① 如何將鋁件產品表面加工成鏡面效果, 表面為端面曲面,後處理須經過陽極,怎麼來將刀紋解決
用酸性拋光液拋光試試,很亮,不知道能不能拋掉車學紋路。
② 機加工時:如何區分加工表面是否為:振紋、起級和刀紋粗形成原因和解決方案是什麼
切削細長軸,或是薄壁工件時,切屑刀具的刃磨,角度,和與工件的中心高都有關系,處理不好就會產生振文,刀紋粗走刀量大 了,
③ 目前金屬表面檢測的主要方法有哪些
主流金屬製品表面缺陷在線檢測方法。
一、漏磁檢測
漏磁檢測技術廣泛應用於鋼鐵產品的無損檢測。其檢測原理是,利用磁源對被測材料局部磁化,如材料表面存在裂紋或坑點等缺陷,則局部區域的磁導率降低、磁阻增加,磁化場將部分從此區域外泄,從而形成可檢驗的漏磁信號。在材料內部的磁力線遇到由缺陷產生的鐵磁體間斷時,磁力線將會發生聚焦或畸變,這一畸變擴散到材料本身之外,即形成可檢測的磁場信號。採用磁敏元件檢測漏磁場便可得到有關缺陷信息。因此,漏磁檢測以磁敏電子裝置與磁化設備組成檢測感測器,將漏磁場轉變為電信號提供給二次儀表。
漏磁檢測技術的整個過程為:激磁-缺陷產生漏磁場-感測器獲取信號-信號處理-分析判斷。在磁性無損檢測中,磁化時實現檢測的第一步,它決定著被測量對象(如裂紋)能不能產出足夠的可測量和可分辨的磁場信號,同時也影響著檢測信號的性能,故要求增強被測磁化缺陷的漏磁信號。被測構件的磁化由磁化器來實現,主要包括磁場源和磁迴路等部分。因此,針對被測構件特點和測量目的,選擇合適的磁源和設計磁迴路是磁化器優化的關鍵。
漏磁檢測金屬表面缺陷的物理基礎使帶有缺陷的鐵磁件在磁場中被磁化後,在缺陷處會產生漏磁場,通過檢測漏磁場來辯識有無缺陷。因此,研究缺陷漏磁場的特點,確定缺陷的特徵,就成為漏磁檢測理論和技術的關鍵。要測量漏磁場,測量裝置須具有較高的靈敏度,特別是能測空間點磁場,還應有較大的測量范圍和頻帶;測量裝置須具有二維及三維的精確步進或調整能力,以確定感測器的空間位置;同時,應用先進的信號處理技術去除雜訊,確定實際的漏磁場量。Foerster,Athertion 已成功應用霍爾器件檢測缺陷,霍爾器件可在z—Y二維空間步進的最小間隔分別為2μm和0.1μm。
漏磁檢測不僅能檢測表面缺陷,且能檢測內部微小缺陷;可檢測到5X10mm。的微小缺陷;造價較低廉。其缺點是,只能用於金屬材料的檢測,無法識別缺陷種類。目前,漏磁檢測在低溫金屬材料缺陷檢測方面已進入實用階段。如日本川崎公司千葉廠於1993年開發出在線非金屬夾雜物檢測裝置;日本NKK公司福岡廠於同年研製出一種超高靈敏度的磁敏感測器,用於檢測鋼板表面缺陷。
二、紅外線檢測與技術
紅外線檢測是通過高頻感應線圈使連鑄板坯表面產生感應電流,在高頻感應的集膚效應作用下,其穿透深度小於1 mm,且在表面缺陷區域的感應電流會導致單位長度的表面上消耗更多電能,引起連鑄板坯局部表面的溫度上升。該升溫取決於缺陷的平均深度、線圈工作頻率、特定輸入電能,以及被檢鋼坯電性能、熱性能、感應線圈寬度和鋼運動速度等因素。當其它各種因素在一定范圍內保持恆定時,就可通過檢測局部溫升值來計算缺陷深度,而局部溫升值可通過紅外線檢測技術加以檢定。利用該技術,挪威Elkem公司於1990年研製出Ther—mOMatic連鑄鋼坯自動檢測系統,日本茨城大學工學部的岡本芳三等在檢測板坯試件表面裂紋和微小針孔的實驗研究中也利用此法得到較滿意的結果。
三、超聲波探傷技術
