這時的哈伯,最擅長的仍是有機化學,但同時,他又將新學到的物理化學知識應用於有機化學中。蓋特曼(L.Gattermann)及其他的化學家,對硝基化合物的電化學還原反應進行過研究,獲得大量的不同還原態產物。當時的研究似乎表明,這些還原產物的性質和相對比例,取決於電解質的酸鹼度、電流密度、通電時間和金屬電極的性質。認為還原作用是由初生態氫引起的。但這種觀點,無法解釋初生態氫在活性上的巨大差異。1898年,哈伯確立了電極電勢的重要性,澄清了電化學中的一些錯誤認識。
按照能斯特(H. W. Nernst)理論,氣體的電極電勢由電極上氣體的有效濃度決定。哈伯認識到,電極電勢由陰陽兩極氣體活度的比值所決定。在1898年發表的關於硝基苯的電化學還原反應的論文中,哈伯首次提出電極電勢決定還原能力的觀點,認為電極電勢越高,還原劑的還原能力越強。早期的研究者通常用比較恆定的電流密度,逐漸增大陰極的電勢。哈伯認為,這樣相當於使用還原性逐漸增強的一系列化學還原劑,同時生成一系列主要還原產物。哈伯計劃在電解過程中改變電流,在電流密度-電極電勢曲線的轉折點下,保持被極化陰極的電勢恆定,這樣,釋放出的氫用來還原去極劑。為了從低的陰極電勢開始,逐步分離主要的還原產物,哈伯用氫超電勢低的鉑(有時用鎳)作電極。他認為,氫超電勢高的電極如鋅,會產生很強的還原反應。他採納勒金的建議,使用輔助電極測定和控制陰極的電勢,用薄壁毛細玻璃管將輔助電極和陰極相連,這樣就消除了通過電解液的電勢降。
他用鉑作陰極,在低電勢下電解硝基苯的鹼溶液,出乎原先的預料,得到主要產物是氧化偶氮苯。根據巴姆貝格(Barmberger)一系列有關硝基苯、亞硝基苯和苯胲還原的研究,哈伯證明電化學還原反應和普通的化學還原反應遵循同樣的步驟:RNO2(硝基苯)→RNO(亞硝基苯)→RNHOH(苯胲)→RNH2(苯胺),其它產物來源於副反應。氧化偶氮苯作為主要還原產物出現,是由於在鹼性溶液中,中間產物亞硝基苯和苯胲發生了去水反應:
RNO+ RNHOH=RNONR+H2O…………………………
哈伯證明,無論是普通化學反應還是電化學反應,都存在亞硝基苯和苯胲,亞硝基苯是一種比硝基苯更強的去極化劑,因此只能存在於極稀的溶液中。然而,通過偶氮染料固色,能夠檢測到亞硝基苯和苯胲。他還成功地通過硝基苯的電化學還原反應,制備大量的苯胲,該反應在弱鹼性緩沖溶液中進行,用適當高的電勢,以能夠瞬間還原亞硝基苯為苯胲,從而避免生成偶氮苯,但電勢又不能過高,以免進一步還原。他還探討了偶氮苯的生成,它也是硝基苯的一種電化學還原產物。氧化偶氮苯在強還原作用下只生成二苯肼。哈伯指出,硝基苯在鹼性溶液中按下列反應快速生成偶氮苯:
2RNO2+3RNHNHR=RNONR+3RNNR+3H2O…………
哈伯認為,在鹼性溶液中,用低氫超電勢的陰極電解硝基苯,主要產物是氧化偶氮苯;使用高氫超電勢的陰極電解硝基苯,還原作用更強,得到二苯肼,最終生成苯胺。
哈伯還研究了在酸性溶液中硝基苯的電解還原作用,發現反應(1)變得非常慢,但在強酸性溶液中,苯胲迅速轉變成對氨基苯酚,二苯肼轉變成聯苯胺,主產物有對氨基苯酚、聯苯胺和苯胺,比例由酸的濃度決定。
哈伯的成功,舉世注目,成為他在電解還原和氧化領域研究的極大推動力。1898年,在進入卡爾斯魯厄技術大學4年後,哈伯被提升為副教授,年僅30歲。同年,他的第一部著作《工業電化學的理論基礎》問世,進一步提高了他的聲譽。他已經建立了一個公認的電化學學派。這是他創造力最為旺盛的時期,但持續的超強度工作,損害了他的健康。他對工作的專注,達到忘我的境地。在早期的研究生涯中,他僅僅在他意氣相投的朋友小圈子中,尋找短暫的放鬆。和他交往的多是些教師、作家和藝術家,哈伯喜歡和他們一起高談闊論,但即使在這種場合,也不願讓自己的腦子休息。1902年,哈伯被德國本生學會作為代表派去參加美國電化學會年會,由此可以看出哈伯的聲譽。他出眾的才華和嚴謹的態度,給美國同行留下了深刻的印象。他在會所作的長篇報告,獲得了歐洲和美國化學家的好評。該報告於1903年發表在《德國電化學學報》,被認為是電化學工業史上具有永久價值的傑出文獻。 1904年,哈伯開始研究氨的平衡。當時,他擔任維也納馬古里(Margulies)兄弟的科學顧問,兄弟倆對新的工業固氮方法很有興趣。通過氮和氫的混合氣體,在催化劑的作用下,可以連續合成氨。但是,最大產率總是受到氨平衡的制約。哈伯決定首先研究這個問題。曾有化學家作過氮化鈣和氮化錳的還原和再生實驗,但由於需要高的溫度,表明鈣和錳這些金屬無法用做催化劑。1884年,拉姆塞(Ramsay)和 揚(Young)嘗試氨的熱合成法。他們發現,在800℃下,用鐵作催化劑,氨絕不會完全分解。於是,他們試圖利用其逆反應合成氨,可是根本得不到氨。通常認為,氮的化學性質極不活潑,只有在高溫下才能與氫化合,而實際上,高溫下氨的分解有非常徹底。
他的第一個探索實驗,是在1020℃下,以鐵作催化劑合成氨。雖然哈伯完全清楚高壓對氨合成有利,他還是選擇了一個大氣壓,因為需要的設備簡單。出乎哈伯的預想,實驗非常順利,第一次就實現了氨的平衡。然而,氨的濃度很低,在0.005%~0.012%之間,難以選擇一個最接近真實的數據。當時,他傾向於上限值,但後來的研究表明下限值才接近於真實值,高的產率可能是新制鐵催化劑的特殊作用。確定氨平衡狀態的最初目的達到了,他用這段話描述了他的實驗結果:「將反應管加熱到暗紅熱以上,在常壓下,不用催化劑,頂多隻有痕量的氨產生,即使極大地增大壓力,平衡位置依然不理想。在常壓下,使用催化劑,要獲得實際成功,溫度不能高於300℃。」看來直接合成氨作為工業固氮的基礎,似乎沒有多大的希望。哈伯放下這個問題,終止了和馬古里兄弟的合作。