導航:首頁 > 軸承鑄造 > 滾動軸承如何配合剛度

滾動軸承如何配合剛度

發布時間:2023-02-06 11:48:48

Ⅰ 滾動軸承的配合選擇要考慮哪些主要因素

滾動軸承的配合選擇要考慮以下幾種因素:(圓柱形內孔的軸承配合選擇)
1.載荷的方向和性質
2.載荷的大小
3.工作溫度的影響
4.軸承旋轉精度
5.軸與外殼的結構和材料
6.安裝與拆卸方便
7.游動軸承的軸向位移

Ⅱ 軸和軸承相配合

【一】能力目標

1.了解軸的功用、分類、常用材料及熱處理。

2.能合理地進行軸的結構設計。

【二】知識目標

1.了解軸的分類,掌握軸結構設計。

2.掌握軸的強度計算方法。

3.了解軸的疲勞強度計算和振動。

【三】教學的重點與難點

重點:軸的結構設計

難點:彎扭合成法計算軸的強度

【四】教學方法與手段

採用多媒體教學(加動畫演示),結合教具,提高學生的學習興趣。

【五】教學任務及內容

任務
知識點

軸的設計計算
1. 軸的分類、材料及熱處理

2. 軸的結構設計

3. 軸的設計計算

一、軸的分類
(一)根據承受載荷的情況,軸可分為三類

1、心軸 工作時只受彎矩的軸,稱為心軸。心軸又分為轉動心軸(a)和固定心軸(b)。

2、傳動軸 工作時主要承受轉矩,不承受或承受很小彎矩的軸,稱為傳動軸。

3、轉軸 工作時既承受彎矩又承受轉矩的軸,稱為轉軸。

(二)按軸線形狀分:

1、直軸

(1)光軸

作傳動軸(應力集中小)

(2)階梯軸

優點:1)便於軸上零件定位;2)便於實現等強度

2、曲軸

另外還有空心軸(機床主軸)和鋼絲軟軸(撓性軸)——它可將運動靈活地傳到狹窄的空間位置。如牙鋁的傳動軸。

二、軸的結構設計
軸的結構設計就是確定軸的外形和全部結構尺寸。但軸的結構設計原則上應滿足如下要求:

1)軸上零件有準確的位置和可靠的相對固定;

2)良好的製造和安裝工藝性;

3)形狀、尺寸應有利於減少應力集中;

4)尺寸要求。

(一)軸上零件的定位和固定
軸上零件的定位是為了保證傳動件在軸上有準確的安裝位置;固定則是為了保證軸上零件在運轉中保持原位不變。作為軸的具體結構,既起定位作用又起固定作用。

1、軸上零件的軸向定位和固定:軸肩、軸環、套筒、圓螺母和止退墊圈、彈性擋圈、螺釘鎖緊擋圈、軸端擋圈以及圓錐面和軸端擋圈等。

2、軸上零件的周向固定:銷、鍵、花鍵、過盈配合和成形聯接等,其中以鍵和花鍵聯接應用最廣。

(二) 軸的結構工藝性
軸的結構形狀和尺寸應盡量滿足加工、裝配和維修的要求。為此,常採用以下措施:

1、當某一軸段需車制螺紋或磨削加工時,應留有退刀槽或砂輪越程槽。

2、軸上所有鍵槽應沿軸的同一母線布置。

3、為了便於軸上零件的裝配和去除毛刺,軸及軸肩端部一般均應制出45º的倒角。過盈配合軸段的裝入端常加工出帶錐角為30º的導向錐面。

4、為便於加工,應使軸上直徑相近處的圓角、倒角、鍵槽、退刀槽和越程槽等尺寸一致。

(三)提高軸的疲勞強度
軸大多在變應力下工作,結構設計時應盡量減少應力集中,以提高其疲勞強度。

1、結構設計方面 軸截面尺寸突變處會造成應力集中,所以對階梯軸相鄰軸段直徑不宜相差太大,在軸徑變化處的過渡圓角半徑不宜過小。盡量避免在軸上開橫孔、凹槽和加工螺紋。在重要結構中可採用凹切圓角、過渡肩環,以增加軸肩處過渡圓角半徑和減小應力集中。為減小輪轂的軸壓配合引起的應力集中,可開減載槽。

