⑴ 液力耦合器的工作原理
答:一、液力耦合器基本工作原理
1、動力機帶動偶合器轉動時,首先由泵輪將偶合器腔內液體攪動。
在離心力的作用下,腔內液體從半徑較小的流道進口處被加速,並拋向半徑較大的流道口處,從而液體的動量加大,在泵輪出口處液流以較高的速度和壓強沖向渦輪葉片,釋放液體動能推動渦輪旋轉做功,實現渦輪將液體動能轉化為機械能的過程。
2、當液體的動能減小後,在其後的液體推動下由渦輪流出而進入泵輪,再開始新的能量轉化。
3、周而復始,輸入與輸出在沒有直接機械連接的情況下,由液體動能完成了柔性的成功連接。
二、液力耦合器的分類
1、根據用途的不同,液力耦合器分為普通型液力耦合器、限矩型液力耦合器和調速型液力耦合器。
其中限矩型液力耦合器主要用於對電機減速機的啟動保護及運行中的沖擊保護,位置補償及能量緩沖;調速型液力耦合器主要用於調整輸入輸出轉速比,其它的功能和限矩型液力耦合器基本一樣。
2、根據工作腔數量的不同,液力耦合器分為單工作腔液力耦合器、雙工作腔液力耦合器和多工作腔液力耦合器。
3、根據葉片的不同,液力耦合器分為徑向葉片液力耦合器、傾斜葉片液力耦合器和回轉葉片液力耦合器。
三、液力耦合器的應用領域
1、汽車
液力耦合器曾應用於早期的汽車半自動變速器及自動變速器中。液力耦合器的泵輪與發動機的飛輪相連接,動力由發動機曲軸傳入。
2、重工業
可用於冶金設備,礦山機械,電力設備,化工及各種工程機械中。
⑵ 什麼是動液傳動
液力傳動的工作原理
一,液力傳動的概述 在傳動裝置中以液體(礦物油專)為工作介質進行能量屬傳遞與控制的稱為液體傳動裝置,簡稱液體傳動. 在液體傳遞能量時,存在著將機械能轉變為液體能,再由液體能轉變為機械能的過程.液體能有三種形式:位能,壓力能和動能.在液體傳動中,液體的相對高度位置變化很小,故位能與壓力能,動能相比,可以忽略不計.因此,液體傳動中液體能量變換的主要形式為壓力能和動能.凡是主要以工作液體的壓力能進行能量傳遞和控制的裝置稱為液壓傳動裝置,簡稱液壓傳動.其工作元件稱為液壓元件.凡是主要以工作液體的動能進行能量傳遞與控制的裝置稱為液力傳動或動液傳動.
二,液力傳動的原理 液力傳動裝置是本世紀初開始研究的,最早用於船舶工業.汽車上採用液力傳動是第一次世界大戰之後.在30年代,英國,美國將液力傳動應用於公共汽車,至第二次世界大戰期間許多軍用車輛和專用汽車也開始採用液力傳動裝置.現代汽車尤其是轎車廣泛採用了液力傳動裝置. 最初的液力傳動裝置方案是由德國蓋爾曼·費丁格爾教授提出的,如圖1-1所示.它由離心泵,集水槽,進水管,連接管路,導水機構,水輪機等組成.