1906年,能斯特在考察氣體平衡的實驗數據時,發現在氨的個案中,哈伯的數據和熱定理計算值之間存在很大的差異。於是,能斯特在高壓下(50個大氣壓),重新測定氨的平衡數據,使用高壓的目的是為了提高氨的濃度,從而降低實驗誤差。能斯特首次通過加壓合成了氨。他得到的氨比哈伯的數據少得多,和理論值比較接近,如在1000℃時,理論值0.0045%,能斯特0.0032%,哈伯0.012%。1906年秋,能斯特在給哈伯的信中談到了這一情況。於是,哈伯和羅塞格爾(Le Rossignol)用原來的方法,在一個大氣壓下重新測定氨的平衡數據,實驗非常精細,結果與先前的數值很吻合,如在1000℃時,新值為0.0048%,和原來測定的下限0.005%接近。同時證明如能斯特堅持的那樣,哈伯最初的近真值0.012%的確過高。哈伯與能斯特實驗數據的差異,大大縮小了,但沒有完全消除。1907年德國本生學會的會議上,能斯特報告了他的壓力實驗。在討論過程中,哈伯宣布撤回原先0.012%這一估值,並公布了新的數值。哈伯的數值依然比能斯特的高50%左右。能斯特拒絕承認哈伯新測定值的精確性,認為在一個大氣壓下,氨在平衡混合物體系中的濃度很低,建議哈伯應該在高壓下進行研究,以消除誤差來源。能斯特認為自己的數據才值得信賴,與熱定理相吻合。
哈伯堅信自己數據的精確性,視能斯特的觀點為自己的奇恥大辱,覺得自己的榮譽受到損害。哈伯和羅塞格爾立即對氨的平衡重新進行精確的測定。這次,是在30個大氣壓下進行實驗。他們的設備非常簡單,但能極好地滿足實驗目的。通過氨的熱分解,得到氮和氫的混合物,將其通過裝有鐵或錳催化劑的厚壁石英管。然後,平衡混合物被迅速移走,進行冷卻分析。哈伯根據新數據導出的自由能方程表明,氨的產率能夠高到適用於工業目的,只是條件苛刻,不易達到。例如,在600℃,200個大氣壓下,氨的轉化率達8%。但當時壓縮機所能達到的最大壓強也就是200個大氣壓,還沒有大規模的化學操作使用過如此高的壓力,而且最好的催化劑(鐵、錳、鎳)在700℃時活性大大降低。因此,如果克服了催化劑和高壓的障礙,無疑將開辟一條工業合成氨的光明之路,固氮的問題也就迎刃而解。哈伯接受了這個挑戰,因為,他有親密的理想合作夥伴羅塞格爾的鼎力相助。高壓技術不久在卡爾斯魯厄實驗室推廣使用,並得到羅塞格爾的改進。羅塞格爾心靈手巧,一流的實驗技能,有口皆碑。研究工作開始於1908年,他們設計製造了一種轉化器,它安裝在鋼制的高壓彈中,在200個大氣壓下能正常運轉。萬事皆備,只欠找到一種活性更高的催化劑。經過長時間探索,發現在550℃以下,鋨具有高的催化活性,可惜鋨太稀少。後來證明鈾有同樣高的催化活性。從根本上講,問題已經得到解決。使用新的裝置,鈾做催化劑,在550℃,150~200大氣壓下,氨的濃度已經很高了。在工作壓力下,經適度冷卻,氨被液化而分離,而氣體混合物通過轉化器、壓縮器和循環泵的封閉系統進行循環利用,同時不斷輸入適量的新鮮氣體混合物,最後安裝一個熱交換器,這套裝置簡直就是一個小型工廠,每小時生產數百毫升液氨,而且能耗極低。工業化合成氨的前景,似乎一片光明。但是,實驗室的方法很少能直接用於工業生產,必須對實驗裝置進行改進。
合成氨是哈伯一生最大的成就,但是,並它沒有馬上得到工業界的青睞,他收獲的是冷眼和懷疑。雖然BASF公司對固氮有濃厚的興趣,認為哈伯在氮的電氧化方面的研究很重要,但對哈伯合成氨的前景表示疑慮。經哈伯的好友和同事、BASF公司的顧問恩格耳(Car Engler)的極力推薦,BASF公司的技術領導才開始關注哈伯的工作。1909年7月的一天,BASF公司的工程師波施(C. Bosh)博士和化學家米塔(A. Mittasch)博士,來到卡爾斯魯厄觀看合成氨的演示實驗。米塔親眼看見流動的液氨,完全相信哈伯法的價值。回到路德維希(Ludwigshafen),他們立即著手將哈伯的成果付諸大規模的工業試驗。3年後,一座合成氨工廠正式投入運行。合成氨的大規模工業化的榮譽,一直屬於波施。雖然,卡爾斯魯厄實驗室為工業化生產氨邁出了最重要的一步,但要實現工業化仍面臨許多棘手的難題。在波施的領導下,對這些難題的成功解決,無疑是化學工程領域最卓越成就。哈伯於1919年獲得1918年度諾貝爾化學獎,1931年波施和貝吉烏斯(F. Bergius)獲得同樣的殊榮。哈伯在獲獎演說中謙遜地說道:「人們尚未充分認識到,卡爾斯魯厄實驗室其實並沒有為合成氨法的工業化作出過什麼貢獻。」在承認波施和貝吉斯為工業上高壓法的發展所做的傑出成就時,不能忘記高壓法的先驅哈伯和羅塞格爾。早在1907年,哈伯的實驗室就是著名的高壓研究中心。貝吉斯提出高壓下煤的氫化設想後,1908年到卡爾斯魯厄做了最初的一批實驗。
20世紀前10年,電弧作用下氮的氧化研究和工業應用獲得迅速的發展。在這個領域,哈伯的實驗室一直是重要的研究中心。在能斯特1904年對一氧化氮熱平衡進行測定之後,電弧固氮的純熱學理論得到普遍接受,但不久又引發了許多的疑慮。在一次實驗中,哈伯發現高產率與純的熱學理論不相符合,而電的因素在某種程度上發揮了作用。哈伯對這一課題產生了極大的興趣,在1906~1910年,對低溫電弧下固氮問題進行了深入細致的研究。由於反應物的電活性作用,在電平衡狀態一氧化氮的含量,超過同溫度下熱平衡時的含量。撤掉電場後,過量的一氧化氮將會分解,直到熱平衡完全建立。由於這個過程的速度隨溫度的下降而迅速降低,在足夠低的電弧溫度下,幾乎不發生分解作用,在這樣的條件下,一氧化氮的產率達到最大值。在達到最終的熱平衡時,高溫電弧必然導致低的產率。哈伯完全證實了這一理論。電平衡的建立也得到證明。讓空氣緩慢通過6cm長的交流電弧,在100mm汞柱壓力下,在一個狹長的、冷的石英管中燃燒,這樣得到的一氧化氮的產率遠比2000℃電弧時高。