2、製造工藝方面 提高軸的表面質量,降低表面粗糙度,對軸表面採用碾壓、噴丸和表面熱處理等強化方法,均可顯著提高軸的疲勞強度。

(四)各軸段的直徑和長度的確定

1、各軸段直徑確定

a) 按扭矩估算所需的軸段直徑d min; b) 按軸上零件安裝、定位要求確定各段軸徑。

注意:①與標准零件相配合軸徑應取標准植;②同一軸徑軸段上不能安裝三個以上零件。

2、各軸段長度

① 與各軸段上相配合零件寬度相對應;②考慮零件間的適當間距——(特別)是轉動零件與靜止零件之間必須有一定的間隙。

三、軸的強度計算
(一)軸的扭轉強度計算

圓軸扭轉的強度條件為

由上式可得軸的直徑計算公式:

式中 A—計算常數,與軸的材料和承載情況有關

上式計算求得的軸頸,對有一個鍵槽的軸段應增大3%,對有兩個鍵槽的軸段應增大7%。

(二)按彎扭合成強度計算

在軸的結構設計初步完成後,通常要對轉軸進行彎扭合成強度校核。

對於鋼制軸可按第三強度理論計算,強度條件為:

由上式可推得軸設計公式為:

—當量應力(N/㎜2);

Me—當量彎矩(N·㎜), ;M為危險截面上的合成彎矩, ,其中MH、MV分別為水平面上、垂直面上的彎矩。

W-軸危險截面彎曲截面系數,對圓截面W≈0.1d3。

-摺合系數。對於不變的扭矩, ;對於脈動循環扭矩, ;對於頻繁正反轉的軸,τ可視為對稱循環交變應力,取 =1。若扭矩變化規律不清,一般也按脈動循環處理;

、 、 —分別為對稱循環、脈動循環及靜應力狀態下材料的許用彎曲應力

當危險截面有鍵槽時,應將計算得軸徑增大4%~7%。

(三)軸的剛度計算

防止軸過大的彈性變莆而影響軸上零件的正常工作,要求控制其受載後的變形量不超過最大允許變形量。

1、彎曲剛度

按材料力學公式計算出軸的撓度y和偏轉角
撓曲線方程:
撓度: 積分二次

偏轉角: 積分一次

[y]——軸的允許撓度,mm

[ ]——軸的允許偏轉角mm,rad

2、扭轉剛度——每米長的扭轉角度

扭轉角 °/m
一般傳動軸,許用扭轉角 ,精密傳動軸:
(四)軸的振動穩定性及臨界轉速

軸由於組織不均勻,加工誤差等原因,質心會偏離軸線產生離心力,隨著軸的旋轉離心力(方向)會產生周期性變化→周期性的干擾力→彎曲振動(橫向)→當振動頻率與軸本身的彎曲自振頻一致時→產生彎曲共振現象。——較常見

另外,當軸傳遞的功率有周期性變化時→扭轉振動→扭轉共振。

臨界轉速 ——軸引起共振時的轉速稱為臨界轉速,在臨界轉速附近,軸將產生顯著變形。同型振動有多個臨界轉速,其中最低的叫一階臨界轉速,其餘的叫二、三階臨界轉速。

工作轉速n低於一介臨界轉速nc1稱為剛性軸

工作轉速n高於一介臨界轉速nc1稱為撓性軸

一般:剛性軸: nc1、nc2——分別為一階和二階臨界轉速

撓性軸:
∴高速軸應使其工作轉速避開相應的高階臨界轉速。

提高軸的強度、剛度和減輕軸的重量的措施(補充)

