導航:首頁 > 裝置知識 > 飛機的起落裝置有什麼作用

飛機的起落裝置有什麼作用

發布時間:2021-11-14 08:31:16

① 飛機的兩側張開的四張類似翅膀的裝置,它的作用是什麼

沒看明白你的問題 你也說在機翼的具體哪個位置 機翼上的小翅膀種類至少有5種 你說的是機翼上面會翹起來的幾個小翅膀是嗎? 是的話那個是大型飛機和客機才有的東西 戰斗機不在機翼上 在機身頂部通常 這東西叫做擾流板 是用來擾亂機翼上的氣流的 讓大型飛機快速的失去升力 擾流板分為空中擾流板和地面擾流板 在空中需要快速下降的時候用空中擾流板 落地後一個大飛機上百噸你讓它慣性消失後自己停下來 跑道夠長不都不知道 所以客機你可以看到降落後馬上開啟地面擾流板 好讓飛機所有的重量都壓在起落架上 (不然只要飛機向前運動都會給機翼帶來升力的) 增加輪胎的摩擦力 起到快速制動的效果

② 飛機是運用什麼原理製造的

復雜喲朋友,希望對你有幫助望採納謝謝!
飛行原理簡介(一)

要了解飛機的飛行原理就必須先知道飛機的組成以及功用,飛機的升力是如何產生的等問題。這些問題將分成幾個部分簡要講解。

一、飛行的主要組成部分及功用

到目前為止,除了少數特殊形式的飛機外,大多數飛機都由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成:

1. 機翼——機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。機翼上還可安裝發動機、起落架和油箱等。不同用途的飛機其機翼形狀、大小也各有不同。

2. 機身——機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。

3. 尾翼——尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,有的高速飛機將水平安定面和升降舵合為一體成為全動平尾。垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。

4.起落裝置——飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支撐飛機。

5.動力裝置——動力裝置主要用來產生拉力和推力,使飛機前進。其次還可為飛機上的其他用電設備提供電源等。現在飛機動力裝置應用較廣泛的有:航空活塞式發動機加螺旋槳推進器、渦輪噴氣發動機、渦輪螺旋槳發動機和渦輪風扇發動機。除了發動機本身,動力裝置還包括一系列保證發動機正常工作的系統。

飛機上除了這五個主要部分外,根據飛機操作和執行任務的需要,還裝有各種儀表、通訊設備、領航設備、安全設備等其他設備。

二、飛機的升力和阻力

飛機是重於空氣的飛行器,當飛機飛行在空中,就會產生作用於飛機的空氣動力,飛機就是靠空氣動力升空飛行的。在了解飛機升力和阻力的產生之前,我們還要認識空氣流動的特性,即空氣流動的基本規律。流動的空氣就是氣流,一種流體,這里我們要引用兩個流體定理:連續性定理和伯努利定理:

流體的連續性定理:當流體連續不斷而穩定地流過一個粗細不等的管道時,由於管道中任何一部分的流體都不能中斷或擠壓起來,因此在同一時間內,流進任一切面的流體的質量和從另一切面流出的流體質量是相等的。

連續性定理闡述了流體在流動中流速和管道切面之間的關系。流體在流動中,不僅流速和管道切面相互聯系,而且流速和壓力之間也相互聯系。伯努利定理就是要闡述流體流動在流動中流速和壓力之間的關系。

伯努利定理基本內容:流體在一個管道中流動時,流速大的地方壓力小,流速小的地方壓力大。

飛機的升力絕大部分是由機翼產生,尾翼通常產生負升力,飛機其他部分產生的升力很小,一般不考慮。從上圖我們可以看到:空氣流到機翼前緣,分成上、下兩股氣流,分別沿機翼上、下表面流過,在機翼後緣重新匯合向後流去。機翼上表面比較凸出,流管較細,說明流速加快,壓力降低。而機翼下表面,氣流受阻擋作用,流管變粗,流速減慢,壓力增大。這里我們就引用到了上述兩個定理。於是機翼上、下表面出現了壓力差,垂直於相對氣流方向的壓力差的總和就是機翼的升力。這樣重於空氣的飛機藉助機翼上獲得的升力克服自身因地球引力形成的重力,從而翱翔在藍天上了。

機翼升力的產生主要靠上表面吸力的作用,而不是靠下表面正壓力的作用,一般機翼上表面形成的吸力占總升力的60-80%左右,下表面的正壓形成的升力只佔總升力的20-40%左右。

飛機飛行在空氣中會有各種阻力,阻力是與飛機運動方向相反的空氣動力,它阻礙飛機的前進,這里我們也需要對它有所了解。按阻力產生的原因可分為摩擦阻力、壓差阻力、誘導阻力和干擾阻力。

