㈠ 自動勵磁調節器AVR的作用
簡單地說,AVR的作用就是根據發電機輸出電壓電流,調節勵磁電流的導通角,從而維持發電機輸出的穩定。
㈡ MLZ—1C型自動勵磁調節裝置的特點及工作原理。
MLZ—1C型自動勵磁調節裝置用於#3、4發電機。具有以下特點:
(1) 採用雙通版道勵磁系統,由兩個權獨立的單通道系統在電子級通過通道母線連接而成。具有從測量到功率輸出級的100%冗餘度(100%備用)。且機械上完全獨立,而兩個通道上所用的插件板幾乎是相同的。
(2) 由於通道Ⅰ與通道Ⅱ機械上的隔離,全部電子極功能均有備用。所以在一個通道發生任何故障時,另一個通道均可以投入運行從而取代故障通道。
(3) 通道Ⅰ為電壓調節通道,與發電機端電壓形成大閉環,作為電壓調節。通道Ⅱ為勵磁電流調節通道,與勵磁電流形成小閉環,作為勵磁電流調節。實際值與整定值的比較及放大亦由這兩個單元實現。
(4) 通道Ⅰ工作時,通道控制單元保證通道Ⅱ隨時跟蹤通道Ⅰ,通道Ⅱ工作時,通道控制單元保證通道Ⅰ隨時跟蹤通道Ⅱ,以保證兩通道之間的平滑無擾動切換。
(5) 裝置具有過勵及欠勵限制功能。當發電機工作於過勵及欠勵狀態時,通道Ⅰ中的限制器將接替AVR,限制勵磁電流於合理范圍。限制器的主要作用一方面是出於保護轉子及定子不發生熱過載,另一方面是保證發電機不致失步(穩定限制)。
㈢ 勵磁調節器保護限制器有哪些
勵磁調節器保護限制器有:
(1)電力系統穩定器:改變系統阻尼,抑制低頻振盪,提高系統靜態穩定。
(2)低勵限制器:當發電機頻率下降時,為保持機端電壓,勵磁調節器會自動增加勵磁,若下降太多,引起過勵。
(3)勵磁電流限制器:在高頂值勵磁下,為避免勵磁電流超過所容許強勵倍數,防止機端電壓過分升高。
(4)負荷角限制器:在發電機輸出一定有功下,勵磁不足時,將引起發電機進相運行,(超前)使功率角增大,嚴重時不能保持發電機的靜態穩定運行。
㈣ 簡述自動勵磁調節器的作用。
簡單的說就是在負荷變化引起發電機輸出電壓不穩定時,自動調節穩定發電機的輸出電壓
㈤ 自動調節勵磁裝置可提高發電機運行穩定性是因為什麼
自動勵磁裝置一般採用穩壓或者穩流控制模式,並且實現反饋實時監測,保證勵磁輸出電壓或者電流恆定基本不變,從而達到提高發電機穩定性的目的
㈥ 防止勵磁系統整流電路失控現象的解決措施及其原理
勵磁系統常見故障及解決辦法分析
勵磁系統是同步發電機的重要組成,是同步發電機勵磁電源,從電氣量轉換角度來看勵磁系統及時是一套具有一定容量、輸出可調節的直流電源裝置。勵磁功率單元向同步發電機轉子提供勵磁電流,建立轉子磁場,電力系統的電壓調節(一次、二次調壓)、無功平衡等要求發電機的勵磁功率單元有足夠的可靠性並具有一定的調節容量。另外,發電機的勵磁系統必須能適應發電機的變負荷運行、滯相運行、進相運行、不同功率因數運行、允許范圍內的電壓和頻率變化運行工況。對於電力系統事故,足夠的勵磁頂值電壓和電壓上升速度和較大的強勵能力和快速響應能力以提高暫態穩定和改善系統運行條件也是對勵磁系統的要求。近十多年來,由於新技術,新工藝和新器件的涌現和使用,使得勵磁系統得到了不斷的發展和完善。在自動調節勵磁裝置方面,也不斷研製和推廣使用了許多新型的調節裝置。
勵磁系統常見故障與應對措施
1、起勵失敗
起勵失敗是指勵磁系統下達投勵指令後,發電機無法建立初始電壓的故障現象。由於水輪發電機勵磁系統型號眾多,參數設置和信號顯示也有所差異,就以EXC9000勵磁系統為例說明,在10s內機端電壓仍低於發電機額定電壓的10%,調節器顯示屏會報「起勵失敗」信號。造成起勵失敗的原因非常多,比較常見的有:
(1)開機檢查有疏漏,如功率櫃交直流刀閘、起勵開關、滅磁開關、PT高壓側刀閘、同步變壓器保險座開關等沒有合上。
(2)起勵迴路有故障,如線路松動或元器件損壞。
(3)調節器故障。
(4)採用「殘壓起勵」模式,而轉子側剩磁不夠。
(5)新手操作生疏,按壓起勵按鈕時間太短,不足5s。
解決辦法:
(1)嚴格按照程序檢查開機狀態,復核所有環節,避免疏漏。
(2)細心觀察,如懷疑起勵迴路故障,通過觀察起勵接觸器動作、吸合聲響判斷,無聲響可能是迴路故障;若是調節器故障,可觀察調節器I/O板第9號開關輸入指示燈是否常亮,燈不亮依次檢查接線和上位機指令是否發出。
(3)設備檢修後,檢查人機界面起勵方式是否合適,通過調整起勵方式或更換通道重新開機。
(4)維護檢修後的故障,不少是先前操作留下的,耐心回想一下曾動過什麼就能發現一些苗頭,如轉子與勵磁輸出的電纜是否接反了。
2、勵磁不穩定
發電機運行過程中,勵磁波動過大,例如勵磁系統運行數據增大,但有時又正常,無規律可循,並且仍可以進行加減磁的調節。
可能原因是:
(1)移相脈沖控制電壓輸出不正常。
(2)環境溫度變化以及元器件受到振動、氧化等影響出現故障。針對第1種原因,應先檢查勵磁電源是否正常,應分別檢查給定值和經適配單元處理後的測量值(發電機電壓或勵磁電流)是否正常。對第2種原因,利用示波器觀察整流波形是否完整,再用萬用表檢查可控硅性能是否正常,線路焊接狀態和元器件特性發生變化就會出現此類故障,平時應加強維護和調試並及時更換有問題的元器件,可降低此類故障發生幾率。
3、滅磁不正常
水輪發電機組與電網解列後,滅磁裝置要將勵磁裝置中的剩磁盡快衰減。滅磁方法有逆變滅磁、電阻滅磁等。逆變滅磁失敗的原因有迴路原因、可控硅控制極故障、交流電源異常、逆變換相超前觸發角角過小等。而EXC9000勵磁系統有時會出現滅磁開關多次合閘不成功的故障,其主要原因是直流磁場斷路器開關卡澀引起的。由於EXC9000採用了ABB公司的直流磁場斷路器,該斷路器分閘迴路與合閘迴路通過機械連桿閉鎖,在分閘不到位的情況下,無法通過操作按鈕正常合閘。而合閘拒動的原因多半是機構內積灰和彈簧拉力減小,因此解決辦法是加強日常維護,定期清理設備內的灰塵,再對滅磁斷口、滅弧柵等部位塗抹導電膏,以防止機構卡澀。
4、勵磁變壓器相序不正確
勵磁系統對可控硅同步信號的要求非常嚴格,勵磁變壓器相序、相位都不能弄錯。某水輪發電機調試過程中,成功起勵、建壓後,繼續增磁時發電機過壓,滅磁開關跳開,經檢查確認是勵磁變壓器接線有誤。原來該勵磁變壓器採用Y/△11接法,輸入端三相電纜接線相序為C、B、A,安裝人員誤以為輸出端的相序也必然為C、B、A,忽略了該勵磁變壓器採用Y/△11接法的要求。按照要求調整輸出端的接法,勵磁系統也就恢復正常了。另一個例子是調試勵磁系統時,由於A、C相反接,雖然勵磁裝置升壓、並網都正常,但不能實現軟起勵,發電機升壓太快,而在調整接法後故障消失,這是因為相序錯誤導致可控硅觸發脈沖與其陽極電壓不同步所致。採用示波器、相序表和萬用表可查出此類錯誤。採用萬用表的方法是檢測母線與勵磁變壓器輸入端電壓差,同相電壓差應為零。
5、其他常見故障