電弧溫度越高,產生的氧化物就多,同時分解作用也更利害。總的來說,哈伯的工作,具有巨大的理論和技術價值。 哈伯對火焰和燃燒問題的興趣,與早期研究燃料技術密切相關。1905年出版的《工業氣體反應熱力學》,就涉及到火焰中氣體反應的研究。最初的實驗是利用烴焰的均勻氣相,研究水–汽平衡。斯米特(Smithells)已發明火焰分離器,分析了火焰內錐的主要燃燒產物。20年前勒夏特里(Le Chatelier)首次計算出二氧化碳的離解常數和從火焰氣的組成推算出火焰溫度。1865年得維里(Deville)通過一根冷管獲得一氧化碳內焰的溫度。哈伯使用一種高冷卻效率的新式得維里管,獲取火焰錐間區的氣體。他證明,當氣體混合物通過溫度不低於1250℃的內錐時,平衡實際上瞬間就建立起來了。哈伯根據平衡常數和溫度的關系,推導出一個改進的廣泛適用的自由能方程。這樣,提取火焰的任意一點的氣體,進行分析,就能得到該點的溫度。採用這種化學火焰溫度計,哈伯分別測定了烴焰、一氧化碳焰、氫焰和乙炔焰的溫度,並且與後來其他研究者用不同方法獲得的數據非常的吻合。哈伯還研究了火焰中氮的氧化作用。眾所周知,氣體爆炸過程中會生成氮的氧化物,但鮮有人注意火焰中的這個過程。哈伯發現,在一氧化碳火焰中,在一個大氣壓下,固氮幾乎沒有發生,但在10個大氣壓下,氧化氮的產率大大增加。在相似的情況下,氫焰中氧化氮的產率僅只有一氧化碳火焰的一半。哈伯研究了火焰內錐的性質。據估計,內錐壁厚僅0.1毫米。哈伯證明它是火焰中最冷的部位,而非先前想像的最熱的部位。同時,該區域的反應速率特別快,化學發光強而且電離度較高。哈伯認為這三者之間有相互密切的內在聯系。
1906年,哈伯升任卡爾斯魯厄技術大學教授。1911年,受邀擔任柏林近郊達荷姆新建的威廉皇帝物理化學–電化學研究所首任所長。這個研究所於1912年正式落成。在德皇參加的落成慶典上,哈伯演示了他發明的瓦斯笛,這種裝置能夠檢測煤礦中危險氣體甲烷的存在,既耐用且效果良好,但並未投入使用。哈伯在達荷姆最初的工作,是完善有關合成氨的研究,盡可能精確地測定氨的平衡和相關的熱力學數據,獲得了最終的自由能方程式。同時,哈伯開始關注普朗克量子論在化學中的應用,是最早認識到普朗克理論在化學中重要意義的人。這成了他在達荷姆許多工作的基礎。哈伯特別關注新物理學知識在化學中的應用。他和好友波恩(M. Born)頻繁的討論,對他的學術思想有極大的幫助。波恩剛提出離子晶格理論:離子的晶格能由離子間的距離和作用力決定,固體反應的反應熱則等於其組分晶格能的代數和。波恩認為晶格能為氣態原子去掉一個電子生成氣態離子的能量和離子形成晶體的能量之和。哈伯清楚地說明了這種能量關系,因而被稱為波恩–哈伯循環,即晶格能U為生成熱Q、離解能D、升華熱S、陰離子電離能I和陽離子電離能E的代數和。哈伯還大膽地將波恩的理論用於HCl氣體,得到H++Cl-=HCl的反應熱,比循環過程計算值小得多。為了解釋這種偏差,1919年,他提出離子變形的觀點,這一思想後來在法楊斯那裡結出了豐碩的成果。
⑶ 合成氨無催化劑能發生嗎
合成氨無催化劑能發生
催化劑
1改變化學反應速率
2本身的質量、組成和化學性質在參加化學反應前後保持不變的物質。
所以合成氨無催化劑能發生,但是速度慢的要死,除了催化劑合成氨外好像還有離子電化學合成氨不用催化劑得.
⑷ 合成氨和硝酸製造是怎麼來的
到19世紀中期,人們對植物生長的機理已經有了一定的認識,越來越注意到氨對生物的作用。氟是一切生物蛋白質組成中不可缺少的元素。因而它在自然界中對人類以及其他生物的生存有很重要的意義。自然界中氮的總含量約佔地殼全部質量的0.04%,大部分以單質狀態存在於大氣中。空氣中含有約78%的氮氣,是空氣的主要組成部分。但是,不論是人或其他生物(除少數生物外),都不能從空氣中直接吸收這種游離狀態的氮作為自己的養料。植物只能靠根部從土壤中吸收含氮的化合物轉變成蛋白質。人和其他動物只能攝食各種植物和動物體內已經制好了的蛋白質來補充自己的需要。因此生物從自然界索取氮作為自身營養的問題最終歸結為植物由土壤吸收含氮化合物的問題。
土壤中含氧化合物的主要來源是:動物的排泄物或動植物的屍體進入土壤後轉變形成;雷雨放電時在大氣中形成氮的氧化物溶於雨水被帶入土壤;某些與豆科植物共生的根瘤菌吸收空氣中的氯氣生成一些氟的化合物。但是這些來源遠遠不能補償大規模農業生產的需要。於是如何使大氣中游離的氟氣轉變成能為植物吸收的氮的化合物,也就是氨的固定,成為化學家們探索的課題。
這個課題在20世紀初取得突破。首先是在1898年德國化學教授弗蘭克和他的助手羅特與卡羅博士發現,碳化鋇在氮氣中加熱後有氰化鋇和氰氨基鋇生成,接著發現碳化鈣在氮氣中加熱到1000℃以上,也能生成氰氨基鈣,並發現氰氨基鈣水解後產生氨,於是首先建議將氰氨基鈣用做肥料。1904年在德國建立了第一個工業生產裝置。1905年在義大利也建立工廠,隨後在美國、加拿大相繼建廠。到1921年氰氨基鈣在世界產量達每年50萬噸,但從此以後新工廠建造漸漸停止,因為由氫和氮直接合成氨的工業在悄然興起。
隨後,開始利用電力使氮氣和氧氣直接化合,生成氯的氧化物,溶於水生成硝酸和亞硝酸。
要使這個方法在工業生產中實現,需要強大的電力、穩定的電弧。1904年這個實驗由挪威物理學教授伯克蘭德和工程師艾德設計完成。他們用通有冷卻水的銅管作為電極,通入交流電。對生成的電弧加上一具強磁場,使電弧形成一個振盪的圓盤狀,火焰的面積因此增加很大,溫度可達3300℃。此裝置於1905年在挪威諾托登投入運轉。挪威具有強大的水力發電裝置,能夠利用這一方法製取硝酸。但是這種製取硝酸的方法在氧的氧化法制硝酸出現後,很快就失去了工業價值。
氨的氧化是先從合成氨開始。合成氧的發明是第三個氮的化學固定方法。