1.摩擦阻力——空氣的物理特性之一就是粘性。當空氣流過飛機表面時,由於粘性,空氣同飛機表面發生摩擦,產生一個阻止飛機前進的力,這個力就是摩擦阻力。摩擦阻力的大小,決定於空氣的粘性,飛機的表面狀況,以及同空氣相接觸的飛機表面積。空氣粘性越大、飛機表面越粗糙、飛機表面積越大,摩擦阻力就越大。

2.壓差阻力——人在逆風中行走,會感到阻力的作用,這就是一種壓差阻力。這種由前後壓力差形成的阻力叫壓差阻力。飛機的機身、尾翼等部件都會產生壓差阻力。

3.誘導阻力——升力產生的同時還對飛機附加了一種阻力。這種因產生升力而誘導出來的阻力稱為誘導阻力,是飛機為產生升力而付出的一種「代價」。其產生的過程較復雜這里就不在詳訴。

4.干擾阻力——它是飛機各部分之間因氣流相互干擾而產生的一種額外阻力。這種阻力容易產生在機身和機翼、機身和尾翼、機翼和發動機短艙、機翼和副油箱之間。

以上四種阻力是對低速飛機而言,至於高速飛機,除了也有這些阻力外,還會產生波阻等其他阻力。

三、影響升力和阻力的因素

升力和阻力是飛機在空氣之間的相對運動中(相對氣流)中產生的。影響升力和阻力的基本因素有:機翼在氣流中的相對位置(迎角)、氣流的速度和空氣密度以及飛機本身的特點(飛機表面質量、機翼形狀、機翼面積、是否使用襟翼和前緣翼縫是否張開等)。

1.迎角對升力和阻力的影響——相對氣流方向與翼弦所夾的角度叫迎角。在飛行速度等其它條件相同的情況下,得到最大升力的迎角,叫做臨界迎角。在小於臨界迎角范圍內增大迎角,升力增大:超過臨界臨界迎角後,再增大迎角,升力反而減小。迎角增大,阻力也越大,迎角越大,阻力增加越多:超過臨界迎角,阻力急劇增大。

2.飛行速度和空氣密度對升力阻力的影響——飛行速度越大升力、阻力越大。升力、阻力與飛行速度的平方成正比例,即速度增大到原來的兩倍,升力和阻力增大到原來的四倍:速度增大到原來的三倍,勝利和阻力也會增大到原來的九倍。空氣密度大,空氣動力大,升力和阻力自然也大。空氣密度增大為原來的兩倍,升力和阻力也增大為原來的兩倍,即升力和阻力與空氣密度成正比例。

3,機翼面積,形狀和表面質量對升力、阻力的影響——機翼面積大,升力大,阻力也大。升力和阻力都與機翼面積的大小成正比例。機翼形狀對升力、阻力有很大影響,從機翼切面形狀的相對厚度、最大厚度位置、機翼平面形狀、襟翼和前緣翼縫的位置到機翼結冰都對升力、阻力影響較大。還有飛機表面光滑與否對摩擦阻力也會有影響,飛機表面相對光滑,阻力相對也會較小,反之則大.

③ 民航客機起落裝置大多都是可收放式的對嗎

飛機起落架系統簡介;起落架是飛機的重要部件,用來保證飛機在地面靈活運;後三點式起落架具有以下優點:(1)在飛機上易於裝;時的姿態與地面滑跑、停機時的姿態相同;暴露出了越來越多的缺點:(1)在大速度滑跑時,遇;(3)在起飛、降落滑跑時是不穩定的;前三點式起落架的主要優點有:1)著陸簡單,安全可靠;接地時,作用在主輪的撞擊力使迎角急劇減小,因而不;2)前起落架。
起落架是飛機的重要部件,用來保證飛機在地面靈活運動,減小飛機著陸撞擊與顛簸,滑行剎車減速;收上起落架減小飛行阻力,放下支持飛機。本文將簡要介紹現代民用飛機起落架的組成及工作。 一、起落架的作用 起落架就是飛機在地面停放、滑行、起飛著陸滑跑時用於支撐飛機重力,承受相應載荷的裝置。概括起來,起落架的主要作用有以下四個: 1、承受飛機在地面停放、滑行、起飛著陸滑跑時的重力; 2、承受、消耗和吸收飛機在著陸與地面運動時的撞擊和顛簸能量;3、滑跑與滑行時的制動;4、滑跑與滑行時操縱飛機。二、起落架的配置形式 起落架的布置形式是指飛機起落架支柱(支點)的數目和其相對於飛機重心的布置特點。目前,飛機上通常採用四種起落架形式: 1、後三點式:這種起落架有一個尾支柱和兩個主起落架。並且飛機的重心在主起落架之後。後三點式起落架的結構簡單,適合於低速飛機,因此在四十年代中葉以前曾得到廣泛的應用。目前這種形式的起落架主要應用於裝有活塞式發動機的輕型、超輕型低速飛機上。

