㈠ 行星差動傳動裝置的圖書目錄
前言
第1章 概論
1.1 概述
1.2 行星齒輪傳動的類型
1.3 行星齒輪傳動的特點
1.4 行星差動傳動的發展概況
1.5 行星齒輪傳動的發展方向
第2章 2K-H(NGW)型行星齒輪傳動
2.1 傳動比的計算
2.2 行星齒輪傳動齒數的選配
2.3 行星齒輪傳動的變位系數選擇及其幾何計算
2.4 均載機構的選擇
2.5 行星齒輪傳動的效率與測試
第3章 3K(NGWN)型行星齒輪傳動
3.1 3K型行星齒輪傳動的傳動比計算
3.2 3K型行星齒輪傳動齒數的選配
3.3 3K型行星齒輪傳動的強度計算
3.4 3K型行星齒輪傳動的效率
第4章 通用減速器的設計
4.1 中國齒輪工業的現狀及其發展目標
4.2 通用與專用齒輪減速器
4.3 減速器的主要類型與應用
4.4 齒輪減速器的現狀及發展趨勢
4.5 減速器的設計程序
4.6 通用圓柱齒輪減速器的主要參數
4.7 減速器的結構和零部件設計
4.8 減速器齒輪傳動效率和熱功率計算
4.9 通用齒輪減速器的主要技術條件
4.10 減速器圖例
第5章 行星差動傳動承載能力的計算
第6章 主要構件的結構與計算
6.1 浮動用齒式聯軸器的設計與計算
6.2 齒輪的設計與計算
6.3 行星架的設計與計算
6.4 基本構件和行星輪支承結構的設計與計算
6.5 行星減速器機體結構
第7章 行星差動傳動的應用與設計
7.1 概述
7.2 四捲筒機構行星差動裝置
7.3 離心機行星差速器
7.4 拖拉機上用的行星差速器
7.5 具有錐齒輪的行星傳動差速器
7.6 工程機械上用的行星差速器
第8章 行星齒輪減速器
第9章 傳動裝置的潤滑與密封
第10章 行星差動製造技術
10.1 概述
10.2 行星差動製造工藝規范
10.3 主要零件加工工藝
10.4 零齒差齒輪副的加工
10.5 齒輪加工刀具
10.6 行星齒輪減速器裝配、調整及試驗
第11章 行星差動裝置的合理使用與維護
11.1 齒輪雜訊及其控制
11.2 液力偶合器的合理安裝與調整
11.3 減速器的潤滑
11.4 安裝、使用與維護
附錄
附錄A 齒輪基本術語
附錄B 齒輪磨損和損傷的基本類型
附錄C 縮略語
附錄D 行星差動常用術語
參考文獻
……
㈡ 設計一個機械傳動傳動裝置需要哪些軟體
二維的常用AutoCAD,如果搞機械的話推薦用CAXA(版本2007R3企業版);建模用Pro/E或Solidworks,先畫出二維圖內再用三維軟容件把各個零部件畫出來,最後裝配,至於模擬以上兩個三維軟體可以模擬。
機械傳動在機械工程中應用非常廣泛,主要是指利用機械方式傳遞動力和運動的傳動。分為兩類:一是靠機件間的摩擦力傳遞動力與摩擦傳動,二是靠主動件與從動件嚙合或藉助中間件嚙合傳遞動力或運動的嚙合傳動。另有同名《機械傳動》雜志。
㈢ 機械課程設計
以下僅供參考
一、前言
(一)
設計目的:
通過本課程設計將學過的基礎理論知識進行綜合應用,培養結構設計,計算能力,熟悉一般的機械裝置設計過程。
(二)
傳動方案的分析
機器一般是由原動機、傳動裝置和工作裝置組成。傳動裝置是用來傳遞原動機的運動和動力、變換其運動形式以滿足工作裝置的需要,是機器的重要組成部分。傳動裝置是否合理將直接影響機器的工作性能、重量和成本。合理的傳動方案除滿足工作裝置的功能外,還要求結構簡單、製造方便、成本低廉、傳動效率高和使用維護方便。
本設計中原動機為電動機,工作機為皮帶輸送機。傳動方案採用了兩級傳動,第一級傳動為帶傳動,第二級傳動為單級直齒圓柱齒輪減速器。
帶傳動承載能力較低,在傳遞相同轉矩時,結構尺寸較其他形式大,但有過載保護的優點,還可緩和沖擊和振動,故布置在傳動的高速級,以降低傳遞的轉矩,減小帶傳動的結構尺寸。
齒輪傳動的傳動效率高,適用的功率和速度范圍廣,使用壽命較長,是現代機器中應用最為廣泛的機構之一。本設計採用的是單級直齒輪傳動。
減速器的箱體採用水平剖分式結構,用HT200灰鑄鐵鑄造而成。
二、傳動系統的參數設計
原始數據:運輸帶的工作拉力F=0.2 KN;帶速V=2.0m/s;滾筒直徑D=400mm(滾筒效率為0.96)。
工作條件:預定使用壽命8年,工作為二班工作制,載荷輕。
工作環境:室內灰塵較大,環境最高溫度35°。
動力來源:電力,三相交流380/220伏。
1
、電動機選擇
(1)、電動機類型的選擇: Y系列三相非同步電動機
(2)、電動機功率選擇:
①傳動裝置的總效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作機所需的輸入功率:
因為 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③電動機的輸出功率:
=3.975/0.87=4.488KW
使電動機的額定功率P =(1~1.3)P ,由查表得電動機的額定功率P = 5.5KW 。
⑶、確定電動機轉速:
計算滾筒工作轉速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推薦的傳動比合理范圍,取圓柱齒輪傳動一級減速器傳動比范圍I』 =3~6。取V帶傳動比I』 =2~4,則總傳動比理時范圍為I』 =6~24。故電動機轉速的可選范圍為n』 =(6~24)×96=576~2304r/min
⑷、確定電動機型號
根據以上計算在這個范圍內電動機的同步轉速有1000r/min和1500r/min,綜合考慮電動機和傳動裝置的情況,同時也要降低電動機的重量和成本,最終可確定同步轉速為1500r/min ,根據所需的額定功率及同步轉速確定電動機的型號為Y132S-4 ,滿載轉速 1440r/min 。