⑶ 一般的液壓傳動系統由哪幾部分組成,基本工作原理是什麼
液壓傳動系統由液壓動力元件(液壓油泵)、液壓控制元件(各種液壓閥)、液壓執行元件(液壓缸和液壓馬達等)、液壓輔件(管道和蓄能器等)和液壓油組成。
基本工作原理:
電動機帶動液壓泵從油箱吸油,液壓泵把電動機的機械能轉換為液體的壓力能。液壓介質通過管道經節流閥和換向和閥進入液壓缸左腔,推動活塞帶動工作台右移,液壓缸右腔排出的液壓介質經換向閥流回油箱。換向閥換向之後液壓介質進入液壓缸右腔,使活塞左移,推動工作台反向移動。
1、液壓泵是將原動機的機械能轉換為液體的壓力動能(表現為壓力、流量),為液壓系統提供壓力油,是系統的動力來源。
2、液壓缸或液壓馬達將液壓能轉換為機械能而對外做功,液壓缸可驅動工作機構實現往復直線運動(或擺動),液壓馬達可實現回轉運動。
3、各種液壓閥可以控制和調節液壓系統中液體的壓力、流量和方向等,保證執行元件能按照要求進行工作。
4、液壓輔件提供必要的條件使系統正常工作並便於監測控制。
5、液壓油,液壓系統就是通過液壓油實現運動和動力傳遞的,液壓油還可以對液壓元件中相互運動的零件起潤滑作用。
(3)液力傳動裝置的傳動原理擴展閱讀:
液壓傳動系統的優點
1、液壓傳動可以輸出大的推力或大轉矩,可實現低速大噸位運動。
2、液壓傳動能很方便地實現無級調速,調速范圍大,且可在系統運行過程中調速。
3、在相同功率條件下,液壓傳動裝置體積小、重量輕、結構緊湊。液壓元件之間可採用管道連接、或採用集成式連接,其布局、安裝有很大的靈活性,可以構成用其它傳動方式難以組成的復雜系統。
4、液壓傳動能使執行元件的運動十分均勻穩定,可使運動部件換向時無換向沖擊。而且由於其反應速度快,故可實現頻繁換向。
5、操作簡單,調整控制方便,易於實現自動化。特別是和機、電聯合使用時,能方便地實現復雜的自動工作循環。
6、液壓系統便於實現過載保護,使用安全、可靠。由於各液壓元件中的運動件均在油液中工作,能自行潤滑,故元件的使用壽命長。
7、液壓元件易於實現系列化、標准化和通用化,便於設計、製造、維修和推廣使用。
⑷ 液壓傳動的兩個基本原理是什麼
液壓傳動有許多突出的優點,因此它的應用非常廣泛,如一般工業用的塑料加工機械、壓力機械、機床等;行走機械中的工程機械、建築機械、農業機械、汽車等;鋼鐵工業用的冶金機械、提升裝置、軋輥調整
液壓傳動
裝置等;土木水利工程用的防洪閘門及堤壩裝置、河床升降裝置、橋梁操縱機構等;發電廠渦輪機調速裝置、核發電廠等等;船舶用的甲板起重機械(絞車)、船頭門、艙壁閥、船尾推進器等;特殊技術用的巨型天線控制裝置、測量浮標、升降旋轉舞台等;軍事工業用的火炮操縱裝置、船舶減搖裝置、飛行器模擬、飛機起落架的收放裝置和方向舵控制裝置等。
液壓傳動的基本原理:液壓系統利用液壓泵將原動機的機械能轉換為液體的壓力能,通過液體壓力能的變化來傳遞能量,經過各種控制閥和管路的傳遞,藉助於液壓執行元件(液壓缸或馬達)把液體壓力能轉換為機械能,從而驅動工作機構,實現直線往復運動和回轉運動。其中的液體稱為工作介質,一般為礦物油,它的作用和機械傳動中的皮帶、鏈條和齒輪等傳動元件相類似。