氨又稱阿摩尼亞氣。這個詞來自古埃及的司生命和生殖的神。這是由於在古埃及司生命和生殖神神殿旁堆集著來朝拜人騎的駱駝糞和剩餘的供品,逐漸形成氯化銨。含氮的有機物、動植物的屍體和排泄物在細菌的作用下均能生成氨。
1774年普利斯特里加熱氯化銨和氫氧化鈣的混合物,利用排汞取氣法,首先收集到氨。1784年貝托萊分析確定氨是由氮和氫組成。19世紀很多化學家們試圖從氯氣和氫氣合成氧,採用催化劑、電弧、高溫、高壓等手段進行試驗,一直未能獲得成功,以致有人認為氮和氫合成氨是不可能實現的。
直到19世紀,在化學熱力學、化學動力學和催化劑等這些新學科研究領域取得一定進展後,才使一些化學家在正確理論指導下,對合成氨的反應進行了有效的研究而取得成功。
1904年,德國化學家哈伯利用陶瓷管,內充填鐵催化劑,進行合成試驗。測定出在常壓下和高溫1020℃反應達到平衡時,氣體混合物中存在有0.012%體積的氨。在1904~1911年,他先後進行了兩萬多次試驗,根據試驗的數據,他認為使反應氣體在高壓下循環加工,並從這個循環中不斷將反應生成的氨分離出來,可使這個工藝過程實現。1909年,他申請了用鋨和鈾、碳化鈾的混合物作催化劑的專利。1910年5月終於在實驗室取得可喜成果。
哈伯把成功的實驗運用到工業生產,得到德國巴迪希苯胺和純鹼公司工程師博施、拉普、米塔赫等人的合作。1910年7月博施製成合成氨工業必需的高壓設備;拉普解決了高溫、高壓下機械方面一系列難題;米塔赫研製成功用於工業合成氨的含少量三氧化二鋁和鉀鹼助催化劑的鐵催化劑。他們於1911年在奧堡建立起世界上第一個合成氨的工業裝置,設置氨的生產能力為年產9000噸,在1913年9月9日開工。從此完成了氮的人工固定。
氫的合成不僅僅是合成了氨,更創造了高壓下促進化學反應的先例。隨後德國化學家貝吉烏斯將高壓法用於多種化工產品的生產,1920年用高壓法實現了煤的液化,合成人造汽油成功。
由此,哈伯獲得了1918年諾貝爾化學獎;博施和貝吉烏斯共同獲得了1931年諾貝爾化學獎。
但是,哈伯雖然創造了挽救千百萬飢餓生靈的方法,卻又設計一種致人於死地的可怕手段。
1915年4月22日下午5時左右,第一次世界大戰爆發,德國將裝有氯氣的近6000個鋼瓶約180多噸氯氣打開散向守衛在比利時伊普爾城防線的加拿大盟軍和法裔阿爾及利亞軍隊,造成1.5萬人傷亡,其中5000人死亡,是有史以來第一次把化學武器用於軍事進攻中。這是哈伯策劃的。他的妻子是一位化學博士,曾懇求他放棄這項工作,遭到丈夫拒絕後用哈伯的手槍自殺。對此,哈伯遭到後人的譴責和唾罵。
合成氨中的氫氣來自水,氨氣來自空氣。向裝有煤的煤氣發生爐的爐底鼓入空氣,使煤燃燒。當爐溫達到1000℃左右時,通入水蒸氣,產生一氧化碳和氫氣,同時吸收熱量。為了維持爐中溫度,在實際操作中,是將空氣和水蒸氣交替鼓入,這樣得到的氣體叫半水煤氣。它的組成大致如下:
H2:38%~42%N2:21%~23%CO:30%~32%CO2:8%~9%H2S:0.2%~0.5%半水煤氣中氫氣和氯氣是合成氨所需的,其他氣體需要除去。
硫化氫(H2S)是利用氨水吸收。
一氧化碳是在催化劑存在下加熱與水反應變換成二氧化碳和氫氣,經過變換的氣體叫變換氣。
變換氣中的二氧化碳在水中的溶解度顯著大於變換氣中其他組分,所以用水就可除去,也可以用鹼液、氨水吸收。
生成的碳酸氫銨(NH4HCO3)正是我國農村使用的小化肥。
少量一氧化碳是通過醋酸銅氨液吸收來除凈的。
得到純凈的氫氣和氮氣的混合物經壓縮進入合成塔,在一定溫度和壓力下通過催化劑,部分合成氨。由於氨氣易液化,在常壓和-33.4℃即轉變成液體,從合成塔中出來的氮氣、氫氣和氨氣進入冷卻器,氨氣被液化,而氮和氫仍是氣體。再通過分離器,氨氣就與氮氣、氫氣兩種氣體分離。未反應的氮氣、氫氣兩種氣體用循環壓縮機送入合成塔循環使用。
氨的合成也為製取硝酸開辟了一條途徑。8世紀阿拉伯煉金術士賈伯的著作里講述到硝酸的製取:蒸餾1磅綠礬和半磅硝石得到一種酸,很好地溶解一些金屬。如果添加1/4磅氯化銨,效果更好。
綠礬蒸餾後得到硫酸,與硝石作用,得到硝酸,添加氯化銨,就得到鹽酸。
3份鹽酸和1份硝酸的混合液就是王水。
從8世紀開始,歐洲人利用硝石與綠礬製取硝酸。在硫酸擴大生產後,逐漸利用硝酸鈉與硫酸作用製取硝酸。
前面曾提到20世紀初利用一氧化氮氧化製取硝酸的方法,不過那種方法要消耗大量電力。
早在1830年法國化學品製造商人庫爾曼就提出氨在鉑的催化下與氧氣結合,形成硝酸和水。
1906年,拉脫維亞化學家奧斯特瓦爾德將這一方法工業化,1918年引進英國。
隨後催化劑不斷更換。俄羅斯化學家安德列夫在1914年改用鉑銥合金;弗蘭克和卡羅研究用氧化鈰和氧化釷的混合物,催化作用遜於鉑,但價低廉;現在使用的多是鉑銠合金,並在高溫下,氨先被氧化成一氧化氮,然後是二氧化氮。二氧化氮溶於水成硝酸。
⑸ 上哪能找到合成氨催化劑的發展歷史
哈伯法合成氨
翻閱諾貝爾化學獎的記錄,就能看到1916一
1917年沒有頒獎,因為這期間,歐洲正經歷著第
一次世界大戰,1918年頒了獎,化學獎授予德國
化學家哈伯。這引起了科學家的議論,英法等國
的一些科學家公開地表示反對,他們認為,哈伯
沒有資格獲得這一榮譽。這究竟是為什麼? 隨
著農業的發展,對氮肥的需求量在迅速增長。在
19世紀以前,農業上所需氮肥的來源主要來自有
機物的副產品,如糞類、種子餅及綠肥。
1809年在智利發現了一個很大的硝酸鈉礦產地,並很快被開采。一方面由於這一礦藏有限,另一方面
,軍事工業生產炸葯也需要大量的硝石,因此解決氮肥來源必須另闢途徑。一些有遠見的化學家指出:考
慮到將來的糧食問題,為了使子孫後代免於飢餓,我們必須寄希望於科學家能實現大氣固氮。因此將空氣