其主要性能:額定功率:5.5KW,滿載轉速1440r/min,額定轉矩2.2,質量68kg。
2
、計算總傳動比及分配各級的傳動比
(1)、總傳動比:i =1440/96=15
(2)、分配各級傳動比:
根據指導書,取齒輪i =5(單級減速器i=3~6合理)
=15/5=3
3
、運動參數及動力參數計算
⑴、計算各軸轉速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵計算各軸的功率(KW)
電動機的額定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶計算各軸扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、傳動零件的設計計算
(一)齒輪傳動的設計計算
(1)選擇齒輪材料及精度等級
考慮減速器傳遞功率不大,所以齒輪採用軟齒面。小齒輪選用40Cr調質,齒面硬度為240~260HBS。大齒輪選用45#鋼,調質,齒面硬度220HBS;根據指導書選7級精度。齒面精糙度R ≤1.6~3.2μm
(2)確定有關參數和系數如下:
傳動比i
取小齒輪齒數Z =20。則大齒輪齒數:
=5×20=100
,所以取Z
實際傳動比
i =101/20=5.05
傳動比誤差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齒數比:
u=i
取模數:m=3 ;齒頂高系數h =1;徑向間隙系數c =0.25;壓力角 =20°;
則
h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圓直徑:d =×20mm=60mm
d =3×101mm=303mm
由指導書取
φ
齒寬:
b=φ =0.9×60mm=54mm
=60mm ,
b
齒頂圓直徑:d )=66,
d
齒根圓直徑:d )=52.5,
d )=295.5
基圓直徑:
d cos =56.38,
d cos =284.73
(3)計算齒輪傳動的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液壓絞車≈182mm
(二)軸的設計計算
1
、輸入軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質,硬度217~255HBS
根據指導書並查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴選d=25mm
⑵、軸的結構設計
①軸上零件的定位,固定和裝配
單級減速器中可將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面由軸肩定位,右面用套筒軸向固定,聯接以平鍵作過渡配合固定,兩軸承分別以軸肩和大筒定位,則採用過渡配合固定
②確定軸各段直徑和長度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以長度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考慮齒輪端面和箱體內壁,軸承端面和箱體內壁應有一定距離。取套筒長為20mm,通過密封蓋軸段長應根據密封蓋的寬度,並考慮聯軸器和箱體外壁應有一定矩離而定,為此,取該段長為55mm,安裝齒輪段長度應比輪轂寬度小2mm,故II段長:
L =(2+20+55)=77mm
III段直徑:
初選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直徑:
由手冊得:c=1.5
h=2c=2×1.5=3mm
此段左面的滾動軸承的定位軸肩考慮,應便於軸承的拆卸,應按標准查取由手冊得安裝尺寸h=3.該段直徑應取:d =(35+3×2)=41mm
因此將Ⅳ段設計成階梯形,左段直徑為41mm
+2h=35+2×3=41mm
長度與右面的套筒相同,即L
Ⅴ段直徑:d =50mm. ,長度L =60mm
取L
由上述軸各段長度可算得軸支承跨距L=80mm
Ⅵ段直徑:d =41mm, L
Ⅶ段直徑:d =35mm, L <L3,取L
2
、輸出軸的設計計算
⑴、按扭矩初算軸徑
選用45#調質鋼,硬度(217~255HBS)
根據課本P235頁式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考慮有鍵槽,將直徑增大5%,則
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、軸的結構設計
①軸的零件定位,固定和裝配
單級減速器中,可以將齒輪安排在箱體中央,相對兩軸承對稱分布,齒輪左面用軸肩定位,右面用套筒軸向定位,周向定位採用鍵和過渡配合,兩軸承分別以軸承肩和套筒定位,周向定位則用過渡配合或過盈配合,軸呈階狀,左軸承從左面裝入,齒輪套筒,右軸承和皮帶輪依次從右面裝入。
②確定軸的各段直徑和長度
初選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm。考慮齒輪端面和箱體內壁,軸承端面與箱體內壁應有一定矩離,則取套筒長為20mm,則該段長42.755mm,安裝齒輪段長度為輪轂寬度為2mm。
則
d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滾動軸承的選擇
1
、計算輸入軸承
選用30207型角接觸球軸承,其內徑d為35mm,外徑D為72mm,寬度T為18.25mm.