超聲波檢測是利用聲脈在缺陷處發生特性變化的原理來檢測。接觸法是探頭與工件表面之間經一層薄的起傳遞超聲波能量作用的耦合劑直接接觸。為避免空氣層產生強烈反射,在探測時須將接觸層間的空氣排除干凈,使聲波入射工件,操作方便,但其對被測工件的表面光潔度要求較高。液浸法是將探頭與工件全部浸入於液體或探頭與工件之間,局部以充液體進行探傷的方法。脈沖反射法是當脈沖超聲波入射至被測工件後,聲波在工件內的反射狀況就會顯示在熒光屏上,根據反射波的時間及形狀來判斷工件內部缺陷及材料性質的方法。目前,超聲波探傷技術已成功應用於金屬管道內部的缺陷檢測。
四、光學檢測法
機器視覺是以圖像處理理論為核心,屬於人工智慧范疇的一個領域,它是以數字圖像處理、模式識別、計算機技術為基礎的信息處理科學的重要分支,廣泛應用於各種無損檢測技術中。基於機器視覺的連鑄板坯表面缺陷檢測方法的基本原理是:一定的光源照在待測金屬表面上,利用高速CCD攝像機獲得連鑄板坯表面圖像,通過圖像處理提取圖像特徵向量,通過分類器對表面缺陷進行檢測與分類。20世紀70年代中期,El本Jil崎公司就開始研製鍍錫板在線機器視覺檢測裝置 。1988年,美國Sick光電子公司也成功地研製出平行激光掃描檢測裝置,用以在線檢測金屬表面缺陷。基於機器視覺的表面在線檢測與分類器設計的研究工作目前在國內尚處於起步階段。1990年,華中理工大學採用激光掃描方法測量冷軋鋼板寬度和檢測孔洞缺陷,並開發了相應的信號處理電路;1995年又研製出冷軋連鑄板坯表面軋洞、重皮和邊裂等缺陷檢測和最小帶寬測量的實驗系統。1996年,寶鋼與原航天部二院聯合研製出冷軋連鑄板坯表面缺陷的在線檢測系統,並進行了大量的在線試驗研究。近年來,北京科技大學、華中科技大學等也研製出較為實用化的在線檢測系統。
從檢測技術的觀點來看,基於機器視覺的鋼表面缺陷檢測系統面臨困境:①要求檢測到的缺陷的幾何尺寸越來越小,有的甚至小於0.1 mm;② 檢測對象可能處於運動狀態,導致採集的圖像抖動較大;③現場環境較惡劣,往往受煙塵、油污、溫度高等因素的影響,引起缺陷圖像信噪比下降;④表面缺陷的多樣性(如冷軋連鑄板坯表面可達100多種),不同缺陷之間的光學特性、電磁特性不同;有的缺陷之間的差異不明顯。因此,基於機器視覺的連鑄板坯表面缺陷分類器要求具有收斂速度快、魯棒性好、自學習功能等特點。
精加工,根據加工條件,使表面粗糙度小於0.2即可。一般處理方法:精車、精磨或者研磨、拋光等。
⑤ 刀具磨損的檢測與監控方法
刀具狀態檢測方法可分為直接測量法和間接測量法。
1.直接測量法
直接測量法能夠識別刀刃外觀、表面質量或幾何形狀的變化,一般只能在不切削時進行,它有兩個明顯的缺點:一是要求停機檢測;二是不能檢測出加工過程中出現的刀具突然破損。國內外採用的刀具磨損量的直接測量法有:電阻測量法、刀具工件間距測量法、光學測量法、放電電流測量法、射線測量法、微結構鍍層法及計算機圖像處理法。
(1)電阻測量法
該方法利用待測切削刃與感測器接觸產生的電信號脈沖,來測量待測刀具的實際磨損狀態。該方法的優點在於感測器價格低廉,缺點是感測器的選材必須十分注意,既要有良好的可切削性,又要對刀具壽命無明顯的影響,而且工作不太可靠,因為切屑和刀具上的積屑可能引起感測器接觸部分短路,從而影響精度。
(2)刀具工件間距測量法