在液壓傳動中,液壓油缸就是一個最簡單而又比較完整的液壓傳動系統,分析它的工作過程,可以清楚的了解液壓傳動的基本原理。
⑸ 液壓傳動的工作原理、系統組成是什麼
1液壓傳動的工作原理
機床工作台的液壓傳動系統如圖4-17所示,它由油箱、濾油器、液壓泵、溢流閥、開停閥、節流閥、換向閥、液壓缸以及連接這些元件的油管、接頭組成。其工作原理如下:液壓泵由電動機驅動後,從油箱中吸油;油液經濾油器進入液壓泵,油液在泵腔中從入口低壓到泵出口高壓,在圖4-17(a)所示狀態下,通過開停閥、節流閥、換向閥進入液壓缸左腔,推動活塞使工作台向右移動;這時,液壓缸右腔的油經換向閥和回油管6排回油箱。
圖4-17機床工作台液壓傳動系統
1—工作台;2—液壓缸;3—活塞;4—換向手柄;5—換向閥;6,8,16—迴流管;7—節流閥;9—開停手柄;10—開停閥;11—壓力管;12—壓力支管;13—溢流閥;14—鋼球;15—彈簧;17—液壓泵;18—濾油器;19—油箱
如果將換向閥手柄轉換成圖4-17(b)所示狀態,則壓力管中的油將經過開停閥、節流閥和換向閥進入液壓缸右腔,推動活塞使工作台向左移動,並使液壓缸左腔的油經換向閥和回油管6排回油箱。
工作台的移動速度是通過節流閥來調節的。當節流閥開大時,進入液壓缸的油量增多(在單位時間內),工作台的移動速度增大;反之,當節流閥關小時,單位時間內進入液壓缸的油量減少,工作台的移動速度降低。為了克服移動工作台時所受到的各種阻力,液壓缸必須產生一個足夠大的推力,這個推力是由液壓缸中的油液壓力所產生的。要克服的阻力越大,對應液壓缸中的油液壓力就越高;反之阻力小,壓力就低。這種現象正說明了液壓傳動的一個基本原理——壓力取決於負載。
需要說明的是,液壓傳動利用液體的壓力能工作,它與在非密閉狀態下利用液體的動能或勢能工作的液力傳動有本質的區別。
溢流閥的作用是調節與穩定系統的最大工作壓力並溢出多餘的油液。當工作台工作進給時,液壓缸活塞(工作台)需要克服大的負載和慢速運動。進入液壓缸的壓力油必須有足夠的穩定壓力才能推動活塞帶動工作台運動。調節溢流閥的彈簧力,使之與液壓缸最大負載力相平衡,當系統壓力升高到稍大於溢流閥的彈簧力時,溢流閥便打開,將定量泵輸出的部分油液經迴流管16溢回油箱。這時系統壓力不再升高,工作台保持穩定的低速運動(工作進給)。當工作台快速退回時,因負載小所以油的壓力低,溢流閥打不開,泵的流量全部進入液壓缸,工作台則實現了快速運動。
從上面這個例子可以看到:液壓泵將電動機(或其他原動機)的機械能轉換為液體的壓力能,然後通過液壓缸(或液壓馬達)將液體的壓力能再轉換為機械能以推動負載運動。液壓傳動的過程就是機械能—液壓能—機械能的能量轉換過程。
2液壓傳動系統的組成
由上述例子可以看出液壓傳動系統的基本組成為:
(1)能源裝置——液壓泵。它將動力部分(電動機或其他原動機)所輸出的機械能轉換成液壓能,給系統提供壓力油液。
(2)執行裝置——液壓機(液壓缸、液壓馬達)。通過它將液壓能轉換成機械能,推動負載做功。
(3)控制裝置——液壓閥(分為流量、壓力、方向三類控制閥)。通過它們的控制或調節,使液流的壓力、流量和方向得以改變,從而改變執行元件的力(或力矩)、速度和方向。