2
、計算輸出軸承
選30211型角接球軸承,其內徑d為55mm,外徑D=100mm,寬度T為22.755mm
五、鍵聯接的選擇
1
、輸出軸與帶輪聯接採用平鍵聯接
鍵的類型及其尺寸選擇:
帶輪傳動要求帶輪與軸的對中性好,故選擇C型平鍵聯接。
根據軸徑d =42mm ,L =65mm
查手冊得,選用C型平鍵,得: 卷揚機
裝配圖中22號零件選用GB1096-79系列的鍵12×56
則查得:鍵寬b=12,鍵高h=8,因軸長L =65,故取鍵長L=56
2
、輸出軸與齒輪聯接用平鍵聯接
=60mm,L
查手冊得,選用C型平鍵,得:
裝配圖中 赫格隆36號零件選用GB1096-79系列的鍵18×45
則查得:鍵寬b=18,鍵高h=11,因軸長L =53,故取鍵長L=45
3
、輸入軸與帶輪聯接採用平鍵聯接
=25mm
L
查手冊
選A型平鍵,得:
裝配圖中29號零件選用GB1096-79系列的鍵8×50
則查得:鍵寬b=8,鍵高h=7,因軸長L =62,故取鍵長L=50
4
、輸出軸與齒輪聯接用平鍵聯接
=50mm
L
查手冊
選A型平鍵,得:
裝配圖中26號零件選用GB1096-79系列的鍵14×49
則查得:鍵寬b=14,鍵高h=9,因軸長L =60,故取鍵長L=49
六、箱體、箱蓋主要尺寸計算
箱體採用水平剖分式結構,採用HT200灰鑄鐵鑄造而成。箱體主要尺寸計算如下:
七、軸承端蓋
主要尺寸計算
軸承端蓋:HT150 d3=8
n=6 b=10
八、減速器的
減速器的附件的設計
1
、擋圈 :GB886-86
查得:內徑d=55,外徑D=65,擋圈厚H=5,右肩軸直徑D1≥58
2
、油標 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
設計參考資料目錄
1、吳宗澤、羅聖國主編.機械設計課程設計手冊.北京:高等教育出版社,1999.6
2、解蘭昌等編著.緊密儀器儀表機構設計.杭州:浙江大學出版社,1997.11
㈣ 機械設計課程設計(設計壓碎機的傳動裝置(含一級斜齒圓柱齒輪減速器))
減速器的 我能
㈤ 混凝土攪拌車結構及傳動裝置設計具體是個怎麼樣的過程呢謝謝
混凝土攪拌運輸車的組成及工作原理
混凝土攪拌車由汽車底盤和混凝土攪拌運輸專用裝置組成。我國生產的混凝土攪拌車的底盤多採用整車生產廠家提供的二類通用底盤。其專用機構主要包括取力器、攪拌筒前後支架、減速機、液壓系統、攪拌筒、操縱機構、清洗系統等。其工作原理:通過取力裝置將汽車底盤的動力取出,並驅動液壓系統的變數泵,把機械能轉化為液壓能傳給定量馬達,馬達再驅動減速機,由減速機驅動攪拌裝置,對混凝土進行攪拌。
1、取力裝置
國產混凝土攪拌車採用主車發動機取力方式。取力裝置的作用是通過操縱取力開關將發動機動力取出,經液壓系統驅動攪拌筒,攪抖筒在進料和運輸過程中正向旋轉,以利於進料和對混凝土進行攪拌,在出料時反向旋轉,在工作終結後切斷與發動機的動力聯接。
2、液壓系統
將經取力器取出的發動機動力,轉化為液壓能(排量和壓力),再經馬達輸出為機械能(轉速和扭矩),為攪拌筒轉動提供動力。
3、減速機
將液壓系統中馬達輸出的轉速減速後,傳給攪拌筒。
4、操縱機構
a.控制攪拌筒旋轉方向,使之在進料和運輸過程中正向旋轉,出料時反向旋轉。
b.控制攪拌筒的轉速