中豐富的氮固定下來並轉化為可被利用的形式,在20世紀初成為一項受到眾多科學家注目和關切的重大課
題。哈伯就是從事合成氨的工藝條件試驗和理論研究的化學家之一。
利用氮、氫為原料合成氨的工業化生產曾是一個較難的課題,從第一次實驗室研製到工業化投產,約
經歷了150年的時間。1795年有人試圖在常壓下進行氨合成,後來又有人在50個大氣壓下試驗,結果都失敗
了。19世紀下半葉,物理化學的巨大進展,使人們認識到由氮、氫合成氨的反應是可逆的,增加壓力將使
反應推向生成氨的方向:提高溫度會將反應移向相反的方向,然而溫度過低又使反應速度過小;催化劑對
反應將產生重要影響。這實際上就為合成氨的試驗提供了理論指導。當時物理化學的權威、德國的能斯特
就明確指出:氮和氫在高壓條件下是能夠合成氨的,並提供了一些實驗數據。法國化學家勒夏特里第一個
試圖進行高壓合成氨的實驗,但是由於氮氫混和氣中混進了氧氣,引起了爆炸,使他放棄了這一危險的實
驗。在物理化學研究領域有很好基礎的哈伯決心攻克這一令人生畏的難題。
哈怕首先進行一系列實驗,探索合成氨的最佳物理化學條件。在實驗中他所取得的某些數據與能斯特
的有所不同,他並不盲從權威,而是依靠實驗來檢驗,終於證實了能斯特的計算是錯誤的。在一位來自英
國的學生洛森諾的協助下,哈伯成功地設計出一套適於高壓實驗的裝置和合成氨的工藝流程,這流程是:
在熾熱的焦炭上方吹人水蒸汽,可以獲得幾乎等體積的一氧化碳和氫氣的混和氣體。其中的一氧化碳在催
化劑的作用下,進一步與水蒸汽反應,得到二氧化碳和氫氣。然後將混和氣體在一定壓力下溶於水,二氧
化碳被吸收,就製得了較純凈的氫氣。同樣將水蒸汽與適量的空氣混和通過紅熱的炭,空氣中的氧和碳便
生成一氧化碳和二氧化碳而被吸收除掉,從而得到了所需要的氮氣。
氮氣和氫氣的混和氣體在高溫高壓的條件下及催化劑的作用下合成氨。但什麼樣的高溫和高壓條件為
最佳?以什麼樣的催化劑為最好?這還必須花大力氣進行探索。以楔而不舍的精神,經過不斷的實驗和計
算,哈伯終於在1909年取得了鼓舞人心的成果。這就是在600C的高溫、200個大氣壓和鋨為催化劑的條件下
,能得到產率約為8%的合成氨。8%的轉化率不算高,當然會影響生產的經濟效益。哈怕知道合成氨反應
不可能達到象硫酸生產那麼高的轉化率,在硫酸生產中二氧化硫氧化反應的轉化率幾乎接近於100%。怎麼
辦?哈伯認為若能使反應氣體在高壓下循環加工,並從這個循環中不斷地把反應生成的氨分離出來,則這
個工藝過程是可行的。於是他成功地設計了原料氣的循環工藝。這就是合成氨的哈怕法。
走出實驗室,進行工業化生產,仍將要付出艱辛的勞動。哈伯將他設計的工藝流程申請了專利後,把
它交給了德國當時最大的化工企業——巴登苯胺和純鹼製造公司。這個公司原先計劃採用以電弧法生產氧
化氮,然後合成氨的生產方法。兩相比較,公司立即取消了原先的計劃,、組織了以化工專家波施為首的
工程技術人員將哈伯的設計付諸實施。
首先,根據哈怕的工藝流程,他們找到了較合理的方法,生產出大量廉價的原料氮氣、氫氣。通過試
驗,他們認識到鋨雖然是非常好的催化劑,但是它難於加工,因為它與空氣接觸時,易轉變為揮發性的四
氧化物,另外這種稀有金屬在世界上的儲量極少。哈怕建議的第二種催化劑是鈾。鈾不僅很貴,而且對痕
量的氧和水都很敏感。為了尋找高效穩定的催化劑,兩年問,他們進行了多達6500次試驗,測試了2500種
不同的配方,最後選定了含鉛鎂促進劑的鐵催化劑。開發適用的高壓設備也是工藝的關鍵。當時能受得住
200個大氣壓的低碳鋼,卻害怕氫氣的脫碳腐蝕。波施想了許多辦法,最後決定在低碳鋼的反應管子里加一
層熟鐵的村裡,熟鐵雖沒有強度,卻不怕氫氣的腐蝕,這樣總算解決了難題。
哈伯的合成氨的設想終於在1913年得以實現,一個日產30噸的合成氨工廠建成並投產。從此合成氨成
為化學工業中發展較快,十分活躍的一個部分。合成氨生產方法的創立不僅開辟了獲取固定氮的途徑,更
重要的是這一生產工藝的實現對整個化學工藝的發展產生了重大的影響。合成氨的研究來自正確的理論指
導,反過來合成氨生產工藝的研試又推動了科學理論的發展。鑒於合成氨工業生產的實現和它的研究對化
學理論發展的推動,決定把諾貝爾化學獎授予哈伯是正確的。哈伯接受此獎也是當之無愧的。
一些英、法科學家認為哈伯沒有資格獲取諾貝爾獎,原因何在?有人曾認為,假若沒有合成氨工業的
建立,德國就沒有足夠的軍火儲備,軍方就不敢貿然發動第一次世界大戰。有了合成氨工業,就可以將氨
氧化為硝酸鹽以保證火葯的生產,否則僅依靠智利的硝石,火葯就無法保證。當然某些科學的發明創造被
用於非正義的戰爭,科學家是沒有直接責任的。英、法科學界對哈伯的指責更多地集中在哈伯在第一次世
界大戰中的表現。
1906年哈伯成為卡爾斯魯厄大學的化學教授, 1911年改任在柏林近郊的威廉物理化學及電化學研究
所所長,同時兼任柏林大學教授。1914年世界大戰爆發,民族沙文主義所煽起的盲目的愛國熱情將哈伯深
深地捲入故爭的漩渦。他所領導的實驗室成了為戰爭服務的重要軍事機構:哈伯承擔了戰爭所需的材料的
供應和研製工作,特別在研製戰爭毒氣方面。他曾錯誤地認為,毒氣進攻乃是一種結束戰爭、縮短戰爭時
間的好辦法,從而擔任了大戰中德國施行毒氣戰的科學負責人。
根據哈怕的建議, 1915年1月德軍把裝盛氯氣的鋼瓶放在陣地前沿施放,藉助風力把氯氣吹向敵陣。
第一次野外試驗獲得成功。該年4月22日在德軍發動的伊普雷戰役中,在6公里寬的前沿陣地上,在5分鍾內
德軍施放了180噸氯氣,約一人高的黃綠色毒氣借著鳳勢沿地面沖向英法陣地(氯氣比重較空氣大,故沉在
下層,沿著地面移動),進入戰壕並滯留下來。這股毒浪使英法軍隊感到鼻腔、咽喉的痛,隨後有些人窒