一般微機勵磁裝置,出現故障時調節櫃顯示屏上會有故障警示,仍以EXC9000為例,冷卻風機故障顯示「1#(或2#)功率櫃風機電源故障」,電壓互感器PT斷線會顯示「1(或2)PT故障」,REC站通信故障顯示「REC1(REC)2站通信故障」等,按照信號提示檢查一般都可以發現故障根源,進而消除故障。風機故障的原因包括風壓限位開關損壞、交流進線電源消失、過流保護的固態繼電器損壞、風機接線松動或損壞等,其中以風壓限位開關損壞原因居多,不論哪種原因適當准備一定數量的備件都是必要的。
PT斷線故障原因可能是PT迴路二次接線松動、PT高壓側保險絲熔斷及模擬量匯流排板、調節器DSP板故障等,一般以外部接線松動原因居多,所以應先排查外部原因,再考慮內部器件問題。REC站通信故障主要原因有通信故障、智能板保險松動或損壞、智能板損壞等,如果是通信故障只需復位智能板並重啟程序就能消除故障,而智能板損壞應更換同型號備板。
㈦ 同步發電機自動調節勵磁裝置的主要作用是什麼
自動穩壓,合理分配無功,強勵提供短路電流。
㈧ 勵磁調節器的穩定性可以通過什麼手段改善
增加開環傳遞函數的零點,使漸近線平行於虛軸並處於左半平面,可以改善自動勵磁調節器的穩定性。
勵磁系統是發電機的重要組成部份,它對電力系統及發電機本身的安全穩定運行有很大的影響。勵磁系統的自動勵磁調節器對提高電力系統並聯機組的穩定性具有相當大的作用。
勵磁系統的工作原理
同步發電機是電力系統的主要設備,它是將旋轉形式的機械功率轉換成電磁功率的設備,為完成這一轉換,它本身需要一個直流磁場,產生這個磁場的直流電流稱為同步發電機的勵磁電流。
專門為同步發電機提供勵磁電流的有關設備,即勵磁電壓的建立、調整和使其電壓消失的有關設備統稱為勵磁系統。同步發電機的勵磁系統是由勵磁調節器AER和勵磁功率系統組成。
勵磁功率系統向同步發電機轉子勵磁繞組提供直流勵磁電流。調節器根據發電機端電壓變化控制勵磁功率系統的輸出,從而達到調節勵磁電流的目的。
㈨ 自動勵磁調節裝置及強行勵磁用的電壓互感器二次側不得裝設熔斷器或空開,依據出自何處
勵磁一般是直流抄電,電壓互感器只襲能測量交流電壓,怎麼與電壓互感器扯上關系的?
一般來講,不論應用在什麼場合,電流互感器二次不能裝熔斷器。
因為電流互感器二次開路之後,一次電流不變,而二次不能形成迴路,這樣,一次電流全部轉變為勵磁電流,會在二次產生瞬間高壓。危及設備及人身安全。
㈩ 發電機的勵磁調節器的調節方式
發電機的勵磁調節器的調節方式:
1.1恆機端電壓(自動)運行方式
該方式為發電機勵磁系統閉環自動調節方式。在該種運行方式下,數字式勵磁調節器的旨要任務是維持發電機端電壓恆定,—般是把機端電壓,作為反饋量,實現pid調節;向時,為了提高電力系統運行的穩定件,數字式勵磁調節器還可以實現更為復雜的控制規律,如電力系統穩定器(pss)附加控制、線性最優勵磁控制(loec)、非線性勵磁控制(nec)等。恆機端電壓(自功)運行方式是數字式勵磁調節器的主要運行方式。
1.2恆勵磁電流(手動)運行方式
一般而言,勵磁調節器都有「自動」和「手動」兩種運行方式,數字式勵磁調節器也不例外。在恆勵磁電流(手動)運行方式下,數字式勵磁調節器采入信號,與給定值比較,經比例(積分)控制規律的運算後送出控制信號到移相觸發單元。由於自動運行方式的電壓整定范圍有限,在機組安裝、檢修或事故跳閘後進行發電機升壓試驗時,通常用手動方式來調整發電機的勵磁從而調節機端電壓或發電機的無功,這樣調情較為平穩,調整范圍可以很寬。
此外,其他還有多種運行方式,例如:手動/自動運行方式的跟蹤與切換、恆無功功率/恆功率因數運行方式、跟蹤母線電壓運行方式等等。
