㈠ 超聲波感測器的測量精度受到哪些因素影響
如果說是測量精度的話,主要是受溫度,壓力,濕度,氣體成分的影響。溫度和氣體成分是影響最大的。粉塵,蒸汽等會影響測量范圍。粉塵蒸汽大的環境,量程會大大的縮短。
對被測物要求:檢測時不接觸被測物,對被測物顏色。透明度無要求,被測物不能是聲音吸收材料(如海綿等),被測物形狀不能影響聲波的反射,如果被測物是聲音吸收材料或被測物形狀影響聲波的反射,則必須配反射器(可以是機器上任何平坦堅硬的部分)構成反射系統進行檢測。
組成部分
常用的超聲波感測器由壓電晶片組成,既可以發射超聲波,也可以接收超聲波。小功率超聲探頭多作探測作用。它有許多不同的結構,可分直探頭(縱波)、斜探頭(橫波)、表面波探頭(表面波)、蘭姆波探頭(蘭姆波)、雙探頭(一個探頭發射、一個探頭接收)等。
超聲探頭的核心是其塑料外套或者金屬外套中的一塊壓電晶片。構成晶片的材料可以有許多種。晶片的大小,如直徑和厚度也各不相同,因此每個探頭的性能是不同的,我們使用前必須預先了解它的性能。
以上內容參考:網路-超聲波感測器
㈡ 給我一篇關於超聲波的論文
摘要]本文主要介紹了超聲波的特點,超聲波感測器的原理與應用等多個方面。文中闡述了超聲波與可聽聲波的區別,超聲波感測器在醫療,工業生產,液位測量,測距系統等多個領域中得到了廣泛的應用。因超聲波具有的獨特的特性,使得超聲波感測器越來越在生產生活中體現了其重要性,具有一定的研究價值。
[關鍵詞]超聲波 感測器 疾病診斷 測距系統 液位測量
一、超聲波感測器概述
1.超聲波
聲波是物體機械振動狀態的傳播形式。超聲波是指振動頻率大於20000Hz以上的聲波,其每秒的振動次數很高,超出了人耳聽覺的上限,人們將這種聽不見的聲波叫做超聲波。超聲波是一種在彈性介質中的機械振盪,有兩種形式:橫向振盪(橫波)及縱向振盪(縱波)。在工業中應用主要採用縱向振盪。超聲波可以在氣體、液體及固體中傳播,其傳播速度不同。另外,它也有折射和反射現象,並且在傳播過程中有衰減。超聲波在媒質中的反射、折射、衍射、散射等傳播規律,與可聽聲波的規律並沒有本質上的區別。與可聽聲波比較,超聲波具有許多奇異特性:傳播特性──超聲波的衍射本領很差,它在均勻介質中能夠定向直線傳播,超聲波的波長越短,這一特性就越顯著。功率特性──當聲音在空氣中傳播時,推動空氣中的微粒往復振動而對微粒做功。在相同強度下,聲波的頻率越高,它所具有的功率就越大。由於超聲波頻率很高,所以超聲波與一般聲波相比,它的功率是非常大的。空化作用──當超聲波在液體中傳播時,由於液體微粒的劇烈振動,會在液體內部產生小空洞。這些小空洞迅速脹大和閉合,會使液體微粒之間發生猛烈的撞擊作用,從而產生幾千到上萬個大氣壓的壓強。微粒間這種劇烈的相互作用,會使液體的溫度驟然升高,從而使兩種不相溶的液體(如水和油)發生乳化,並且加速溶質的溶解,加速化學反應。這種由超聲波作用在液體中所引起的各種效應稱為超聲波的空化作用。
超聲波的特點:(1)超聲波在傳播時,方向性強,能量易於集中;(2)超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離;(3)超聲波與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應)。
2.超聲波感測器
超聲波感測器是利用超聲波的特性研製而成的感測器。以超聲波作為檢測手段,必須產生超聲波和接收超聲波。完成這種功能的裝置就是超聲波感測器,習慣上稱為超聲換能器,或者超聲探頭。