息而死。這樣英法士兵被嚇得驚慌失措,四散奔逃。據估計,英法軍隊約有15000人中毒。這是軍事史上第
一次大規模使用殺傷性毒劑的現代化學戰的開始。此後,交戰的雙方都使用毒氣,而且毒氣的品種有了新
的發展。毒氣所造成的傷亡,連德國當局都沒有估計到。然而使用毒氣,進行化學戰,在歐洲各國遭到人
民的一致遣責。科學家們更是指責這種不人道的行徑。鑒於這一點,英、法等國科學家理所當然地反對授
予哈伯諾貝爾化學獎。哈伯也因此在精神上受到很大的震動,戰爭結束不久,他害怕被當作戰犯而逃到鄉
下約半年。
1919年第一次世界大戰以德國失敗而告終。戰後的一段時間里,哈伯曾設計了一種從海水中提取黃金
的方案。希望能藉此來支付協約國要求的戰爭賠款。遺憾的是海水中的含金量遠比當時人們想像的要少得
多,他的努力只能付諸東流。此後,通過對戰爭的反省,他把全部精力都投入到科學研究中。在他卓有成
效的領導下,威廉物理化學研究所成為世界上化學研究的學術中心之一。根據多年科研工作的經驗,他特
別注意為他的同事們創造一個毫無偏見、並能獨立進行研究的環境,在研究中他又強調理論研究和應用研
究相結合。從而使他的研究所成為第一流的科研單位,培養出眾多高水平的研究人員。為了改變大戰中給
人留下的不光彩印象,他積極致力於加強各國科研機構的聯系和各國科學家的友好往來。他的實驗室里將
近有一半成員來自世界各國。友好的接待,熱情的指導,不僅得到了科學界對他的諒解,同時使他的威望
日益增高。然而,不久悲劇再次降落在他身上。1868年12月9日哈伯出生在德國的布里斯勞(即現在波蘭的
弗勞茨瓦夫市)的一個猶太商人家庭。1933年希特勒篡奪了德國的政權,建立了法西斯統治後,開始推行
以消滅「猶太科學」為已任的所謂「雅利安科學」的鬧劇,盡管哈伯是著名的科學家,但是因為他是猶太
人,和其他猶太人同樣遭到殘酷的迫害。法西斯當局命令在科學和教育部門解僱一切猶太人。弗里茨·哈
伯這個偉大的化學家被改名為:「Jew。哈怕」,即猶太人哈伯。他所領導的威廉研究所也被改組。哈伯於
1933年4月30日庄嚴地聲明:「40多年來,我一直是以知識和品德為標准去選擇我的合作者,而不是考慮他
們的國籍和民族,在我的餘生,要我改變認為是如此完好的方法,則是我無法做到的。」隨後,哈伯被迫
離開了為她熱誠服務幾十年的祖國,流落他鄉。首先他應英國劍橋大學的邀請,到鮑波實驗室工作。4個月
後,以色列的希夫研究所聘任他到那裡領導物理化學的研究工作。但是在去希夫研究所的途中,哈怕的心
臟病發作,於1934年1月29日在瑞士逝世。
哈怕雖然被迫離開了德國,但是德國科學界和人民並沒有忘卻他,就在他逝世一周年的那一天,德國
的許多學會和學者,不顧納粹的阻撓,紛紛組織集會,緬懷這位偉大的科學家。
⑹ (2014路橋區模擬)隨著對合成氨研究的發展,2001年兩位希臘化學家提出了電解合成氨的方法,即在常壓下
A.在電解法合成氨的電解池中不能用水作電解質溶液的溶劑,原因是新法合成氨電解池的反應溫度是570℃時,水為水蒸氣,故A錯誤;
B.由氫離子移動方向可知A為銀極,B為陽極,陽極連接電源正極,故B錯誤;
C.A為陰極,發生還原反應,電解方程式為N2+6e-+6H+═2NH3,故C正確;
D.由於氣體存在的條件不一定為標准狀況下,則不能確定氣體的體積,故D錯誤.
故選C.
⑺ 合成氨的發展歷程是怎樣的
德國化學家哈伯(F.Haber,1868-1934)從1902年開始研究由氮氣和氫氣直接合成氨。於1908年申請專利,即「循環法」,在此基礎上,他繼續研究,於1909年改進了合成,氨的含量達到6上。這是工業普遍採用的直接合成法。
反應過程中為解決氫氣和氮氣合成轉化率低的問題,將氨產品從合成反應後的氣體中分離出來,未反應氣和新鮮氫氮氣混合重新參與合成反應。
合成氨反應式如下(該反應為可逆反應,等號上反應條件為:「高溫高壓」,下為:「催化劑」):
(7)電催化合成氨裝置設計擴展閱讀:
氨的主要用途:
氨的主要用途是氮肥、製冷劑、化工原料。無機方面主要用於制氨水、液氨、氮肥(尿素、碳銨等)、硝酸、銨鹽、純鹼。有機方面廣泛應用於合成纖維、塑料、染料、尿素等。
合成氨工業的特點:
1、農業對化肥的需求是合成氨工業發展的持久推動力。世界人口不斷增長給糧食供應帶來壓力,而施用化學肥料是農業增產的有效途徑。
氨水(即氨的水溶液)和液氨體本身就是一種氮肥;農業上廣泛採用的尿素、硝酸銨、硫酸銨等固體氮肥,和磷酸銨、硝酸磷肥等復合肥料,都是以合成氨加工生產為主。
2、與能源工業關系密切。合成氨生產通常以各種燃料為原料,同時生產過程還需燃料供給能量,因此,合成氨是一種消耗大量能源的化工產品。每噸液氨的理論能耗為 21.28GJ,實際能耗遠比理論能耗多,隨著原料、工廠規模、流程與管理水平不同而有差異。
日產 1000t氨的大型合成氨裝置生產液氨的實際能耗約為理論能耗的兩倍(表2[ 大型氨廠生產合成氨的實際能耗])。
3、工藝復雜、技術密集。氨合成是在高壓高溫和催化劑存在下進行的,為氣固相催化反應過程。由於氨合成催化劑(見無機化工催化劑)很易受硫的化合物、碳的氧化物和水蒸氣毒害(見催化劑中毒)。
而從各種燃料製取的原料氣中都含有不同數量的這些物質,故在原料氣送往氨合成前,需將有害物質除去。因此合成氨生產總流程長,工藝也比較復雜,根據不同原料及不同的凈化方法而有多種流程(見氨)。
⑻ 關於合成氨
20世紀初發展出來來,由源大氣中氮制氨的化學方法。是化學方法方面最重要的發明之一,因為它使大氣中氮的固定成為可能,從而還能由將轉化為硝酸來生產肥料(和炸葯)所需的硝酸鹽。哈伯(F.Haber)在理論的實驗上證明,如何維持來自空氣的氮和來自水中的氫在適當的溫度和壓力,並在有催化劑的情況下反應。博施(C.Bosch)還證明如何在工業規模上實現這種方法。總反應是3H2+n2=2NH3