5、攪拌裝置
它主要由攪拌筒及其輔助支撐部件組成。攪拌筒是混凝土的裝載容器,它是由優質耐磨薄鋼板製成,為了能夠自動裝、卸混凝土,其內壁焊有特殊形狀的螺旋葉片。轉動時混凝土沿葉片的螺旋方向運動,在不斷的提升和翻動過程中受到混合和攪拌。在進料及運輸過程中,攪拌筒正轉,混凝土沿葉片向里運動,出料時,攪拌筒反轉,混凝土沿著葉片向外卸出。攪拌筒的轉動則是靠液壓驅動裝置來保證。裝載量為3~6立方。的混凝土攪拌運輸車一般採用由汽車發動機通過動力輸出軸帶動液壓泵,再由高壓油推動液壓馬達驅動攪拌筒,裝載量為9~12立方的則由車載輔助柴油機帶動液壓泵驅動液壓馬達。葉片是攪拌裝置中的主要部件,損壞或嚴重磨損會導致混凝土攪拌不均勻。另外,葉片的角度如果設計不合理,還會使混凝土出現離析。
6、清洗系統
清洗系統的主要作用是清洗攪拌筒,有時也用於運輸途中進行乾料攪拌。清洗系統還對液壓系統起冷卻作用。
不知道這個給你有沒有幫助
㈥ 機械設計課程電動卷揚機傳動裝置設計
這些還是要自己搞定才會有收獲,其實只要按照課程設計指導書上面的方法一步步來什麼都好辦, 說明書格式在書上應該找得到,朋友只能給你這樣說:凡是還是要靠自己,靠別人是靠不住的。
㈦ 課程設計壓碎機的傳動裝置(含單極斜齒圓柱齒輪減速器)
銀雀
㈧ 機械設計課程設計的章節目錄
?序言
前言
第一章 概述
第一節 課程設計的目的
第二節 課程設計的內容和步驟
第三節 機械設計課程設計任務書
第四節 課程設計應注意的問題
第二章 傳動裝置的總體設計
第一節 減速器的主要型式、特點及應用
第二節 初步確定減速器結構和零部件類型
第三節 擬定傳動方案
第四節 電動機的選擇
第五節 確定傳動裝置的總傳動比和分配各級傳動比
第六節 傳動裝置的運動參數和動力參數的計算
第三章 傳動零件的設計
第一節 箱外傳動件的設計要點
第二節 箱內傳動件的設計要點
第三節 軸徑初選
第四章 軸系部件設計
第一節 軸承類型的選擇
第二節 軸的結構設計及軸、軸承、鍵的強度校核
第三節 滾動軸承的組合設計
第四節 齒輪結構設計
第五章 減速器的結構
第一節 標准減速器簡介
第二節 通用減速器的結構
第三節 減速器箱體的結構設計
第四節 減速器附件設計
第六章 減速器的潤滑及密封
第一節 減速器的潤滑
第二節 減速器的密封
第七章 減速器的裝配圖設計
第一節 裝配圖的設計和繪制
第二節 裝配圖總成設計的完成
第八章 零件工作圖繪制
第一節 概述
第二節 軸類零件
第三節 齒輪類零件
第四節 箱體
第九章 編制設計計算說明書及准備答辯
第一節 設計計算說明書的內容、要求
第二節 准備答辯
第十章 參考圖例
一、典型減速器圖例
二、零件工作圖參考圖例
第十一章 一般設計資料
一、常用數據
二、課程設計常用的一般性資料
第十二章 常用材料
第十三章 常用緊固件和聯接件
一、螺栓、螺釘、螺柱
二、螺母、墊圈、擋圈
三、螺紋零件的結構要素
四、鍵聯接和銷聯接
第十四章 滾動軸承
一、常用滾動軸承
二、滾動軸承的配合
第十五章 潤滑和密封的標准和規范
一、潤滑劑
二、油杯
三、標准密封件
第十六章 聯軸器
第十七章 公差與配合
一、公差配合
二、形狀和位置公差
三、表面粗糙度
四、漸開線圓柱齒輪精度(GB10095-88)
五、蝸桿傳動精度
第十八章 電動機
主要參考文獻