④ 關於飛機的基本常識以及最新飛機的功能

希望能幫到你飛機的基本常識飛機(Aircraft,plane,aeroplane, airplane, aeronef, aeroplane, flying machine),
指具有機翼和一具或多具發動機,靠自身動力能在大氣中飛行的重於空氣的航空器。
飛機具有兩個最基本的特徵:其一是它自身的密度比空氣大,並且它是由動力驅動前進;其二是飛機有固定的機翼,機翼提供升力使飛機翱翔於天空。不具備以上特徵者不能稱之為飛機,這兩條缺一不可。譬如:一個飛行器它的密度小於空氣,那它就是氣球或飛艇;如果沒有動力裝置、只能在空中滑翔,則被稱為滑翔機;飛行器的機翼如果不固定,靠機翼旋轉產生升力,就是直升機或旋翼機。因此飛機的精確定義就是:飛機是有動力驅動的有固定機翼的而且重於空氣的航空器。
為了使讀者頭腦中對飛機有更明確的認識,我在這里澄清幾個容易混淆的名詞。在有些報刊上可見到「固定翼航空器」、 「固定翼飛機」等說法,實際上所指的都是飛機。但是這些名詞都不是准確的說法。因為「固定翼航空器」包括飛機和滑翔機,而「固定翼飛機」則是一個重復的稱呼,因為「飛機」就已經包含了固定翼的內容。更常聽到很多人說「直升飛機」,這也很不妥當,因為直升機是使用旋翼提供升力的,它和飛機屬於完全不同的航空器類型。

分類
飛機不僅廣泛應用與民用運輸和科學研究,還是現代軍事里的重要武器,所以又分為民用飛機和軍用飛機。
民用飛機除客機和運輸機以外還有農業機、森林防護機、航測機、醫療救護機、游覽機、公務機、體育機,試驗研究機、氣象機、特技表演機、執法機等。
飛機還可按組成部件的外形、數目和相對位置進行分類。按機翼的數目,可分為單翼機、雙翼機和多翼機。按機翼相對於機身的位置,可分為下單翼、中單翼和上單翼飛機。按機翼平面形狀,可分為平直翼飛機、後掠翼飛機、 前掠翼飛機和三角翼飛機。按水平尾翼的位置和有無水平尾翼,可分為正常布局飛機(水平尾翼在機翼之後)、鴨式飛機(前機身裝有小翼面)和無尾飛機(沒有水平尾翼);正常布局飛機有單垂尾、雙垂尾、多垂尾和V型尾翼等型式。按用途可分為戰斗機、轟炸機、攻擊機、攔截機。按推進裝置的類型,可分為螺旋槳飛機和噴氣式飛機;按發動機的類型,可分為活塞式飛機、渦輪螺旋槳式飛機和噴氣式飛機;按發動機的數目,可分為單發飛機、雙發飛機和多發飛機。按起落裝置的型式,可分為陸上飛機、水上飛機和水陸兩用飛機。還可按飛機的飛行性能進行分類:按飛機的飛行速度,可分為亞音速飛機、超音速飛機和高超音速飛機。按飛機的航程,可分為近程飛機、中程飛機和遠程飛機。

結構
大多數飛機由五個主要部分組成:機翼、機身、尾翼、起落裝置和動力裝置。
機翼
機翼的主要功用是為飛機提供升力,以支持飛機在空中飛行,也起一定的穩定和操縱作用。在機翼上一般安裝有副翼和襟翼。操縱副翼可使飛機滾轉;放下襟翼能使機翼升力系數增大。另外,機翼上還可安裝發動機、起落架和油箱等。機翼有各種形狀,數目也有不同。在航空技術不發達的早期為了提供更大的升力,飛機以雙翼機甚至多翼機為主,但現代飛機一般是單翼機。
機身
機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備;還可將飛機的其它部件如尾翼、機翼及發動機等連接成一個整體。但是飛翼是將機身隱藏在機翼內的。
尾翼
尾翼包括水平尾翼(平尾)和垂直尾翼(垂尾)。水平尾翼由固定的水平安定面和可動的升降舵組成(某些型號的民用機和軍用機整個平尾都是可動的控制面,沒有專門的升降舵)。垂直尾翼則包括固定的垂直安定面和可動的方向舵。尾翼的主要功用是用來操縱飛機俯仰和偏轉,以及保證飛機能平穩地飛行。
起落裝置
起落裝置又稱起落架,是用來支撐飛機並使它能在地面和其他水平面起落和停放。陸上飛機的起落裝置,一般由減震支柱和機輪組成,此外還有專供水上飛機起降的帶有浮筒裝置的起落架和雪地起飛用的滑橇式起落架。它是用於起飛與著陸滑跑、地面滑行和停放時支撐飛機。
動力裝置
動力裝置主要用來產生拉力或推力,使飛機前進。其次還可以為飛機上的用電設備提供電力,為空調設備等用氣設備提供氣源。
現代飛機的動力裝置主要包括渦輪發動機和活塞發動機兩種,應用較廣泛的動力裝置有四種:航空活塞式發動機加螺旋槳推進器;渦輪噴射發動機;渦輪螺旋槳發動機;渦輪風扇發動機。隨著航空技術的發展,火箭發動機、沖壓發動機、原子能航空發動機等,也有可能會逐漸被採用。動力裝置除發動機外,還包括一系列保證發動機正常工作的系統,如燃油供應系統等。
飛機除了上述五個主要部分之外,還裝有各種儀表、通訊設備、領航設備、安全設備和其它設備等。