超聲波探頭主要由壓電晶片組成,既可以發射超聲波,也可以接收超聲波。超聲探頭的核心是其塑料外套或者金屬外套中的一塊壓電晶片。構成晶片的材料可以有許多種。超聲波感測器主要材料有壓電晶體(電致伸縮)及鎳鐵鋁合金(磁致伸縮)兩類。電致伸縮的材料有鋯鈦酸鉛(PZT)等。壓電晶體組成的超聲波感測器是一種可逆感測器,它可以將電能轉變成機械振盪而產生超聲波,同時它接收到超聲波時,也能轉變成電能,所以它可以分成發送器或接收器。有的超聲波感測器既作發送,也能作接收。 超聲波感測器由發送感測器(或稱波發送器)、接收感測器(或稱波接收器)、控制部分與電源部分組成。發送器感測器由發送器與使用直徑為15mm左右的陶瓷振子換能器組成,換能器作用是將陶瓷振子的電振動能量轉換成超能量並向空中幅射;而接收感測器由陶瓷振子換能器與放大電路組成,換能器接收波產生機械振動,將其變換成電能量,作為感測器接收器的輸出,從而對發送的超進行檢測。控制部分主要對發送器發出的脈沖鏈頻率、占空比及稀疏調制和計數及探測距離等進行控制。二、超聲波感測器的應用
1.超聲波距離感測器技術的應用
超聲波感測器包括三個部分:超聲換能器、處理單元和輸出級。首先處理單元對超聲換能器加以電壓激勵,其受激後以脈沖形式發出超聲波,接著超聲換能器轉入接受狀態,處理單元對接收到的超聲波脈沖進行分析,判斷收到的信號是不是所發出的超聲波的回聲。如果是,就測量超聲波的行程時間,根據測量的時間換算為行程,除以2,即為反射超聲波的物體距離。把超聲波感測器安裝在合適的位置,對准被測物變化方向發射超聲波,就可測量物體表面與感測器的距離。超聲波感測器有發送器和接收器,但一個超聲波感測器也可具有發送和接收聲波的雙重作用。超聲波感測器是利用壓電效應的原理將電能和超聲波相互轉化,即在發射超聲波的時候,將電能轉換,發射超聲波;而在收到回波的時候,則將超聲振動轉換成電信號。
2.超聲波感測器在醫學上的應用
超聲波在醫學上的應用主要是診斷疾病,它已經成為了臨床醫學中不可缺少的診斷方法。超聲波診斷的優點是:對受檢者無痛苦、無損害、方法簡便、顯像清晰、診斷的准確率高等。
3.超聲波感測器在測量液位的應用
超聲波測量液位的基本原理是:由超聲探頭發出的超聲脈沖信號,在氣體中傳播,遇到空氣與液體的界面後被反射,接收到回波信號後計算其超聲波往返的傳播時間,即可換算出距離或液位高度。超聲波測量方法有很多其它方法不可比擬的優點:(1)無任何機械傳動部件,也不接觸被測液體,屬於非接觸式測量,不怕電磁干擾,不怕酸鹼等強腐蝕性液體等,因此性能穩定、可靠性高、壽命長;(2)其響應時間短可以方便的實現無滯後的實時測量。
4.超聲波感測器在測距系統中的應用
超聲測距大致有以下方法:①取輸出脈沖的平均值電壓,該電壓 (其幅值基本固定)與距離成正比,測量電壓即可測得距離;②測量輸出脈沖的寬度,即發射超聲波與接收超聲波的時間間隔 t,故被測距離為 S=1/2vt。如果測距精度要求很高,則應通過溫度補償的方法加以校正。超聲波測距適用於高精度的中長距離測量。
三、小結
文章主要從超聲波與可聽聲波相比所具有的特性出發,討論了超聲波感測器的原理與特點,並由此總結了超聲波感測器在生產生活各個方面的廣泛應用。但是,超聲波感測器也存在自身的不足,比如反射問題,雜訊問題的等等。因此對超聲波感測器的更深一步的研究與學習,仍具有很大的價值。
參考文獻:
[1]單片機原理及其介面技術.清華大學出版社.
[2]栗桂鳳,周東輝,王光昕.基於超聲波感測器的機器人環境探測系統.2005,(04).
[3]童敏明,唐守鋒.檢測與轉換技術.中國礦業大學出版社.
[4]王松,鄭正奇,鄒晨禕.超聲定位車輛路徑監測系統的設計.2006,(10).
[5]俞志根,李天真,童炳金.自動檢測技術實訓教程.清華大學出版社.