(4)輔助裝置——油箱、管路、蓄能器、濾油器、管接頭、壓力表開關等。通過這些元件把系統連接起來,以實現各種工作循環。
(5)工作介質——液壓油。絕大多數液壓油採用礦物油,系統用它來傳遞能量或信息。
⑹ 液壓系統的基本原理
液壓系統的作用為通過改變壓強增大作用力。一個完整的液壓系統由五個部分組成,即動力元件、執行元件、控制元件、輔助元件(附件)和液壓油。液壓系統可分為兩類:液壓傳動系統和液壓控制系統。液壓傳動系統以傳遞動力和運動為主要功能。液壓控制系統則要使液壓系統輸出滿足特定的性能要求(特別是動態性能)
一個完整的液壓系統由五個部分組成,即動力元件、執行元件、控制元件、輔助元件(附件)和液壓油。
有什麼問題 歡迎一起討論 最前面139 中間幾個數字為4008 結尾3280
動力元件
動力元件的作用是將原動機的機械能轉換成液體的壓力能,指液壓系統中的油泵,它向整個液壓系統提供動力。液壓泵的結構形式一般有齒輪泵、葉片泵、柱塞泵和螺桿泵。
執行元件
執行元件(如液壓缸和液壓馬達)的作用是將液體的壓力能轉換為機械能,驅動負載作直線往復運動或回轉運動。
控制元件
控制元件(即各種液壓閥)在液壓系統中控制和調節液體的壓力、流量和方向。根據控制功能的不同,液壓閥可分為壓力控制閥、流量控制閥和方向控制閥。壓力控制閥包括溢流閥(安全閥)、減壓閥、順序閥、壓力繼電器等;流量控制閥包括節流閥、調整閥、分流集流閥等;方向控制閥包括單向閥、液控單向閥、梭閥、換向閥等。根據控制方式不同,液壓閥可分為開關式控制閥、定值控制閥和比例控制閥。
輔助元件
輔助元件包括油箱、濾油器、冷卻器、加熱器、蓄能器、油管及管接頭、密封圈、快換接頭、高壓球閥、膠管總成、測壓接頭、壓力表、油位計、油溫計等。
液壓油
液壓油是液壓系統中傳遞能量的工作介質,有各種礦物油、乳化液和合成型液壓油等幾大類。
⑺ 液力耦合器基本工作原理
液力耦合器的結構與工作原理
1、液力耦合器的結構組成
液力耦合器是一種液力傳動裝置,又稱液力聯軸器。在不考慮機械損失的情況下,輸出力矩與輸入力矩相等。它的主要功能有兩個方面,一是防止發動機過載,二是調節工作機構的轉速。其結構主要由殼體、泵輪、渦輪三個部分組成。
液力耦合器的殼體安裝在發動機飛輪上,泵輪與殼體焊接在一起,隨發動機曲軸的轉動而轉動,是液力耦合器的主動部分:渦輪和輸出軸連接在一起,是液力耦合器的從動部分。泵輪和渦輪相對安裝,統稱為工作輪。在泵輪和渦輪上有徑向排列的平直葉片,泵輪和渦輪互不接觸。兩者之間有一定的間隙(約3mm~4mm);泵輪與渦輪裝合成一個整體後,其軸線斷面一般為圓形,在其內腔中充滿液壓油。
2、液力耦合器的工作原理
當發動機運轉時,曲軸帶動液力耦合器的殼體和泵輪一同轉動,泵輪葉片內的液壓油在泵輪的帶動下隨之一同旋轉,在離心力的作用下,液壓油被甩向泵輪葉片外緣處,並在外緣處沖向渦輪葉片,使渦輪在液壓沖擊力的作用下旋轉;沖向渦輪葉片的液壓油沿渦輪葉片向內緣流動,返回到泵輪內緣的液壓油,又被泵輪再次甩向外緣。液壓油就這樣從泵輪流向渦輪,又從渦輪返回到泵輪而形成循環的液流。