操縱裝置
現代飛機駕駛艙內可供駕駛員使用的飛行操縱裝置通常包括:
主操縱裝置:駕駛桿或駕駛盤和方向舵腳蹬。在某些採用電傳操縱系統的飛機上,駕駛桿或駕駛盤已經被簡化成位於駕駛員側方的操縱桿。
輔助操縱裝置:襟翼手柄、配平按鈕、減速板手柄。
隨著電子技術的發展,飛行操縱裝置的形式也發生了根本性的變化。在大型飛機中,傳統的機械式操縱系統已逐漸地被更為先進的電傳操縱系統所取代,計算機系統全面介入飛行操縱系統,駕駛員的操作已不再像是直接操縱飛機動作,而更像是給飛機下達運動指令。由於某些採用電傳操縱系統的飛機取消了原有的駕駛桿或駕駛盤等裝置而改為側桿操縱,駕駛艙的空間顯得比以往更加寬松,所以有些駕駛員稱此類駕駛艙為「飛行辦公室」。 最新飛機的功能 787 最新民用飛機●空氣更清新 與當前的民用飛機相比,除了裝備當前飛機使用的、用於消除細菌、病毒與真菌的高效空氣粒子(HEPA)過濾器之外,787系統中還額外引入了一種新型氣體過濾系統,用以去除異味、刺激物與氣態污染物。這樣能減少乘客頭疼、頭昏,以及因乾燥引起的咽喉刺激與眼部刺激,787客艙的空氣將更清新。 ●更低的座艙壓力高度 787的客艙最高壓力高度為6,000呎,而不是其它飛機的8,000呎。高壓氧艙試驗表明,置身於壓力高度為6,000呎的787客艙還能讓乘客的血液多吸收8%的氧氣,從而減少頭疼與頭昏,疲勞感減輕。鋁制飛機因材料疲勞或重量原因而無法實現6,000呎的壓力高度。787復合材料機身不會疲勞,因此,既能應對更低高度的座艙壓力,又不對重量產生影響。 ●更高的客艙空氣濕度 787的客艙更高的客艙空氣濕度,以提升乘客舒適度。787客艙可比金屬機身飛機中的空氣濕度更高,且與載客率的大小無關。787的復合材料機身不會隨著濕度的增加更易腐蝕。 ●燈光設計 787客艙內以發光二極體(LED)提供照明,取代傳統使用的熒光管。營造出頭頂即是天空的感覺,天空特色的艙頂一直貫穿整個客艙,機組還可以在飛行中控制天空特色艙頂的亮度和顏色。需要時,乘務員可以為乘客提供白天的感覺,而當乘客需要休息時,艙頂則可模擬夜色。機艙以重復的大弧度拱形結構、動態照明以及飛行中可以由乘客調整透明度的電子遮光簾為特色,並利用可以變幻色彩及明亮度的LED數組營造出模擬「天空」的天花板效果。 ●舷窗設計 787的舷窗舷窗設計增大一倍,窗的位置亦更高,所以無論坐在飛機的什麼位置,乘客都能看到地平線。窗中則以「液晶體」調較機艙的光暗,減少窗外射入的眩光及維持透明。

⑤ 起落架的基本功用是什麼

起落架的主要作用有以下四個:
承受飛機在地面停放、滑行、起飛著陸 滑跑時的重力;

承受、消耗和吸收飛機在著陸與地面運動時的撞擊和顛簸能量;

滑跑與滑行時的制動;