切削過程中隨著刀具的磨損,刀具與工件間的距離減小,此距離可用電子千分尺、超聲波測量儀、氣動測量儀、電感位移感測器等進行測量。但是這種方法的靈敏度易受工件表面溫度、表面品質、冷卻液及工件尺寸等因素的影響,使其應用收到一定限制。
(3)光學測量法
光學測量法的原理是磨損區比未磨損區有更強的光反射能力,刀具磨損越大,刀刃反光面積就越大,感測器檢測的光通量就越大。由於熱應力引起的變形及切削力引起的刀具位移都影響檢測結果,所以該方法所測得的結果並非真實的磨損量,而是包含了上述因素在內的一個相對值,此法在刀具直徑較大時效果較好。
(4)放電電流測量法
將切削力刀具與感測器之間加上高壓電,在測量迴路中流過的(弧光放電)電流大小就取決於刀刃的幾何形狀(即刀尖到放電電極間的距離)。該方法的優點是可以進行在線檢測,檢測崩齒、斷刀等刀具幾何尺寸的變化,但不能精確地測量刀刃的幾何尺寸。
(5)射線測量法
將有放射性的物質摻入刀具材料內,當刀具磨損時,放射性的物質微粒就會隨切屑一起通過一個預先設計好的射線測量器。射線測量器中所測得的量是同刀具磨損密切相關的,射線劑量的大小就反映了刀具磨損量的大小。該法的最大弱點是放射性物質對環境的污染大,對人體健康非常不利。此外,盡管此法可以測量刀具的磨損量,並不能准確地測定刀具切削刃的狀態。因此,該法僅適用於某些特殊場合,不宜廣泛採用。
(6)微結構鍍層法
將微結構導電鍍層同刀具的耐磨保護層結合在一起。微結構導電鍍層的電阻隨著刀具磨損狀態的變化而變化,磨損量越大,電阻就越小。當刀具出現崩齒、折斷及過度磨損現象時,電阻趨於零。該方法的優點是檢測電路簡單,檢測精度高,可以實現在線檢測。缺點是對微結構導電鍍層的要求很高:要具有良好的耐磨性、耐高溫性和抗沖擊性能。
(7)計算機圖像處理法
計算機圖像處理法是一種快捷、無接觸、無磨損的檢測方法,它可以精確地檢測每個刀刃上不同形式的磨損狀態。這種檢測系統通常由CCD攝像機、光源和計算機構成。但由於光學設備對環境的要求很高,而實際生產中刀具的工作環境非常惡劣(如冷卻介質、切屑等),故該方法目前僅適用於實驗室自動檢測。
2.間接測量法
間接測量法利用刀具磨損或將要破損時的狀態對不同的工作參數的影響效果,測量反映刀具磨損、破損的各種影響程度的參量,能在刀具切削時進行檢測,不影響切削加工過程,其不足之處在於檢測到的各種過程信號中含有大量的干擾因素。盡管如此,隨著信號分析處理技術、模式識別技術的發展,這一方法己成為一種主流方法,並取得了很好的效果。國內外採用的刀具磨損的間接測量法有:切削力測量法、機械功率測量法、聲發射、熱電壓測量法、振動信號及多信息融合檢測。
(1)聲發射信號測量法
聲發射技術用於監測刀具的磨、破損是近年來聲發射在無損檢測領域方面新開辟的一個應用領域。其原理是當固體材料在發生變形、斷裂和相變時會引起應變能的迅速釋放,聲發射就是隨之產生的彈性應力波。當刀具破損時可檢測到幅值較高的AE信號。聲發射刀具監控技術被公認是一種最具潛力的新型監控技術,進入80年代以來,國內外致力於開發和應用該技術,已獲得較大成果。早在1977年Iwatak和Moriwaki提出了用聲發射技術對刀具磨損進行在線檢測。在此基礎上,Moriwaki提出了聲發射刀具破損檢測方法。Kannatey-Asibu和Dornfeld從理論上研究了聲發射信號的頻譜特徵,並結合模式識別方法實現了對刀具破損的在線監測。我國聲發射監測技術研究盡管起步較晚,但發展迅速。