轉貼於 中國論文下載中心 http://www.studa.net
㈢ 超聲波感測器的工作原理
超聲波感測器的工作原理:
超聲波感測器由發送感測器(或稱波發送器)、接收感測器(或稱波接收器)、控制部分與電源部分組成。發送器感測器由發送器與使用直徑為15mm左右的陶瓷振子換能器組成,換能器作用是將陶瓷振子的電振動能量轉換成超能量並向空中輻射;而接收感測器由陶瓷振子換能器與放大電路組成,換能器接收波產生機械振動,將其變換成電能量,作為感測器接收器的輸出,從而對發送的超進行檢測.而實際使用中,用作發送感測器的陶瓷振子也可以用作接收器感測器社的陶瓷振子。控制部分主要對發送器發出的脈沖鏈頻率、占空比及稀疏調制和計數及探測距離等進行控制。
簡介:
超聲波感測器是利用超聲波的特性研製而成的感測器。超聲波是一種振動頻率高於聲波的機械波,由換能晶片在電壓的激勵下發生振動產生的,它具有頻率高、波長短、繞射現象小,特別是方向性好,能夠成為射線而定向傳播等特點。超聲波感測器可以對集裝箱狀態進行探測,可以應用於食品加工廠,實現塑料包裝檢測的閉環控制系統。超聲波感測器對透明或有色物體,金屬或非金屬物體,固體、液體、粉狀物質均能檢測。
主要應用:
超聲波感測技術應用在生產實踐的不同方面,而醫學應用是其最主要的應用之一,下面以醫學為例子說明超聲波感測技術的應用。超聲波在醫學上的應用主要是診斷疾病,它已經成為了臨床醫學中不可缺少的診斷方法。超聲波診斷的優點是:對受檢者無痛苦、無損害、方法簡便、顯像清晰、診斷的准確率高等。因而推廣容易,受到醫務工作者和患者的歡迎。超聲波診斷可以基於不同的醫學原理,我們來看看其中有代表性的一種所謂的A型方法。這個方法是利用超聲波的反射。當超聲波在人體組織中傳播遇到兩層聲阻抗不同的介質界面時,在該界面就產生反射回聲。每遇到一個反射面時,回聲在示波器的屏幕上顯示出來,而兩個界面的阻抗差值也決定了回聲的振幅的高低。
在工業方面,超聲波的典型應用是對金屬的無損探傷和超聲波測厚兩種。過去,許多技術因為無法探測到物體組織內部而受到阻礙,超聲波感測技術的出現改變了這種狀況。當然更多的超聲波感測器是固定地安裝在不同的裝置上,「悄無聲息」地探測人們所需要的信號。在未來的應用中,超聲波將與信息技術、新材料技術結合起來,將出現更多的智能化、高靈敏度的超聲波感測器。
超聲波對液體、固體的穿透本領很大,尤其是在不透明的固體中,它可穿透幾十米的深度。
超聲波碰到雜質或分界面會產生顯著反射形成反射成回波,碰到活動物體能產生多普勒效應。因此超聲波檢測廣泛應用在工業、國防、生物醫學等方面。
超聲波距離感測器可以廣泛應用在物位(液位)監測,機器人防撞,各種超聲波接近開關,以及防盜報警等相關領域,工作可靠,安裝方便, 防水型,發射夾角較小,靈敏度高,方便與工業顯示儀表連接,也提供發射夾角較大的探頭。
㈣ 超聲波測距感測器的原理是什麼
1. 超聲波發生器
為了研究和利用超聲波,人們設計和製造了許多超聲波發生器。一般來說,超聲波發生器可以分為兩類:一類是電產生超聲波,另一類是機械產生超聲波。電方法有壓電、磁致伸縮、電等;機械方法有高爾通笛、水笛、氣笛。它們產生的超聲波的頻率、功率、聲波特性不同,所以它們的用途也不同。目前,比較常用的是壓電式超聲波發生器。
2. 壓電超聲發生器原理
壓電超聲波發生器實際上是利用壓電晶體的共振來工作。超聲發生器內部結構有兩個壓電晶片和一個諧振板。當脈沖信號作用於壓電晶片的兩極,其頻率等於壓電晶片的固有振盪頻率時,壓電晶片將產生共振,並驅動諧振板振動,產生超聲波。反之,如果兩電極之間不加電壓,當共振板接收到超聲波時,就會壓壓電片振動,將機械能轉化為電信號,從而成為超聲波接收器。
3.超聲波測距原理
超聲波發射器按一定方向發射超聲波,並與發射時間同時計時。超聲波在空氣中傳播,在途中遇到障礙物後立即返回。超聲波接收器接收到反射波後立即停止計時。超聲波在空氣中的傳播速度為340m/s。根據計時器記錄的時間t,可以計算出發射點到障礙物的距離s,即s=340t/2。這就是所謂的時差測距法。