滑跑與滑行時操縱飛機。

⑥ 飛機起落架減震支柱有什麼作用

吸收沖擊能量,抑制飛機彈跳,滑行時降低飛機顛簸,和汽車避震系統原理差不多

⑦ 飛機主要哪些部件組成各部件作用是什麼

大多數飛機都是由下面六個主要部分組成,即:機翼、機身、尾翼、起落裝置、操縱系統和動力裝置。它們各有其獨特的功用。

一、機身

機身主要用來裝載人員、貨物、燃油、武器和機載設備,並通過它將機翼、尾翼、起落架等部件連成一個整體。在輕型飛機和殲擊機、強擊機上,還常將發動機裝在機身內。

二、機翼

機翼是飛機上用來產生升力的主要部件,一般分為左右兩個翼面。

機翼通常有平直翼、後掠翼、三角翼等。機翼前後綠都保持基本平直的稱平直翼,機翼前緣和後緣都向後掠稱後掠翼,機翼平面形狀成三角形的稱三角翼,前一種適用於低速飛機,後兩種適用於高速飛機。近來先進飛機還採用了邊條機翼、前掠機翼等平面形狀。

左右機翼後緣各設一個副翼,飛行員利用副翼進行滾轉操縱。即飛行員向左壓桿時,左機翼上的副翼向上偏轉,左機翼升力下降;

右機翼上的副翼下偏,右機翼升力增加,在兩個機翼升力差作用下飛機向左滾轉。為了降低起飛離地速度和著陸接地速度,縮短起飛和著陸滑跑距離,左右機翼後緣還裝有襟翼。襟翼平時處於收上位置,起飛著陸時放下。

三、尾翼

1、垂直尾翼

垂直尾翼垂直安裝在機身尾部,主要功能為保持飛機的方向平衡和操縱。

通常垂直尾翼後線設有方向舵。飛行員利用方向舵進行方向操縱。當飛行員右用航時,方向舵右們,相對氣流吹在垂尾上,使垂尾產生一個向左的側力,此側力相對於飛機重心產生一個使飛機機頭有偏的力矩,從而使機頭右偏。

同樣,蹬左舵時,方向舵左偏,機頭左偏。某些高速飛機,沒有獨立的方向舵。整個垂尾跟著腳蹬操縱而偏轉,稱為全動垂尾。

2、水平尾翼

水平尾翼水平安裝在機身尾部,主要功能為保持俯仰平衡和俯仰操縱。低速飛機水平尾翼前段為水平安定面,是不可操縱的,其後緣設有升降舵,飛行員利用升降舵進行俯仰操縱。

即飛行員拉桿時,升降舵上偏,相對氣流吹向水平尾翼時,水平尾翼產生附加的負升力(向下的升力),此力對飛機重心產生一個使機頭上仰的力矩,從而使飛機抬頭。同樣飛行員推杯時升降舵下偏,飛機低頭。

超音速飛機採用全動平尾,即將水平安定面與升降舵合為一體。飛行員推拉桿時整個水平尾翼都隨之偏轉。飛行員用全動平尾來進行俯仰操縱。其操縱原理與升降舵相同。某些高速飛機為了提高滾轉性能,在左、右壓桿時,左、右平尾反向偏轉,以產生附加的滾轉力矩,這種平尾稱為差動平尾。

有些飛機的水平尾翼放在機翼前邊,這種飛機叫鴨式飛機。這時放在機翼前面的水平尾翼稱為鴨翼或前翼。也有一部分飛機沒有水平尾翼,這種飛機稱為無尾飛機。現在有些飛機還採用了三翼面的布局方法,也就是說既有機翼前面的前翼,也有機翼後面的水平尾翼。

四、起落裝置

起落裝置的功用是使飛機在地面或水面進行起飛、著陸、滑行和停放。著陸時還通過起落裝置吸收撞擊能量,改善著陸性能。

早期陸上飛機起落裝置比較簡單,只有三個起落架,而且在空中不能收起,飛行阻力大。現代的陸上飛機起落裝置包含起落架和改善起落性能的裝置兩部分,且起落架在起飛後即可收起,以減少飛行阻力。改善起落性能的裝置主要有起飛加速器、機輪剎車、減速傘等。水上飛機的起落架由浮筒代替機輪。

五、控制系統

飛機操縱系統是指從座艙中飛行員駕駛桿(盤)到水平尾翼、副翼、方向舵等操縱面,用來傳遞飛行員操縱指令,改變飛行狀態的整個系統。早期的操縱系統是由拉桿、搖臂(或鋼索)組成的純機械操縱系統。現代飛機在操縱系統中採用了很多自動控制裝置,因而,通常把它稱為飛行控制系統。

六、動力裝置

飛機動力裝置是用來產生拉力(螺旋槳飛機)或推力(噴氣式飛機),使飛機前進的裝置。採用推力矢量的動力裝置,還可用來進行機動飛行。現代的軍用飛機多數為噴氣式飛機。 噴氣式飛機的動力裝置主要分為渦輪噴氣發動機和渦輪風扇發動機兩類。

