① 超聲波感測器的發射與接收分別利用什麼效應,檢測原理是什麼
SDT中國聯絡中心崑山祺邁測控工程師回答:超聲波是一種頻率大於20khz的音波。
超聲波有發射型的和接收型的,
發射型的儀器本身發射超聲波,再接受反饋的超聲波
接收型的,本身不發射超聲波,是通過感測器接受超聲波,將其轉換成電信號,進行測量分析。
② 超聲波感測器的檢測方式
根據被檢測對象的體積、材質、以及是否可移動等特徵,超聲波感測器採用的檢測方式有所不同,常見的檢測方式有如下四種: 穿透式:發送器和接收器分別位於兩側,當被檢測對象從它們之間通過時,根據超聲波的衰減(或遮擋)情況進行檢測。 限定距離式:發送器和接收器位於同一側,當限定距離內有被檢測對象通過時,根據反射的超聲波進行檢測。 限定范圍式:發送器和接收器位於限定范圍的中心,反射板位於限定范圍的邊緣,並以無被檢測對象遮擋時的反射波衰減值作為基準值。當限定范圍內有被檢測對象通過時,根據反射波的衰減情況(將衰減值與基準值比較)進行檢測。 回歸反射式:發送器和接收器位於同一側,以檢測對象(平面物體)作為反射面,根據反射波的衰減情況進行檢測。
③ 超聲波感測器如何檢測好壞
超聲波感測器用萬用表直接測試是沒有什麼反映的。要想測試超聲波感測器的好壞可以搭一個音頻振盪電路,當C1為390OμF時,在反相器腳與腳間可產生一個1.9kHz左右的音頻信號。
當超聲波在人體組織中傳播遇到兩層聲阻抗不同的介質界面時,在該界面就產生反射回聲。每遇到一個反射面時,回聲在示波器的屏幕上顯示出來,而兩個界面的阻抗差值也決定了回聲的振幅的高低。
超聲波感測技術應用在生產實踐的不同方面,而醫學應用是其最主要的應用之一,下面以醫學為例子說明超聲波感測技術的應用。超聲波在醫學上的應用主要是診斷疾病,它已經成為了臨床醫學中不可缺少的診斷方法。
超聲波診斷的優點是:對受檢者無痛苦、無損害、方法簡便、顯像清晰、診斷的准確率高等。因而推廣容易,受到醫務工作者和患者的歡迎。超聲波診斷可以基於不同的醫學原理,我們來看看其中有代表性的一種所謂的A型方法。這個方法是利用超聲波的反射。
④ 怎樣用超聲波感測器來檢測前方一定距離內有無障礙,求高手指教!!!
嚴格的說「前方一定距離有無障礙」太籠統。
什麼是前方障礙,從大范圍來說,一個釘子、一個坑,一根橫著的繩子,它們都是障礙,但這些超聲波的識別率很低。實際上微波、視頻也很難勝任,激光就更不用提了。
所以,我不得不明確一下,如果前方有一面牆,超聲波是能檢測到的,如果是一根電線或者水坑什麼的,超聲波是無法識別的。在這一點能接受的情況下,我們才可以繼續把這個想法深入下去:
用超聲波來判斷前方障礙,用一個測距模塊就可以了,MCU反復讀取前方測距的數值,如果連續幾次測距,返回的距離信息都在『障礙』定義的距離范圍之內,就判斷為前方有障礙,程序則控制轉向或停車,或者報警。
⑤ 超聲波感測器的檢測好壞
超聲波感測器用萬用表直接測試是沒有什麼反映的。要想測試超聲波感測器的好壞可以搭一個音頻振盪電路,當C1為390OμF時,在反相器⑧腳與⑩腳間可產生一個1.9kHz左右的音頻信號。把要檢測的超聲波感測器(發射和接收)接在⑧腳與⑩腳之間;如果感測器能發出音頻聲音,基本就可以確定此超聲波感測器是好的。
註:C1=3900μF時,為1.9kHZ左右;C1=0.O1μF時,約0.76kHZ。
⑥ 超聲波感測器驅動電路如何設計
40kHZ超聲波發射電路之四,它主要由四與非門電路CC4011完成振盪及驅動功能,通過超聲換能器T40-16輻射出超聲波去控制接收機。其中門YF1與門YF2組成可控振盪器,當S按下時,振盪器起振,調整RP改變振盪頻率,應為40kHZ。振盪信號分別控制由YF4、YF3組成的差相驅動器工作,當YF3輸出高電平時,YF4一定輸出低電平;YF3輸出低電平時,YF4輸出高電平。此電平控制T40-16換能器發出40kHZ超聲波。電路中YF1~YF4採用高速CMOS電路74HC00四與非門電路,該電路特點是輸出驅動電流大(大於15mA),效率高等。電路工作電壓9V,工作電流大於35mA,發射超聲波信號大於10m。
⑦ 示波器怎麼測試超聲波感測器余振,最好能提供電路
發射以後,直接看信號的餘震,比如最好信號衰減到5%,還是10%,這個是你自己定義的。
⑧ 怎麼檢測超聲波感測器接受頭的信號
一首先用一台功率放大電路改製成信號發生器,負載是一個高音喇叭。二用一套電壓放大器的輸入端連接超聲波感測器,輸出端連接電壓表。將信號發生器的頻率調節到兩萬赫滋以上,把超聲波感測器與高音喇叭離開一個距離擺放好。三調節信號放大器的信號幅度,觀察電壓表的變化,如果電壓變化小或不變化,即可證明好壞。在這里要注意調節的是信號幅度,不是頻率。
⑨ 超聲波感測器怎麼放在電路中使用
要看你是具體用來做什麼,你的電路原理圖發過來看看,能夠告訴你怎麼放