① 用555和74160計數器設計一個數字電子鍾計時系統
數字鍾電路是一個典型的數字電路系統,其由時,分,秒計數器以及校時和顯示電路組成.下面介紹利用集成十進制遞增計數器(74160)和帶解碼器的七段顯示數碼管組成的數字鍾電路.計數器74160和七段顯示數碼管的功能及使用方法在8.4節已有敘述.
1. 利用兩片74160組成60進制遞增計數器
利用兩片74160組成的同步60進制遞增計數器如圖9.4-1所示,其中個位計數器(C1)接成十進制形式。十位計數器(C2)選擇QC與QB做反饋端,經與非門輸出控制清零端(CLR』),接成六進制計數形式。個位與十位計數器之間採用同步級連方式,將個位計數器的進位輸出控制端(RCO)接至十位計數器容許端(ENT),完成個位對十位計數器的進位控制。將個位計數器的RCO端和十位計數器的QC、QA端經與們由CO端輸出,作進位輸出控制信號。當計數器狀態為59時,CO端輸出高電平,在同步級聯方式下,容許高位計數器計數。選擇信號源庫中的1HZ方波信號作為計數器的測試時鍾源。
因為秒與分計數均由60進制遞增計數器來完成,為在構成數字鍾系統時使電路得到簡化,我們將圖9.4-1虛線框內建立部分用子電路表示。具體操作過程如下:
在EWB主界面內建立圖9.4-1所示60進制計數器,閉合模擬電源,經過功能測試,確保計數器工作正常。選中虛線框內所示部分電路(Circuit)菜單中的創建子電路(Creat Subcircuit……)項,主界面內出現子電路設置對話框,在對話框內添入電路名稱(60C)後,選擇在電路中置換(Replace in Circuit)項,得用子電路表示的60進制遞增計數器如圖9.4-3所示。
2、用兩片74160組成24/12進制遞增計數器
圖9.4-4所示電路是由兩片74160組成的能實現12和24進制轉換的同步遞增計數器。圖中個位與十位計數器均接成十進制計數形式,採用同步級連方式。選擇十位計數器的輸出端QB和個位計數器的輸出端QC通過與非門NAND2控制兩片計數器的清零端(CLR』),利用狀態24反饋清零,可實現24進制遞增計數。若選擇十位計數器的輸出端QA與個位計數器的輸出端QB經過與非門NAND1輸出,控制兩片計數器的清零端(CLR』),利用狀態12反饋清零,可實現12進制遞增計數。敲擊Q鍵,使開關K選擇與非門NAND2輸出或NAND1輸出可實現24和12進制遞增計數器的轉換。該計數器可利用作數字鍾的時計數器。
為簡化數字鍾電路,我們將圖9.4-4所示的24/12進制計數器虛線框內電路轉換為子電路,轉換方法與上述60進制計數器相同。用子電路表的24/12進制同步計數器如圖9.4-5所示。
3. 數字鍾系統的組成
利用60進制和24/12進制遞增計數器子電路構成的數字鍾系統如圖9.4-6所示。在數字鍾電路中,由兩個60進制同步遞增計數器完成秒、分計數,由24/12進制同步遞增計數器實現小時計數。
秒、分、時計數器之間採用同步級連方式。開關K控制小時的24進制和12進制計數方式選擇。為簡化電路,直接選用信號源庫中的方波秒脈沖作數字鍾的秒脈沖信號,讀者可自行設計獨立的秒脈沖源,例如;可利用555多諧振盪器產生的秒脈沖,或者採用石英晶體振盪器經分頻器產生秒脈沖。還可以在小時顯示的基礎上,增加上、下午或日期顯示以及整點報時等,這里不再贅述。
敲擊S和F鍵,可控制開關S和F 將秒脈沖直接引入時、分計數器,實現校時。
對於圖9.4-6所示數字鍾電路,若要進一步 簡化電路還可以利用子電路嵌套功能將虛線框內電路轉換為更高一級的子電路,我們將子電路命名為CLOCK,用高一級子電路表示的數字鍾電路如圖9.4-7所示。
今後在設計用到數字鍾作單元電路的系統時可直接引用該電路,使系統得到簡化。
圖1、數字電子鍾結構圖
2、秒鍾、分鍾計時電路的設計
利用集成十進制遞增計數器(74160)和帶主解碼器的七段顯示數碼管組成的數字鍾電路。計數器74160的功能真值表如圖2所示。