設計製造

大多數飛機是由公司製造的,目的是為客戶批量生產。小型渦輪螺旋槳飛機的設計和規劃過程(包括安全測試)可持續長達四年,而大型飛機則需要更長的時間。

在此過程中,確定了飛機的目標和設計規范。首先,建築公司使用圖紙和方程、模擬、風洞測試和經驗來預測飛機的行為。公司使用計算機來繪制、規劃和進行飛機的初始模擬。然後在風洞中測試飛機全部或某些部分的小型模型和模型,以驗證其空氣動力學特性。

當設計通過這些過程時,該公司構建了數量有限的原型用於地面測試。航空管理機構的代表經常進行首飛。飛行測試繼續進行,直到飛機滿足所有要求。然後,國家航空管理公共機構授權該公司開始生產。

在美國,該機構是美國聯邦航空管理局(FAA),在歐盟是歐洲航空安全局(EASA)。在加拿大,負責和授權大規模生產飛機的公共機構是加拿大運輸部。

當零件或組件需要通過焊接連接在一起以用於幾乎任何航空航天或國防應用時,它必須符合最嚴格和特定的安全法規和標准。Nadcap或國家航空航天和國防承包商認證計劃為航空航天工程制定了質量、質量管理和質量保證的全球要求。

運輸公共機構的許可。例如,歐洲公司空客製造的飛機需要獲得美國聯邦航空局的認證才能在美國飛行,而美國波音公司製造的飛機需要獲得歐洲航空安全局的批准才能在歐盟飛行。

為了應對機場附近城市地區空中交通增長造成的雜訊污染增加,法規已導致飛機發動機的雜訊降低。

業余愛好者可以自行設計和建造小型飛機。其他自製飛機可以使用預先製造的零件套件組裝成基本飛機,然後必須由製造商完成。

很少有公司大規模生產飛機。然而,為一家公司生產一架飛機實際上是一個涉及數十家甚至數百家其他公司和工廠的過程,這些公司和工廠生產進入飛機的零件。例如,一家公司可以負責起落架的生產,而另一家公司則負責雷達。

此類零件的生產不限於同一個城市或國家;就大型飛機製造公司而言,此類零件可能來自世界各地

零件被送到飛機公司的主要工廠,生產線就在那裡。在大型飛機的情況下,可以存在專用於飛機某些部件組裝的生產線,尤其是機翼和機身。

完成後,將對飛機進行嚴格檢查以尋找缺陷和缺陷。經檢查員批准後,飛機將進行一系列飛行測試,以確保所有系統都正常工作並且飛機操作正常。通過這些測試後,飛機就可以接受「最終修飾」(內部配置、噴漆等),然後就可以為客戶做好准備了。

以上內容參考 網路-飛機

⑧ 遙控飛機主要組成部分在飛行中起到什麼樣的作用

遙控飛機的飛行原理是根據空氣動力學來設計的,在設計的時候要遵守這三個守恆定律.質量守恆是只有在氣體的速度高至必須考慮相對論效應時此定律才會失效。動量守恆由牛頓第二定律推導可得。能量守恆在不考慮粘性時,即機械能守恆;在必須考慮粘性的情況下,即機械能和熱能的守恆。這樣方可保證飛機在空中能保持不下落的狀態,大多數遙控飛機都是由機翼、機身、尾翼、起落裝置和動力裝置五個主要部分組成.這五個部分在飛行中起到什麼樣的作用呢?
1.
機翼-機翼的主要功用是產生升力,以支持飛機在空中飛行,同時也起到一定的穩定和操作作用。在機翼上一般安裝有副翼和襟翼,操縱副翼可使飛機滾轉,放下襟翼可使升力增大。不同用途的飛機其機翼形狀、大小也各有不同。
2.
機身-機身的主要功用是裝載乘員、旅客、武器、貨物和各種設備,將飛機的其他部件如:機翼、尾翼及發動機等連接成一個整體。
3.
尾翼-尾翼包括水平尾翼和垂直尾翼。水平尾翼由固定的水平安定面和可動的升降舵組成,垂直尾翼包括固定的垂直安定面和可動的方向舵。尾翼的作用是操縱飛機俯仰和偏轉,保證飛機能平穩飛行。
4.起落裝置-飛機的起落架大都由減震支柱和機輪組成,作用是起飛、著陸滑跑,地面滑行和停放時支撐飛機。
5.動力裝置-動力裝置主要用來產生拉力和推力,使飛機前進。

⑨ 垂直起落飛機有什麼優點

飛機起飛和著陸都得靠滑跑,隨著戰斗機飛行速度的不斷提高,飛機起飛著陸的速度也有所提高,起落的滑跑距離也相應增長了。戰斗機起飛滑跑距離多數在1000米以上,重型轟炸機需要達到3000米以上,所以現在大型機場跑道的長度都超過3000米。修建這么大的機場要佔用很多農田,需要大量的人力和財力