超聲波測距的原理是使用空氣中超聲波的傳播速度是已知的,測量時間當聲波遇到障礙物後反射傳播,並計算實際距離的傳送點障礙基於發射和接收之間的時間差異。由此可見,超聲波測距原理與雷達測距原理是相同的。
測距公式表示為:L=C×T
式中,L為測量的距離長度;C為超聲波在空氣中的傳播速度;T為測量距離傳播的時間差(T為發射到接收時間值的一半)。
超聲波測距主要用於倒車提醒、建築工地、工業工地等場所的距離測量。目前距離測量范圍雖然可以達到100米,但測量精度只能達到厘米量級。
超聲波具有定向發射容易、方向性好、強度易於控制、不與被測物體直接接觸等優點,是一種理想的液體高度測量方法。在精密的液位測量中需要達到毫米級的測量精度,但目前國內超聲波測距專用集成電路只有厘米級的測量精度。
㈤ 基於PLC原理的電子產品有哪幾種其原理是什麼
基於PLC原理的電子產品可多了,現在工控行業很多產品都是PLC來控制的,所以無法一一舉例呀,下面就說一個超聲波測漏儀吧,它也是利用PLC來進行控制設計的,其原理是: 超聲波氣密性檢測是通過探測漏氣產生的氣泡觸及超聲波後的反射聲波實現的。通過測量氣泡上升的時間,氣泡與感測器之間的距離,根據聲波在水中的傳播的速度計算,可以方便地發現氣泡並對漏氣位置進行定位。
㈥ 超聲波感測器在防盜中的應用
超聲波感測器 超聲波感測器是利用超聲波的特性研製而成的感測器。超聲波是一種振動頻率高於聲波的機械波,由換能晶片在電壓的激勵下發生振動產生的,它具有頻率高、波長短、繞射現象小,特別是方向性好、能夠成為射線而定向傳播等特點。超聲波對液體、固體的穿透本領很大,尤其是在陽光不透明的固體中,它可穿透幾十米的深度。超聲波碰到雜質或分界面會產生顯著反射形成反射成回波,碰到活動物體能產生多普勒效應。因此超聲波檢測廣泛應用在工業、國防、生物醫學等方面。
以超聲波作為檢測手段,必須產生超聲波和接收超聲波。完成這種功能的裝置就是超聲波感測器,習慣上稱為超聲換能器,或者超聲探頭。
超聲波探頭主要由壓電晶片組成,既可以發射超聲波,也可以接收超聲波。小功率超聲探頭多作探測作用。它有許多不同的結構,可分直探頭(縱波)、斜探頭(橫波)、表面波探頭(表面波)、蘭姆波探頭(蘭姆波)、雙探頭(一個探頭反射、一個探頭接收)等。
超聲探頭的核心是其塑料外套或者金屬外套中的一塊壓電晶片。構成晶片的材料可以有許多種。晶片的大小,如直徑和厚度也各不相同,因此每個探頭的性能是不同的,我們使用前必須預先了解它的性能。超聲波感測器的主要性能指標包括:
(1)工作頻率。工作頻率就是壓電晶片的共振頻率。當加到它兩端的交流電壓的頻率和晶片的共振頻率相等時,輸出的能量最大,靈敏度也最高。
(2)工作溫度。由於壓電材料的居里點一般比較高,特別時診斷用超聲波探頭使用功率較小,所以工作溫度比較低,可以長時間地工作而不失效。醫療用的超聲探頭的溫度比較高,需要單獨的製冷設備。
(3)靈敏度。主要取決於製造晶片本身。機電耦合系數大,靈敏度高;反之,靈敏度低。
超聲波感測技術應用在生產實踐的不同方面,而醫學應用是其最主要的應用之一,下面以醫學為例子說明超聲波感測技術的應用。超聲波在醫學上的應用主要是診斷疾病,它已經成為了臨床醫學中不可缺少的診斷方法。超聲波診斷的優點是:對受檢者無痛苦、無損害、方法簡便、顯像清晰、診斷的准確率高等。因而推廣容易,受到醫務工作者和患者的歡迎。超聲波診斷可以基於不同的醫學原理,我們來看看其中有代表性的一種所謂的A型方法。這個方法是利用超聲波的反射。當超聲波在人體組織中傳播遇到兩層聲阻抗不同的介質界面是,在該界面就產生反射回聲。每遇到一個反射面時,回聲在示波器的屏幕上顯示出來,而兩個界面的阻抗差值也決定了回聲的振幅的高低。
在工業方面,超聲波的典型應用是對金屬的無損探傷和超聲波測厚兩種。過去,許多技術因為無法探測到物體組織內部而受到阻礙,超聲波感測技術的出現改變了這種狀況。當然更多的超聲波感測器是固定地安裝在不同的裝置上,「悄無聲息」地探測人們所需要的信號。在未來的應用中,超聲波將與信息技術、新材料技術結合起來,將出現更多的智能化、高靈敏度的超聲波感測器。