⑼ 電化學合成氨發展前景
氨是現代工業和農業生產最為基礎的化工原料之一,對人類的生產、生活等方面有著至關重要的作用。而且由於其具有綠色、環保、易儲存運輸等優點,也被視為良好的氫載體。
氨的人工合成最初源起於德國Adolph Frank等人發明的「氰化法」,即利用從空氣中分餾得到的氮氣與電石(CaC2)在1100 °C左右反應生成氰胺化鈣,氰胺化鈣再進一步與水蒸氣反應得到氨。但受制於制備原料及過高的能耗,該制備工藝沒有得到大規模應用。後來,在20世紀初,Fritz Haber和Carl Bosch等人發現以鋨(後來是以鐵為主要活性組分的復合物)作為催化劑,可直接將氮氣和氫氣在高溫高壓下反應得到氨氣(即Haber-Bosch法),且產率最高可達到20%,這一方法的提出,從此開啟了合成氨的大規模工業化進程,也正是得益於Haber-Bosch法合成氨,人類自此實現了人工固氮的集約化和規模化發展,從而直接推動了全球糧食產量和人口數量史無前例地增長。然而該方法雖經過百多年的發展,但仍需要在高溫高壓條件下進行(300~500 °C、200~300 atm),其年均能耗佔到世界能源總耗的1~2%,它所產生的CO2年排放量約佔到總溫室氣體的1.5%。因此,如果能夠實現在常溫常壓下氮氣和氫氣的高效反應合成氨,那將是人們夢寐以求的。特別是如果合成氨過程中的驅動能量還能由可持續的綠色能源供給,將能夠徹底克服Haber-Bosch法合成氨所面臨的涉及能耗、污染以及安全性等方面的問題。
⑽ 有關化學發展的有突出歷史意義的事件
高分子材料 受熱發粘,受冷變硬。1839年美國用硫磺及加熱天然橡膠,使其交聯成彈性體,應用於輪胎及其他橡膠製品,用途甚廣,這是高分子化工的萌芽時期。1869年,美國用樟腦增塑硝酸纖維素製成塑料,很有使用價值。1891年在法國貝桑松建成第一個人造絲廠。1909年,美國製成,俗稱電木粉,為第一個,廣泛用於電器絕緣材料。 這些萌芽產品,在品種、產量、質量等方面都遠不能滿足社會的要求。所以,上述基礎有機化學品的生產和高分子材料生產,在建立起石油化工以後,都獲得很大發展。 化學工業的大發展時期 從20世紀初至戰後的60~70年代,這是化學工業真正成為大規模生產的主要階段,一些主要領域都是在這一時期形成的。和石油化工得到了發展,進行了開發,逐漸興起。這個時期之初,英國和美國的等人提出的概念,奠定了化學工程的基礎。它推動了生產技術的發展,無論是裝置規模,或產品產量都增長很快。 合成氨工業 20世紀初期異軍突起,用物理化學的反應平衡理論,提出氮氣和氫氣直接合成氨的催化方法,以及原料氣與產品分離後,經補充再循環的設想,進一步解決了設備問題。因而使德國能在第一次世界大戰時建立第一個由氨生產的工廠,以應戰爭之需。合成氨原用焦炭為原料,40年代以後改為石油或天然氣,使化學工業與石油工業兩大部門更密切地聯系起來,合理地利用原料和能量。 石油化工 1920年美國用生產,這是大規模發展石油化工的開端。1939年美國標准油公司開發了臨氫催化重整過程,這成為芳烴的重要來源。1941年美國建成第一套以為原料用制乙烯的裝置。在第二次世界大戰以後,由於化工產品市場不斷擴大,石油可提供大量廉價有機化工原料,同時由於化工生產技術的發展,逐步形成石油化工。甚至不產石油的地區,如西歐、日本等也以原油為原料,發展石油化工。同一原料或同一產品,各化工企業卻有不同的工藝路線或不同催化劑。由於基本有機原料及高分子材料單體都以石油化工為原料,所以人們以乙烯的產量作為衡量有機化工的標志。80年代,90%以上的有機化工產品,來自石油化工。例如、等,過去以電石乙炔為原料,這時改用氧氯化法以乙烯生產氯乙烯,用丙烯氨氧化(見)法以生產丙烯腈。1951年,以天然氣為原料,用蒸汽轉化法得到一氧化碳及氫,使得到重視,目前用於生產、,個別地區用生產。 高分子化工 高分子材料在戰時用於軍事,戰後轉為民用,獲得極大的發展,成為新的材料工業。作為戰略物質的天然橡膠產於熱帶,受阻於海運,各國皆研究。1937年德國法本公司開發獲得成功。以後各國又陸續開發了順丁、丁基、氯丁、丁腈、異戊、乙丙等多種合成橡膠,各有不同的特性和用途。方面,1937年美國 成功地合成尼龍 66(見),用熔融法紡絲,因其有較好的強度,用作降落傘及輪胎用。以後滌綸、維尼綸、腈綸等陸續投產,也因為有石油化工為其原料保證,逐漸佔有天然纖維和人造纖維大部分市場。塑料方面,繼酚醛樹脂後,又生產了、醇酸樹脂等熱固性樹脂。30年代後,品種不斷出現,如迄今仍為塑料中的大品種,為當時優異的絕緣材料,1939年高壓用於海底電纜及雷達,低壓聚乙烯、等規聚丙烯的開發成功,為民用塑料開辟廣泛的用途,這是齊格勒-納塔催化劑為高分子化工所作出的一個極大貢獻。這一時期還出現耐高溫、抗腐蝕的材料,如、,其中聚四氟乙烯有塑料王之稱。第二次世界大戰後,一些也陸續用於汽車工業,還作為建築材料、包裝材料等,並逐漸成為塑料的大品種。 精細化工 在方面,發明了活性染料,使染料與纖維以化學鍵相結合。合成纖維及其混紡織物需要新型染料,如用於滌綸的,用於腈綸的,用於滌棉混紡的活性分散染料。此外,還有用於激光、液晶、顯微技術等特殊染料。在方面,40年代瑞士P.H.米勒發明第一個有機氯農葯之後,又開發一系列有機氯、有機磷,後者具有胃殺、觸殺、內吸等特殊作用。嗣後則要求高效低毒或無殘毒的農葯,如仿生合成的類。60年代,、發展極快,出現了一些性能很好的品種,如吡啶類除草劑、苯並咪唑殺菌劑等。此外,還有抗生素農葯(見),如中國1976年研製成的井岡黴素用於抗水稻紋枯病。