戰爭中機場又是最容易被攻擊的目標之一,為了適應未來戰爭的需要,當今世界各國的空軍都面臨著一個迫切的任務,使作戰飛機擺脫對機場的依賴。因此,需要研究一種既有直升機特點而且具有高速飛行性能的垂直起降飛機。說起機場,現在很多兵器都把機場當作攻擊目標,有一種巡航導彈是專門破壞飛機機場跑道的。

它的破壞方式是當巡航導彈飛到機場上空時,扔下很多帶著降落傘的小炸彈落到飛機跑道上,它能夠產生很高的溫度,可以把跑道的混凝土燒壞。燒壞了混凝土以後,它又發射一種火箭彈鑽入地面以下爆炸,爆炸以後出現一個深2米,直徑大約5米的彈坑。這些小炸彈裡面還有一些定時彈,你無法預測它什麼時候爆炸,所以也無法及時修復機場,當你修好了,它突然又爆炸了,這樣就使得機場在一定的時間內完全喪失了作用。

從20世紀60年代起,北約國家就開始研製垂直起降飛機。當時也設計出很多方案,但是因為技術難度比較大,都沒有成功。一直到70年代英國首先研製成了一種垂直起降飛機,叫做鷂式飛機,這種飛機研究成功了並且已經裝備到部隊使用。

這種飛機怎麼樣進行垂直起降呢?原來它的發動機有4個噴口,它們都在機身的兩側噴氣,噴口可以轉動,當噴口向下時產生的推力,可以使飛機垂直上升;當噴口向後時產生的推力就可以使飛機向前進。飛行員通過調整噴口的方向和角度就可以改變飛機的飛行姿態。

這種飛機一般是不需要跑道的,有一塊35×35米大小的空地就可以起飛或降落,像直升機一樣,非常適合在面積比較小的島嶼或航空母艦上起降。垂直起降飛機不需要跑道,但是它也有一個缺點就是航速比較低。因為垂直起降耗油量比較大,它的作戰半徑比較小,攻擊的威力比常規起降的噴氣飛機或戰斗機要小一些,它的時速是1000千米/小時,作戰半徑可以達到100千米左右。為了增大它的航程,減少油料的消耗和增加攜帶炸彈的數量,一般可採取300米跑道,短距離滑跑起飛,這樣它的作戰半徑可以增大到300~400千米。

前蘇聯也研究了垂直起降飛機,在1975年就已經開始生產「雅克—36」飛機。這種飛機有3個發動機,其中一台是噴氣發動機,主要是利用它來飛行的,還有兩台是升力發動機,專門用它來起飛或降落。

雅克型垂直起降飛機只在航空母艦上配備,它可以對地面和海上目標實施低空的攻擊和偵察,並且對艦隊也有一定的防空作用。這種飛機航速可以達到1000千米/小時,作戰距離也可以達到200~500千米,它升高的高度能夠達到12000米,這種飛機翅膀可以折疊,便於在航空母艦上使用。

世界上第一架垂直起降飛機是美國在1954年發明的。後來,美國又研究了一種可以垂直起降的飛機,但是它不是靠改變噴口方向垂直起降,這種飛機的名字叫做傾轉旋翼式垂直起落飛機,型號「魚鷹」。

它的特點是,兩台旋轉式發動機裝在兩個翅膀的兩端,當它在垂直位置時,和直升機一樣,飛機就可以垂直起降或在空中懸停;當把發動機旋轉90度,飛機就可以向前高速飛行,最大飛行速度可以達到600千米/小時左右,比一般的直升機速度快一倍。這種飛機比較適合於在航空母艦上使用。由於這種飛機耗油量比較小,比普通的直升機耗油量還要少,因而續航能力較強。

1982年英阿馬島沖突中,英國特混艦隊搭載28架「鷂」式垂直起降飛機,執行空中作戰巡邏任務,出動1100多架次,為支援進攻出動90多架次,擊落阿根廷飛機23架,表現十分出色。美國購買了英國的鷂式飛機,進行了改進,製成AV—8型飛機,英國又向美國買了100多架。

1991年,海灣戰爭中美國有150架這種飛機參戰,在「沙漠風暴」行動的86天中,共出動3300多架次,投擲2600多噸炸彈,但被地面炮火擊中了5架。現正在採取措施,提高飛機對抗紅外製導導彈的能力,加強夜間進攻性能。

艦載垂直起降飛機的出現,可以大大減小航空母艦的甲板面積,也不需要彈射器和著艦阻攔裝置,所以航母的噸位和造價大為降低。因此,輕型艦母和垂直/短跑道飛機的組合深得各國海軍的喜愛,英國、西班牙、義大利、印度等國都採用這種組合方式。