液力耦合器中的循環液壓油,在從泵輪葉片內緣流向外緣的過程中,泵輪對其作功,其速度和動能逐漸增大;而在從渦輪葉片外緣流向內緣的過程中,液壓油對渦輪作功,其速度和動能逐漸減小。液力耦合器要實現傳動,必須在泵輪和渦輪之間有油液的循環流動。而油液循環流動的產生,是由於泵輪和渦輪之間存在著轉速差,使兩輪葉片外緣處產生壓力差所致。如果泵輪和渦輪的轉速相等,則液力耦合器不起傳動作用。因此,液力耦合器工作時,發動機的動能通過泵輪傳給液壓油,液壓油在循環流動的過程中又將動能傳給渦輪輸出。由於在液力耦合器內只有泵輪和渦輪兩個工作輪,液壓油在循環流動的過程中,除了受泵輪和渦輪之間的作用力之外,沒有受到其他任何附加的外力。根據作用力與反作用力相等的原理,液壓油作用在渦輪上的扭矩應等於泵輪作用在液壓油上的扭矩,即發動機傳給泵輪的扭矩與渦輪上輸出的扭矩相等,這就是液力耦合器的傳動特點
⑻ 「液力傳動汽車」de「液力傳動」是怎麼回事
液壓傳動,一般都是指靜液傳動,利用的是液體的壓力,就象你理解的一樣
液力傳動,利用的是液體的速度(動量)
你知道離心式水泵吧?離心水泵就是葉輪把水轉起來,讓水獲得速度,然後甩出去(這種說法不太專業化,便於你的理解)
你知道水力發電的渦輪機嗎?渦輪機就是利用流動的水沖擊葉輪,讓葉輪轉起來。
汽車里的液力傳動,就是在發動機和變速箱之間,加一個液力變矩器或液力耦合器。變矩器改變速比,耦合器不改變速比。
變矩器和耦合器的原理,就是上面說的水泵和渦輪機結合在一起,起水泵作用的叫泵輪,起渦輪機作用的叫渦輪,變矩器還有導輪,改變扭矩,改變速比。都帶葉片。實現軸的能量-液體的能量-軸的能量的轉換。
行走機械使用液力變矩器的優點是:
1。發動機和傳動系統柔性結合,減少對發動機的沖擊,發動機壽命延長
2。車輪突然堵轉時,發動機不會熄火
3。實現無級變速
4。便於實現自動換擋
缺點:因為增加了能量的轉換次數,能量利用率偏低,比純機械傳動多浪費約10%以上的能量。這就是人們覺得同樣功率的自動檔車多費一個油,太「肉」(動力性不足)
大多數自動檔車採用液力傳動
⑼ 液力傳動的液力傳動裝置
液力傳動裝置是以液體為工作介質以液體的動能來實現能量傳遞的裝置,常見的有液力耦合器、液力變矩器和液力機械元件。
目前,液力傳動元件主要有液力元件和液力機械兩大類。液力元件有液力耦合器和液力變矩器;液力機械裝置是液力傳動裝置與機械傳動裝置組合而成的,因此,它既具有液力傳動變矩性能好的特點,又具有機械傳動效率高的特徵。
液力傳動裝置主要由三個關鍵部件組成,即泵輪、渦輪、導輪。
泵輪:能量輸入部件,它能接受原動機傳來的機械能並將其轉換為液體的動能;
渦輪:能量輸出部分,它將液體的動能轉換為機械能而輸出;
導輪:液體導流部件,它對流動的液體導向,使其根據一定的要求,按照一定的方向沖擊泵輪的葉片。 下圖a是液力變矩器的實物模型圖,圖b是其結構原理簡圖。它主要由泵輪、渦輪、導輪等構成。泵輪、渦輪分別與主動軸、從動軸連接,導輪則與殼體固定在一起不能轉動。當液力變矩器工作時,因導輪D對液體的作用,而使液力變矩器輸入力矩與輸出力矩不相等。當傳動比小時,輸出力矩大,輸出轉速低;反之,輸出力矩小而轉速高。它可以隨著負載的變化自動增大或減小輸出力矩與轉速。因此,液力變矩器是一個無級力矩變換器。