根據計數器74160的功能表真值表,利用兩片74160組成的同步六十進制遞增計數器如圖3示,其中個位計數器(CL)接成十進制形式。十位計數器(C2)選擇QC與QB做反饋端,經與非門(NEND)輸出控制清零端(CLR),接成六進制計數形式。個位與十位計數器之間採用同步級連復位方式,將個位計數器的進位輸出控制端(RCO)接至十位計數器的計數計數器的計數容許端(ENT),完成個位對十位計數器的進位控制QC,QA端經過與門AND1和AND2由CO端輸出,作為六十進制的進位輸出脈沖信號,
圖二、同步十進制計數器74160真值表
當計數器計數狀態為59時,CO端輸出高電平,在同步級聯方式下,容許高位計數器計數。電路創建完成後,進行模擬實驗時,利用信號源庫中的1HZ方波信號作為計數器的時鍾脈沖源。
圖3、秒鍾/分鍾計時電路
因為秒鍾與分鍾技術均由六十進制遞增計數器來完成,為在構成數字鍾系統時使電路得到簡化,圖虛線框內的電路創建為子電路表示。具體操作過程如下:在EWB主界面內建立如示的六十進制計數器,閉合模擬電源開關,經過計數器功能測試,確定計數器工作正常,選中虛線框內所示部分電路後,再選擇電路菜單中創建子電路框內添入子電路名稱(分計時)後,選擇在電路中置換選項,得到用子電路表示的六十進制遞增計數器,即秒鍾/分鍾計時子電路,如圖4
圖4、分鍾計時子電路對話框
圖5、分鍾計時電路
四、24/12進制的能實現遞增計數器
24/12進制的能實現十二四進制的同步遞增計數器。如圖四。所示。圖中個位與十位計數器均接成十進制計數形式,採用同步級聯復位方試。 選擇十位計數器的輸出端Qb和個位計數器 輸出端Qc通過與非門NAND2的控制兩片計數器的清零端CLR,當計數器的輸出狀態為00100100時,立即解碼清零,實現二進制糹遞增計數器:若選擇十位二進制的輸出端Q a與個位計數器的輸出端Qb經與非門NAD1控制兩片計數器的清零端CLR,當計數器的輸出狀態為00100100時,立即解碼反饋為零,實現二十進制遞增計數器,若選擇十位計數器的輸出端Qb經與門NAND1控制兩片計數器的清零端CLR。當計數器的輸出端狀態為00010010時,立即解碼反饋為零,實現十二進制遞增計數,敲Q,開關Q 選擇與非門NAND2輸出和NA民NAND1輸出實現二十四進制遞增計數器的轉換。計數器用作數子鍾的計數器。
圖6、24/12二進制計時電路
為了簡化數子電子鍾的電路,需要將圖765的24/12二進制計數器的線框內電路轉換為子電路,方法與上面六二進制的分計數器一樣,用子電路表示24/12進同步計數器如圖7。
圖7、24/12計時電路
五、數字電子鍾系統的組成
利用六十進制和24/12進制遞增計數器子電路構成的數字電子鍾系統如圖8所示,在數字電子鍾電路中,由兩個六十進制同步遞增計數器分別構成秒鍾計時器和分計時器,級連夠完成秒 ,分計時、由24/12進制同步遞增計實現小時計數。秒、分、時計數器之間採用同步級連方式,開關(Q)控制小時的二十四進制和十二進制計數方式選擇,敲擊S和F鍵,可控制開關S和F將秒脈沖直接引入時,分計數器,實現時計數器和分計數器的校時。
對於圖所示數字電子鍾電路,為了進一步簡化電路,還可以利用子電路嵌套功能,將虛線框內電路轉換為更高一級的子電路,成為子電路數字電子鍾,用嵌套子電路表示的數字電子鍾電路如圖8所示
圖8、24/12進制計數電路
以上創建的各種子電路都已經存入自定義元器件庫中,在其他電子系統設計中需要時,可以直接調用這些子電路,使系統的設計更方便,更快捷。
訪真實驗時,可直接選用信號源庫中的方波秒脈沖作數字鍾的秒脈沖信號,作為一個設計內容,讀者可自行設計獨立的秒脈沖信號源,可利用555定時器組成多諧震盪器產生秒鍾脈沖信號,或者採用石英晶體震盪器經分頻器產生秒脈沖,脈沖頻率更穩定,計時誤差會更小,還可以在小時顯示的基礎上,增加上下午或日期顯示,整點報時電路以及作息時間提示電路等。
② 用NE555、74LS161、顯示解碼器、數碼管設計一個人行道紅綠燈。緊急!!!