一艘輕型航母的造價僅是大型航母的1/8~1/9,看來這也是經濟實力較弱的國家軍隊發展航母的一種趨勢。不過在美國,海軍和海軍陸戰隊的意見不一致,美國海軍和海軍陸戰隊是兩個獨立的軍種,陸戰隊對艦載垂直起降飛機很感興趣,海軍則把發展垂直起降飛機視為對其超級航母優越地位的一種威脅。

為了協調矛盾,美國高級研究計劃局負責新型戰斗機方案,試圖把先進的垂直/短跑道起落飛機和常規起落飛機結合起來。美英兩國海軍對這個計劃都感興趣,正在合作開發。

⑩ 飛機起落裝置有哪幾部分組成

起落架就是飛機在地面停放、滑行、起降滑跑時用於支持飛機重量、吸收撞擊能量的飛機部件。簡單地說,起落架有一點象汽車的車輪,但比汽車的車輪復雜的多,而且強度也大的多,它能夠消耗和吸收飛機在著陸時的撞擊能量。概括起來,起落架的主要作用有以下四個:承受飛機在地面停放、滑行、起飛著陸滑跑時的重力;承受、消耗和吸收飛機在著陸與地面運動時的撞擊和顛簸能量;滑跑與滑行時的制動;滑跑與滑行時操縱飛機。

基本組成

綜述

為適應飛機起飛、著陸滑跑和地面滑行的需要,起落架的最下端裝有帶充氣輪胎的機輪。為了縮短著陸滑跑距離,機輪上裝有剎車或自動剎車裝置。此外還包括承力支柱、減震器(常用承力支柱作為減震器外筒)、收放機構、前輪減擺器和轉彎操縱機構等。承力支柱將機輪和減震器連接在機體上,並將著陸和滑行中的撞擊載荷傳遞給機體。前輪減擺器用於消除高速滑行中前輪的擺振。前輪轉彎操縱機構可以增加飛機地面轉彎的靈活性。對於在雪地和冰上起落的飛機,起落架上的機輪用滑橇代替。

  1. 減震器飛機在著陸接地瞬間或在不平的跑道上高速滑跑時,與地面發生劇烈的撞擊,除充氣輪胎可起小部分緩沖作用外,大部分撞擊能量要靠減震器吸收。現代飛機上應用最廣的是油液空氣減震器。當減震器受撞擊壓縮時,空氣的作用相當於彈簧,貯存能量。而油液以極高的速度穿過小孔,吸收大量撞擊能量,把它們轉變為熱能,使飛機撞擊後很快平穩下來,不致顛簸不止。

  2. 收放系統收放系統一般以液壓作為正常收放動力源,以冷氣、電力作為備用動力源。一般前起落架向前收入前機身,而某些重型運輸機的前起落架是側向收起的。主起落架收放形式大致可分為沿翼展方向收放和翼弦方向收放兩種。收放位置鎖用來把起落架鎖定在收上和放下位置,以防止起落架在飛行中自動放下和受到撞擊時自動收起。對於收放系統,一般都有位置指示和警告系統。

  3. 機輪和剎車系統機輪的主要作用是在地面支持收飛機的重量,減少飛機地面運動的阻力,吸收飛機著陸和地面運動時的一部分撞擊動能。主起落架上裝有剎車裝置,可用來縮短飛機著陸的滑跑距離,並使飛機在地面上具有良好的機動性。機輪主要由輪轂和輪胎組成。剎車裝置主要有彎塊式、膠囊式和圓盤式三種。應用最為廣泛的是圓盤式,其主要特點是摩擦面積大,熱容量大,容易維護。

閱讀全文

與飛機的起落裝置有什麼作用相關的資料

熱點內容
工藝管線中哪些屬於設備 瀏覽:48
送排風管應加什麼閥門 瀏覽:350
軸承的鋼珠為什麼不會滑出來 瀏覽:124
自動門控制裝置介紹 瀏覽:948
品牌裝置設計 瀏覽:535
江門新會寶豪塑膠五金製品廠 瀏覽:643
為什麼不讓用帶閥門的口罩 瀏覽:78
肥皂的製作實驗裝置圖 瀏覽:624
木炭還原氧化銅探究實驗裝置圖 瀏覽:384
閥門電機18轉什麼意思 瀏覽:522
軸承測量內外徑怎麼算 瀏覽:929
萬貫五金機電城C區怎麼樣 瀏覽:823
蒸汽管道閥門壓力 瀏覽:667
天然氣閥門關了開不開怎麼辦 瀏覽:432
湘潭市閥門廠破產進度 瀏覽:782
機床按什麼規定加油 瀏覽:572
裝修吊沙子機械多少錢 瀏覽:536
高壓微機保護裝置的作用 瀏覽:609
機械圖上m是什麼意思 瀏覽:337
閥門ht200代表什麼 瀏覽:357