醫葯方面,在1910年法國製成606砷制劑(根治梅素的特效葯)後,又在結構上改進製成914,30年代的類化合物、甾族化合物等都是從結構上改進,發揮出特效作用。1928年,英國發現,開辟了抗菌素葯物的新領域。以後研究成功治療生理上疾病的葯物,如治心血管病、精神病等的葯物,以及避孕葯。此外,還有一些專用診斷葯物問世。擺脫天然油漆的傳統,改用,如醇酸樹脂、、丙烯酸樹脂等,以適應汽車工業等高級塗飾的需要。第二次世界大戰後,丁苯膠乳製成水性塗料,成為建築塗料的大品種。採用高壓無空氣噴塗、靜電噴塗、電泳塗裝、陰極電沉積塗裝、光固化等新技術(見),可節省勞力和材料,並從而發展了相應的塗料品種。 現代化學工業 20世紀60~70年代以來,化學工業各企業間競爭激烈,一方面由於對反應過程的深入了解,可以使一些傳統的基本化工產品的生產裝置,日趨大型化,以降低成本。與此同時,由於新技術革命的興起,對化學工業提出了新的要求,推動了化學工業的技術進步,發展了精細化工、超純物質、新型結構材料和功能材料。 規模大型化 1963年,美國凱洛格公司設計建設第一套日產540t(即600sh.t)合成氨單系列裝置,是化工生產裝置大型化的標志。從70年代起,合成氨單系列生產能力已發展到日產 900~1350t,80 年代出現了日產1800~2700t合成氨的設計,其噸氨總能量消耗大幅度下降。乙烯單系列生產規模,從50年代年產50kt發展到70年代年產100~300kt,80年代初新建的乙烯裝置最大生產能力達年產 680kt。由於冶金工業提供了耐高溫的管材,因之毫秒裂解爐得以實現,從而提高了烯烴收率,降低了能耗。其他化工生產裝置如硫酸、燒鹼、基本有機原料、合成材料等均向大型化發展。這樣,減少了對環境的污染,提高了長期運行的可靠性,促進了安全、環保的預測和防護技術的迅速發展。 信息技術用化學品 60年代以來,大規模集成電路和電子工業迅速發展,所需電子計算機的器件材料和信息記錄材料得到發展。60年代以後,多晶硅和單晶硅的產量以每年20%的速度增長。80年代周期表中 ~V族的二元化合物已用於電子器件 隨著半導體器件的發展,氣態源如磷化氫 (PH )等日趨重要。在大規模集成電路制備過程中,需用多種,其雜質含量小於1ppm,對水分及塵埃含量也有嚴格要求。大規模集成電路的另一種基材為,其質量和穩定性直接影響其集成度和成品率。此外,對基質材料、密封材料、焊劑等也有嚴格要求。1963年,荷蘭菲利浦公司研製盒式錄音成功後,日益普及。它不僅用於音頻記錄、視頻記錄等,更重要的是用於計算器作為外存儲器及內存儲器,有磁帶、磁碟、磁鼓、磁泡、磁卡等多種類型。為重要的信息材料,不僅用於光纖通信,且在工業上、醫療上作為內窺鏡材料。 高性能合成材料 60年代已開始用(俗稱尼龍)、聚縮醛類(如)、,以及丙烯腈-丁二烯-苯乙烯三元共聚物 ()等為結構材料。它們具有高強度、耐沖擊、耐磨、抗化學腐蝕、耐熱性好、電性能優良等特點,並且自重輕、易成型,廣泛用於汽車、電器、建築材料、包裝等方面。60年代以後,又出現、、、等。尤其是為耐高溫、耐高真空、自潤滑材料,可用於航天器。其纖維可做航天服以抗輻射。聚苯並噻唑和聚苯並咪唑為耐高溫樹脂,耐熱性高,可作燒蝕材料,用於火箭。共聚、共混和復合使結構材料改性,例如多元醇預聚物與經催化反應,為尼龍聚醚嵌段共聚物,具有高沖擊強度和耐熱性能,用於農業和建築機械。另一種是以纖維增強樹脂的高分子復合材料。所用樹脂主要為環氧樹脂、不飽和聚酯、聚醯胺 聚醯亞胺等 所用為玻璃纖維、或(常用丙烯腈基或瀝青基)。這些復合材料比重輕、比強高、韌性好,特別適用於航天、航空及其他交通運輸工具的結構件,以代替金屬,節省能量。和含氟材料也發展迅速,由於它們具有突出的耐高低溫性能、優良電性能、耐老化、耐輻射,廣泛用於電子與電器工業、原子能工業和航天工業。又由於它們具有生理相容性,可作人造器官和生物醫療器材。 能源材料和節能材料 50年代原子能工業開始發展,要求化工企業生產重水、吸收中子材料和傳熱材料以滿足需要。航天事業需要高能。固體推進劑由膠粘劑、增塑劑、氧化劑和添加劑所組成。液體高能燃料有液氫、煤油、偏二甲肼、無水肼等,氧化劑有液氧、發煙硝酸、四氧化二氮。這些產品都有嚴格的性能要求,已形成一個專門的生產行業。為了滿足節能和環保的要求,1960年美國試製成可以實用的膜,以淡化、處理工業污水,以後又擴展用於醫葯、食品工業。但這種膜易於生物降解,也易水解,使用壽命短。1970年,開發了芳香族聚醯胺反滲透膜,它能夠抗生物降解,但不能抗游離氯。1977年,改進後的復合膜用於海水淡化,每立方米淡水僅耗電23.7~28.4MJ 此外,還開發了和用膜等。聚碸中空纖維氣體分離膜,用於合成氨尾氣的氫氮分離及其他多種氣體分離。這種技術比其他工業分離方法可以節能。精細以其硬度見長,用作切削工具。1971年,美國福特汽車公司及威斯汀豪斯電氣公司以β-氮化硅 (β-Si N )為燃汽透平的結構材料,運行溫度曾高達1370℃,提高功效,節省燃料,減少污染,為良好的節能材料,但經10年試驗,仍存在不少問題,尚須進一步改進。現主要用作陶瓷發動機、透平葉片、導電陶瓷、人造骨等。陶瓷的主要物系有氧化物系,如氧化鋁(Al O )、氧化鋯(ZrO )等,和非氧化物系,如碳化物(SiC)、氮化物(BN)、氮化硅(Si N )等。80年代,為改進陶瓷的脆性,又在開發硅碳纖維增強陶瓷。 專用化學品得到進一步發展,它以很少的用量增進或賦予另一產品以特定功能,獲得很高的使用價值。例如食品和飼料添加劑,塑料和橡膠助劑,皮革、造紙、油田等專用化學品,以及膠粘劑、防氧化劑、表面活性劑、水處理劑、催化劑等。以催化劑而言,由於電子顯微鏡、電子能譜儀等現代化儀器的發展,有助於了解催化機理,因而制備成各種專用催化劑,標志催化劑進入了新階段。