74LS161是四位二進制計數器,要做十進制計數器,還是用74LS160比較好,加顯示解碼器,可以用74LS247,配共陽數碼管。模擬圖如下。
③ 題目一:雙頻報警器裝置 用555時基電路設計一個在兩種不同頻率振盪下,發出兩種不同聲響的報警裝置。
第一題,大概就是這樣,由於不知道可不可以用555以外的件,所以就都用的555,稍顯復雜。
U3、U4組成音頻振盪器,分別1kHz,4kHz左右,兩種聲調。
U2是1Hz左右的振盪器,輸出的方波一路通過U1組成的施密特反相器控制U3的復位,另一路控制U4的復位,同時只有一個音頻振盪器振盪驅動揚聲器,電路每半秒更換一種音調,需要改變更換時間可以調節68k電阻。
④ 工業計數器帶RS485介面,要與電腦實現數據通訊,要如何實現最好提供詳細的編程和解釋!!謝謝!!
電腦的RS232收到計數來器發出的數據源後,如何實現在電腦上顯示?
沒有 隨機 軟體 嗎?
那 可能 需要 編程,用 VB VC 等等 都可以
這個 計數器 的 說明 比較 詳細,這 對 編程 有 很大幫助的
推薦 看書
Visual C++_Turbo C串口通信編程實踐
Visual_Basic與_RS-232_串列通信控制
⑤ 紙張計數器(數說明書用,規格為250*150至130*90不等)
這個不懂,不敢誤導.
⑥ 列印機紙張數量計數器能隨意修改數據嗎
理論上可以,不是所有列印機都可以改,是很復雜。
計數器與1級2級密碼是存在控制台內,可以重燒晶片計數。
但是,好像有一種東西可以將計數表插上後,設定要跳的數量自己會停,粗糙一點的就將計數拆開直接撥動指定量。
⑦ 求助:課程設計製作秒錶
數字電子技術基礎課程設計(一)——電子鍾
數字電子技術基礎
課程設計
電子秒錶
一.設計目的:
1、了解計時器主體電路的組成及工作原理;
2、熟悉集成電路及有關電子元器件的使用;
3、學習數字電路中基本RS觸發器、時鍾發生器及計數、解碼顯示等單元電路的綜合應用。
二.設計任務及說明:
電子秒錶電路是一塊獨立構成的記時集成電路晶元。它集成了計數器、、振盪器、解碼器和驅動等電路,能夠對秒以下時間單位進行精確記時,具有清零、啟動計時、暫停計時及繼續計時等控制功能。
設計一個可以滿足以下要求的簡易秒錶
1.秒錶由5位七段LED顯示器顯示,其中一位顯示「min」,四位顯示「s」,其中顯示分辯率為0.01 s,計時范圍是0—9分59秒99毫秒;
2.具有清零、啟動計時、暫停計時及繼續計時等控制功能;
3.控制開關為兩個:啟動(繼續)/暫停記時開關和復位開關
三.總體方案及原理:
電子秒錶要求能夠對時間進行精確記時並顯示出來,因此要有時鍾發生器,記數及解碼顯示,控制等模塊,系統框圖如下:
時鍾發生器 記數器 解碼器
顯示器
控制器
圖1.系統框圖
其中:
(1)時鍾發生器:利用石英震盪555定時器構成的多諧振盪器做時鍾源,產生100HZ的脈沖;
(2)記數器:對時鍾信號進行記數並進位,毫秒和秒之間10進制,秒和分之間60進制;
(3)解碼器:對脈沖記數進行解碼輸出到顯示單元中;
(4)顯示器:採用5片LED顯示器把各位的數值顯示出來,是秒錶最終的輸出,有分、秒、和毫秒位;
(5)控制器:控制電路是對秒錶的工作狀態(記時開始/暫停/繼續/復位等)進行控制的單元,可由觸發器和開關組成。
四.單元電路設計,參數計算和器件選擇:
1.時鍾發生單元
時鍾發生器可以採用石英晶體震盪產生100HZ時鍾信號,也可以用555定時器構成的多諧振盪器,555定時器是一種性能較好的時鍾源,切構造簡單,採用555定時器構成的多諧振盪器做為電子秒錶的輸入脈沖源。
因輸出要求為100HZ的,選擇占空比為55%,可根據
T=( )Cln2=0.01
可選擇的電阻進行連接可在輸出端3獲得頻率為100HZ的矩形波信號,即T=0.01S的時鍾源,當基本RS觸發器Q=1時,門5開啟,此時100HZ脈沖信號通過門5作為計數脈沖加於計數器①的計數輸入端CP2。
圖2.時鍾發生器555定時器構成的多諧振盪器
2.記數單元