對於數字式勵磁調節器的裝置運行方式一般來說,單機系統是無法滿足數字式勵磁調節器高可靠性的要求。為此,人們常採用硬體冗餘技術來提高勵磁調節器工作的可靠性,主要方案有雙重化系統或三機系統,分別對應兩套調節器互為備用的運行方式和三機系統運行方式。二者相比,三機系統運行的可靠性和安全性都要高一些,但造價也高,切換邏輯相對復雜。
2兩套調節器互為備用的運行方式
在這種運行力式下,數字式勵磁調節器採用全雙機系統,主機和備用機是兩台相同的數字式勵磁調節器,接收同樣的信號,進行同樣的運算。主機在線運行時,只有主機發出的觸發脈沖有效。在運行中主機因任何原因發生故障時,應能立即實現備用機的自動切換,使備用機進入在線控制。在正常運行情況下下,主機和備用機之間應能實現人工手動切換。互為備用的兩套調節器在運行過程中隨時有可能互相切換運行,為滿足平穩切換的要求,兩套調節器應互相跟蹤工作狀況,即備用機跟蹤在線運行的主機的工作狀況,而哪一套調節器作為主機在線運行又是隨時可能變化的。鑒於兩套調節器的軟體構成完全相同,即使不同的數字式勵磁調節器所採用的控制規律有所不同,一般而言,只要由備用機跟蹤在線機的電壓給定、電流給定和相應控制規律環節輸出值等內容,即可實現無擾動切換。具體實現方案一般是利用rs-232串列通信口或其他通信方式實現雙機通信,由在線機將所需的各種跟蹤值傳送給備用機。至於跟蹤速率,數字式勵磁調節器可以以控製程序的循環周期為單位,每個循環周期改變一次控制命令,即跟蹤一次。這種做法具有跟蹤快、準的特點,可達到無擾動切換。
當在線機出現故障導致失磁失控時,備用機應能立即切換至在線運行狀態。另外,當在線機軟體程序運行出軌,軟體復位連續功作幾次無效後,備用機也應能夠切換至在線遠行狀態,從而確保發電機的安全運行。
3三機系統運行方式
與兩套調節器互為備用的遠行方式相比,採用三機系統的主要目的是通過增加硬體投資來進一步提高數字式勵磁調節器裝置運行的可靠性和安全性。三機運行方式又可分為三機備用運行方式和三取二表決運行方式兩種。
3.1三機備用運行方式
這種方式的工作原理是,除a機與b機互為備用可自動切換外,還設計了後備c機。當a、b機均發生故障時,c機能自動切換至在線運行。c機可以設計為具有和a、b機一樣的功能,但一般情況下a、b機同時故障的幾率較小,為簡化方案,可以設計c機具有較為簡單的勵磁控制功能,例如只保證發電機按恆勵磁電流(手動)運行方式繼續運行。
三機備用運行方式和雙機互為備用的運行方式原理上沒有大的差別,只是三機備用運行方式以增加硬體投資為代價達到了數字式勵磁調節器裝置運行可靠性的提高。
3.2三取二表決運行方式
在該種起行方式下,三機都在線工作,三套調節器接收同樣的外部輸入信號,三者的軟、硬體結構區完全一致,當三套調節器有兩套的輸出結果—致時,即將此輸出結果作為數字式勵磁調節器的輸出送至勵磁系統中的被控對象部分。當三機中有兩套調節器故障時,數字式勵磁調節器即無法工作,因此三取二表決運行方式較之雙機互為備用的運行方式在可靠性方面並沒有什麼提高。三取二表決方式的優點表現在裝置運行安全性的提高上,即可以較好地避免錯誤的勵磁控制信號的輸出,從而避免發電機的誤勵磁、失控等現象的發生。
三取二表決運行方式在電力系統繼電保護和安全自動裝置中應用較為廣泛,因為繼電保護或安全自動裝置的誤動作會給電力系統帶來較大的危害、甚至造成災難性的後果,而採用三取二表決方式可以降低裝置誤動的可能性。目前在數字式勵磁調節器中採用三取二表決運行方式的方案尚未看到,但要作為—種可能的運行方式。