黃惟公採用包絡分析法求取刀具磨損中聲發射信號的包絡線,用時序模型的參數作為特徵值,通過神經網路對刀具磨損方程進行辨識,實驗證明效果良好;李曉利對鏜削過程中的典型AE信號進行FFT分析,通過在頻域里AE信號幅值的變化反映刀具磨損狀態;袁哲俊對切削過程中的聲發射信號進行小波包分解,獲取信號各頻段的能量分布,以此作為信號特徵,並建立基於模糊推理的快速神經網路模型識別刀具磨損狀態。由日本Murakami Giken公司研製的chip-55A型刀具破損監控儀採用聲發射監控技術,實施對加工過程中刀具狀態的監控,該產品與其公司生產的數控銑床配套使用,效果良好。
(2)切削力信號測量法
切削力變化是切削過程中與刀具磨、破損狀態最為密切相關的一種物理現象。採用切削力作為檢測信號,具有拾取容易,反應迅速、靈敏等優點,是在線方法中研究較多、很有希望突破的一種方法,所以是加工中心和FMS中測量刀具破損的常用方法。
基於切削力的監測方法,採用的監測數據主要有切削分力,切削分力比,動態切削力的頻譜和相關函數等。當刀具破損時,切削力變化敏感。當刀具破損較小時,刀具切削刃不鋒利,使切削力增強:當產生崩刃或斷刀時,切削深度減少或沒有,使切削力劇減。在監測切削力時,在X,Y,Z三個方向上同時對Fx,Fy,Fz三個分力進行測量,依靠裝在每個電機上的伺服放大器測量出進給電機和主軸電機的電流變化,並把電流變化傳給力閥,在顯示器上讀出被測量的力,從而判斷刀具是否破損。1977年,日本東京電機大學的村幸辰從理論和實驗兩方面深入研究了不同加工條件和刀具磨損狀態下各切削力的變化規律,發現在一定條件下切削分力比是一個能靈敏反映刀具磨損變化的特徵量,據此他提出了切削力比監測法;1984年,Lan和Dornfeld的研究表明,切向力和進給力對刀具破損具有較高的敏感性;Shiraishi等通過對加工過程的測量、檢測和控制技術的對比研究指出刀具失效的力監測法是最有潛力的方法,有著廣闊的工業應用前景,扭矩監測和切削力法一樣具有相同的研究價值;成剛虎採用了頻段均方值法通過切削力監測刀具的磨損狀態;萬軍利用切削力模型和最小二乘法實現模型自動跟蹤加工過程特性變化,從而獲取刀具磨損量。在切削力監控技術方面具有代表性的成果是瑞典Sandvik Coromant公司推出的TM-BU-1001型刀具監控儀,該系統採用的力感測器可安裝於主軸軸承、進給絲杠,可設置三個門限,一旦超限自動報警。
(3)功率測量法
功率測量法也是工業生產中應用潛力很大的方法。該方法是通過測定主軸負荷功率或電流電壓相位差及電流波形變化等來確定切削過程中刀具是否破損。該方法具有信號檢測方便,可以避免切削環境中切屑、油、煙、振動等因素的干擾,易於安裝。潘建岳在對加工中心鑽削過程功率信號分析的基礎上,提出並採用功率數據的歸原處理方法,以此建立了鑽頭磨損在線監控系統;劉曉勝將回歸分析技術和模糊分類相結合,建立了鏜削切削參數與電流之間的數學模型,間接的反映刀具磨損量與鏜削切削參數的內在聯系,並利用功率信號識別刀具磨損量;郭興提出一種基於人工神經網路的銑刀破損功率監控方法,建立了一個銑刀破損功率監控系統,實驗表明該系統能夠靈敏的檢測出刀具破損並實施監控。袁哲俊系統的研究了切削過程中刀具異常對主電機功率影響的規律,提出了用主電機功率的瞬時值、導數值、靜態平均值和動態均方值等多個參數綜合監控鑽削過程刀具異常狀態;萬軍利用離散自回歸AR模型對功率信號進行處理,其模型參數通過適應演算法在每個信號采樣時刻進行遞歸修正,以適應切削狀況,同時為了區別刀具磨損和切削條件改變引起的功率信號變化,文章引入了歸一化偏差處理,當刀具切出工件時其歸一化偏差明顯比刀具磨損時歸一化偏差的變化要小,監控時設報警門限,當歸一化偏差超限時,即刻報警,具有良好的效果。成功應用電機功率監控技術具有代表性的廠家是美國Cincinnati milacron公司,該公司開發的刀具監控系統與本公司生產的馬刀系列立式加工中心配套使用。