下面以目前廣泛使用的三元件綜合式液力變矩器來具體說明其工作原理。
如圖4所示,泵輪與變矩器外殼連為一體,是主動元件;渦輪通過花鍵與輸出軸相連,是從動元件;導輪置於泵輪和渦輪之間,通過單向離合器及導輪軸套固定在變速器外殼上。
發動機啟動後,曲軸通過飛輪帶動泵輪旋轉,因旋轉產生的離心力使泵輪葉片間的工作液沿葉片從內緣向外緣甩出;這部分工作液既具有隨泵輪一起轉動的園周向的分速度,又有沖向渦輪的軸向分速度。這些工作液沖擊渦輪葉片,推動渦輪與泵輪同方向轉動。
從渦輪流出工作液的速度可以看為工作液相對於渦輪葉片表面流出的切向速度與隨渦輪一起轉動的圓周速度的合成。當渦輪轉速比較小時,從渦輪流出的工作液是向後的,工作液沖擊導輪葉片的前面。因為導輪被單向離合器限定不能向後轉動,所以導輪葉片將向後流動的工作液導向向前推動泵輪葉片,促進泵輪旋轉,從而使作用於渦輪的轉矩增大。
隨著渦輪轉速的增加,圓周速度變大,當切向速度與圓周速度的合速度開始指向導輪葉片的背面時,變矩器到達臨界點。當渦輪轉速進一步增加時,工作液將沖擊導輪葉片的背面。因為單向離合器允許導輪與泵輪一同向前旋轉,所以在工作液的帶動下,導輪沿泵輪轉動方向自由旋轉,工作液順利地迴流到泵輪。當從渦輪流出的工作液正好與導輪葉片出口方向一致時,變矩器不產生增扭作用(這時液力變矩器的工況稱為液力偶合工況)。
液力耦合器其實是一種非剛性聯軸器,液力變矩器實質上是一種力矩變換器。它們所傳遞的功率大小與輸入軸轉速的3次方、與葉輪尺寸的5次方成正比。傳動效率在額定工況附近較高:耦合器約為96~98.5%,變矩器約為85~92%。偏離額定工況時效率有較大的下降。根據使用場合的要求,液力傳動可以是單獨使用的液力變矩器或液力耦合器;也可以與齒輪變速器聯合使用,或與具有功率分流的行星齒輪差速器(見行星齒輪傳動)聯合使用。與行星齒輪差速器聯合組成的常稱為液力-機械傳動。
液力傳動裝置的整體性能跟它與原動機的匹配情況有關。若匹配不當便不能獲得良好的傳動性能。因此,應對總體動力性能和經濟性能進行分析計算,在此基礎上設計整個液力傳動裝置。為了構成一個完整的液力傳動裝置,還需要配備相應的供油、冷卻和操作控制系統。
⑽ 液力傳動主要是利用什麼的傳動
以液體為工作介質,利用液體動能來傳遞能量的流體傳動。
葉輪將動力機(內燃機、電動機、渦輪機等)輸入的轉速、力矩加以轉換,經輸出軸帶動機器的工作部分。液體與裝在輸入軸、輸出軸、殼體上的各葉輪相互作用,產生動量矩的變化,從而達到傳遞能量的目的。液力傳動與靠液體壓力能來傳遞能量的液壓傳動在原理、結構和性能上都有很大差別。液力傳動的輸入軸與輸出軸之間只靠液體為工作介質聯系,構件間不直接接觸,是一種非剛性傳動。液力傳動的優點是:能吸收沖擊和振動,過載保護性好,甚至在輸出軸卡住時動力機仍能運轉而不受損傷,帶載荷起動容易,能實現自動變速和無級調速等。因此它能提高整個傳動裝置的動力性能。
液力傳動開始應用於船舶內燃機與螺旋槳間的傳動。20世紀30年代後很快在車輛(各種汽車、履帶車輛和機車)、工程機械、起重運輸機械、鑽探設備、大型鼓風機、泵和其他沖擊大、慣性大的傳動裝置上廣泛應用。