記數器74160、74ls192、74ls90等都能實現十進制記數,本設計採用二—五—十進制加法計數器74LS90構成電子秒錶的計數單元,如圖3所示,555定時器構成的多諧振盪器作為計數器①的時鍾輸入。計數器①及計數器②接成8421碼十進制形式,其輸出端與實驗裝置上解碼顯示單元的相應輸入端連接,可顯示0.01~0.09秒;0.1~0.9秒計時,計數器②及計數器③,計數器③和計數器④也接成8421碼十進制形式,計數器④和計數器⑤接成60進制的形式,實現秒對分的進位。
集成非同步計數器74LS90簡介
74LS90是非同步二—五—十進制加法計數器,它既可以作二進制加法計數器,又可以作五進制和十進制加法計數器。
圖3為74LS90引腳排列,表1為功能表。
通過不同的連接方式,74LS90可以實現四種不同的邏輯功能;而且還可藉助R0(1)、R0(2)對計數器清零,藉助S9(1)、S9(2)將計數器置9。其具體功能詳述如下:
(1)計數脈沖從CP1輸入,QA作為輸出端,為二進制計數器。
(2)計數脈沖從CP2輸入,QDQCQB作為輸出端,為非同步五進制加法計數器。
(3)若將CP2和QA相連,計數脈沖由CP1輸入,QD、QC、QB、QA作為輸出端,
則構成非同步8421碼十進制加法計數器。
(4)若將CP1與QD相連,計數脈沖由CP2輸入,QA、QD、QC、QB作為輸出端,
則構成非同步5421碼十進制加法計數器。
(5)清零、置9功能。
a) 非同步清零
當R0(1)、R0(2)均為「1」;S9(1)、S9(2)中有「0」時,實現非同步清零功能,即QDQCQBQA=0000。
b) 置9功能
當S9(1)、S9(2)均為「1」;R0(1)、R0(2)中有「0」時,實現置9功能,即QDQCQBQA=1001。
圖3.74LS90引腳排列(下)
輸 入 輸 出 功 能
清 0 置 9 時 鍾 QD QC QB QA
R0(1)、R0(2) S9(1)、S9(2) CP1 CP2
1 1 0
× ×
0 × × 0 0 0 0 清 0
0
× ×
0 1 1 × × 1 0 0 1 置 9
0 ×
× 0 0 ×
× 0 ↓ 1 QA 輸 出 二進制計數
1 ↓ QDQCQB輸出 五進制計數
↓ QA QDQCQBQA輸出8421BCD碼 十進制計數
QD ↓ QAQDQCQB輸出5421BCD碼 十進制計數
1 1 不 變 保 持
表1 .74LS90功能表
10秒到分位的6進制位可在十進制的基礎上將QB、QC連接到一個與門,它的置零信號與系統的置零信號通過一個或門連接接至R0(1),即當記數為6或有置零信號是均置零,如圖4所示。
圖4 .74ls90組成的6進制記數器
3 .解碼顯示單元
74LS248(74LS48)是BCD碼到七段碼的顯示解碼器,它可以直接驅動共陰極數碼管。它的管腳圖如圖5所示. 顯示器用 LC5011-11 共陰極LED顯示器.(註:在multisim中模擬可以用解碼顯示器DCD_HEX代替解碼和顯示單元)。
圖5. 74LS248管腳圖
4 .控制單元
(1) 啟動(繼續)/暫停記時開關
採用集成與非門構成的基本RS觸發器。屬低電平直接觸發的觸發器,有直接置位、復位的功能。
它的一路輸出作為單穩態觸發器的輸入,另一路輸出Q作為與非門5的輸入控制信號。
按動按鈕開關B(接地),則門1輸出 =1;門2輸出Q=0,K2復位後Q、狀態保持不變。再按動按鈕開關K1 ,則Q由0變為1,門5開啟, 為計數器啟動作好准備。由1變0,送出負脈沖,啟動單穩態觸發器工作。
(2) 清零開關
通過開關對每個計數器的R0(2)給以高電平能實現系統的清零。
五:在MULTISIM中進行模擬
將各個晶元在MULTISIM8中連接並進行模擬,模擬如圖6所示,結果正確。
六:設計所需元件
555觸發器一片,74ls90五片,74ls248五片,LC5011-11 共陰極LED顯示器五片,
電容、電阻若干。
七:設計心得
本次課程設計對數字電子技術有了更進一步的熟悉,實際操作和課本上的知識有很大聯系,但又高於課本,一個看似很簡單的電路,要動手把它設計出來就比較困難了,因為是設計要求我們在以後的學習中注意這一點,要把課本上所學到的知識和實際聯系起來,同時通過本次電路的設計,不但鞏固了所學知識,也使我們把理論與實踐從真正意義上結合起來,增強了學習的興趣,考驗了我們藉助互聯網路搜集、查閱相關文獻資料,和組織材料的綜合能力。
參考資料:http://blog.sina.com.cn/gaowentao