(4)工件尺寸測量法
加工中刀尖磨損或破損必然會引起工件尺寸發生變化,通過測量工件己加工表面的尺寸變化量,可以間接判斷出刀具的磨損、破損情況。從測量方式看,有接觸工件測量的接觸式和測量刀具工件之間間隙的非接觸式兩類。測量工件尺寸方法的優點在於能直接定量給出刀具徑向磨損或破損值,並可與加工精度的在線、實時補償結合起來,保證加工質量,實現精加工中刀具磨損、破損監測的最終目標。其缺點在於,實時測量易受測試環境干擾,冷卻液、切屑等影響測量結果;加工中工件、刀具的熱膨脹和受力變形、主軸回轉精度、進給運動精度、振動等因素也會直接影響測量的精度。此外,在加工變截面工件時,要求感測器進行准確的跟蹤定位,由此也會帶來定位的誤差,並增加了實現的難度。
(5)切削溫度測量法
切削熱也是金屬切削過程中的一個重要物理現象,刀具的磨損和破損將導致切削溫度的驟增。測量切削溫度有三種方式:(l)刀具一工件組成的自然熱電偶,可以測出切削區的平均溫度,不同的刀具、工件材料需進行標定;(2)固定在刀體內某點,由兩種金屬絲組成的熱電偶,測出的是距離刀刃一定距離處某點的溫度,存在溫度變化時響應慢、事先准備費時的問題。(3)紅外攝像系統,可測出切削區溫度場分布,具有靈敏度高,響應時間短的特點,但儀器復雜、成本高,聚焦困難,難以測出切削覆蓋處的刀具溫度。
(6)刀具與工件接觸處電阻測量法
測量原理可分為兩種:一種是根據刀具磨損使刀具與工件接觸面積增大而引起接觸電阻減小的效應,這種方法受切削用量影響較大並有絕緣要求;二是在刀具後刀面上貼一層薄膜導體,它隨著刀具磨損而消耗,根據其電阻的變化可知刀具後刀面的磨損量。此方法精度高,但需每把刀具都粘貼薄膜電阻,且在高溫、高壓下薄膜電阻易脫落。該方法應用於實際工況,目前還不太現實。
(7)振動頻率測量法
刀具在切削過程中,工件與磨損的刀刃部側面摩擦,會產生不同頻率的振動。對這種振動的監測有兩種方法:一是把振幅分成高低兩部分,在切削過程中對此兩部分振幅進行對比;二是把振幅分成幾個獨立的幅帶,用微處理機對這些幅帶進行不斷地記錄及分析,即能監測出刀具後刀面的磨損程度。美國國家標准局自動化研究所在鑽削加工中利用振動信息方面取得了成功的經驗。研製成的系統是利用裝在工件上的加速度感測器對振動信息進行時效分析,識別鑽頭的磨損並判斷鑽頭的折斷。
(8)工件表面粗糙度測量法
隨著刀具磨損程度的增加或破損的發生,工件己加工表面的粗糙度將呈增大趨勢,據此可間接評價出刀具的磨損或破損狀況。測量工件表面粗糙度的方法也可分為兩類。一類是劃針式接觸測量,可直接得出表面粗糙度的評價參數R。此類方法僅適於靜態測量。目前,絕大多數此類方法僅適用於計量室或實驗室環境。另一類是非接觸式光學反射測量,得出的是工件表面粗糙度的相對值,自動監測中通常採用光纖感測器和激光測試系統兩種類型。此類方法測試效率高,可以不留痕跡地測量軟質材料的工件表面,但事先需採用樣品標定,受切削液、切屑、工件材質、振動等的影響較大。當前還達不到實際應用水平。
(9)電流信號測量法
該方法簡稱MCSA,利用感應電動機的定子電流作為信號分析的切入點,研究其特徵與故障的對應關系。其基本原理是:隨著刀具磨損的增大,切削力矩增大,機床所消耗的功率增大或電流上升,故 可實現在線檢測刀具磨損。MCSA具有測試便利、信息集成度高、傳動路徑直接、信號提取方便、不受加工環境的影響、價格低、易於移植等特點,在機床這種傳動系統封閉、一般感測器比較困難安裝的場合,應該是一種值得探索的方法。
(10)熱電壓測量法
熱電壓測量法利用熱點效應原理,即兩種不同導體的接觸點在受熱時,將在兩導體的另一端之間產生一個電壓,這個電壓的大小取決於導體的電特性 及接觸點與自由端之間的溫度差。當刀具和加工工件是由不同材料構成時,在刀具與工件之間就可以產生一個與切削溫度相關的熱電壓。這個電壓就可以作為刀具磨損量的一個度量,因為隨著刀具磨損量的增大,熱電壓也隨之增大。該方法的有點是價格便宜,精度較高,使用簡便,特別適用於高速加工區,缺點是對感測器材料及精度要求高,只能進行間隔式檢測。
⑥ 數控加工中振刀紋產生的原因和解決方法---請教
2毫米的銑刀?嗯,個人認為不排除刀具剛性問題。如果裝夾不存在問題的話。
⑦ 金屬表面缺陷檢測方法有哪些
1、輪廓測量儀
輪廓測量儀採用均布的4隻二維激光測量感測器測量軋材截面,4隻感測器包容軋材整個截面,真正做到無盲區測量。其應用范圍可以是任何截面形狀的輪廓,如圓形、方形、螺紋鋼、六角形、軌梁、T型、H型和其他長材產品。測量軟體系統根據各感測器的測量數據擬合截面形狀,可在軟體界面直觀顯示軋材的截面形狀及關鍵尺寸。應用於軋鋼、有色金屬等的在線表面缺陷監測。
2、漏磁檢測
漏磁檢測技術廣泛應用於鋼鐵產品的無損檢測。其檢測原理是,利用磁源對被測材料局部磁化,如材料表面存在裂紋或坑點等缺陷,則局部區域的磁導率降低、磁阻增加,磁化場將部分從此區域外泄,從而形成可檢驗的漏磁信號。
3、紅外線檢測
紅外線檢測是通過高頻感應線圈使連鑄板坯表面產生感應電流,在高頻感應的集膚效應作用下,其穿透深度小於1mm,且在表面缺陷區域的感應電流會導致單位長度的表面上消耗更多電能,引起連鑄板坯局部表面的溫度上升。
4、超聲波探傷檢測
超聲波檢測是利用聲脈在缺陷處發生特性變化的原理來檢測。聲波在工件內的反射狀況就會顯示在熒光屏上,根據反射波的時間及形狀來判斷工件內部缺陷及材料性質的方法。超聲波探傷技術多應用於金屬管道內部的缺陷檢測。
5、光學機器視覺智能檢測
光學機器視覺智能檢測的基本原理是:一定的光源照在待測金屬表面上,利用高速CCD攝像機獲得連鑄板坯表面圖像,通過圖像處理提取圖像特徵向量,通過分類器對表面缺陷進行檢測與分類。
這5種方法均可檢測軋鋼及金屬表面的缺陷尺寸,輪廓測量儀更是可在線無損檢測軋材表面缺陷的設備,檢測精度高,對軋材的材質、溫度等都無要求,可以說是在線金屬缺陷檢測的重要幫手。
⑧ 加工碳鋼件表面時,表面較大且為斷續車削,造成表面光潔度不好,出現明顯刀紋,如何保證和選擇刀具
如果是斷續車削,用yt14硬質合金,減小副偏角,降低轉速和進刀量,應該有效果,是材質不均的話,應該先退火,或採用yw1、yw2硬質合金會好點。
⑨ CNC加工鋁金屬產品出現刀紋,,,請問怎麼處理最好。謝謝
看你的面銑刀 的每個刀片是否一樣高 你可以對刀的時候每個刀片都試試 刀片高度相差2--3絲 不會有刀紋 多了就有