四、軸的材料及選擇
軸的材料主要是碳素鋼和合金鋼。

碳素鋼比合金鋼價廉,對應力集中敏感性較小,應用較為廣泛。常用的碳素鋼有30、40、45和50鋼,其中以45鋼應用最廣。為改善其機械性能,可進行正火或調質處理。

合金鋼具有較好的機械性能,但價格較貴。當載荷大,要求尺寸小,重量輕或有其它特殊要求的軸,可採用合金鋼。

球墨鑄鐵容易獲得復雜的形狀,而且吸振性好,對應力集中敏感性低,適用於製造外形復雜的軸,如曲軸和凸輪軸等。

注意:①由於碳素鋼與合金鋼的彈性模量基本相同,所以採用合金鋼並不能提高軸的剛度。②軸的各種熱處理(如高頻淬火、滲碳、氮化、氰化等)以及表面強化處理(噴丸、滾壓)對提高軸的疲勞強度有顯著效果。

軸的常用材料及力學性能見表13.4

五、軸的設計
1、選擇軸的材料

根據軸的工作要求,並考慮工藝性和經濟性,選擇合適的材料。

2、初步確定軸的直徑

可按扭轉強度條件計算軸最細部分的直徑,也可用類比法確定。

3、軸的結構設計

根據軸上零件的數量、工作情況及裝配方案,畫出階梯結構設計草圖。由軸最細部分的直徑遞推各段軸直徑,相鄰兩段軸直徑之差通常可取為5~10㎜。各段軸的長度由軸上各零件的寬度及裝配空間確定。

4、軸的強度校核

首先對軸上傳動零件進行受力分析,畫出軸彎矩圖和扭矩圖,判斷危險截面,然後對軸危險截面進行強度校核。當校核不合格時,還要改變危險截面尺寸,進而修改軸的結構,直至校核合格為止。因此,軸的設計過程是反復、交叉進行的。

小結:

1、軸的分類,軸的常用材料及熱處理。

2、軸的結構設計

3、軸的強度計算。

作業與思考:

1、軸按功用與所受載荷的不同分哪幾種?常見的軸大多屬於哪一種?

2、軸的結構設計應從哪幾個方面考慮?

3、軸上零件的周向固定有哪些方法?採用鍵固定時應注意什麼?

Ⅲ 2018-08-25 滾動軸承

16.1 滾動軸承概述

16.1.1 滾動軸承的組成

滾動軸承一般由外圈、內圈、滾動體和保持架等四部分組成。

內圈裝配在軸上並與軸一起旋轉,外圈與軸承座孔裝配在一起,起支承作用。

滾動體是滾動軸承的核心元件,它使相對運動表面間的滑動摩擦變為滾動摩擦。保持架將滾動體等距離排列隔開,以避免滾動體直接接觸,減少發熱和磨損。

16.1.2 滾動軸承的材料及特點

滾動軸承的內圈、外圈和滾動體使用強度高、耐磨性好的軸承鋼製造,,工作表面要求磨削拋光,從而達到很高的精度。

軸承保持架有沖壓的和實體的兩種,沖壓保持架一般用低碳鋼板沖壓製成,與滾動體間有較大的間隙。實體保持架常用銅合金、鋁合金或塑料經切削加工製成,有較好的定心作用。

滾動軸承與滑動軸承相比,其特點如下:滾動軸承具有滾動摩擦的特點,摩擦阻力小,啟動及運轉力矩小,啟動靈敏,功率損耗小且軸承單位寬度承載能力較大,潤滑、安裝及維修方便等。與滑動軸承相比,滾動軸承的缺點是徑向輪廓尺寸大,接觸應力高,高速重載下軸承壽命較低且雜訊較大,抗沖擊能力較差。

16.2 滾動軸承的類型及其代號

16.2.1 滾動軸承的結構特性

公稱接觸角。滾動軸承的滾動體與外圈滾道接觸點的法線和軸承半徑方向的夾角α,稱為軸承公稱接觸角(簡稱接觸角)。公稱接觸角的大小反映了軸承承受軸向載荷的能力,接觸角越大,軸承承受軸向載荷的能力越大。

游隙。滾動軸承中滾動體與內圈、外圈滾道之間的間隙,稱為滾動軸承的游隙。游隙分為徑向游隙和軸向游隙,其定義是當軸承的一個套圈固定不動,另一個套圈沿徑向或軸向的最大移動量,稱為軸承的徑向游隙和軸向游隙。軸承標准中將徑向游隙分為基本游隙組和輔助游隙組,應優先選用基本游隙組值,軸向游隙值可由徑向游隙值按一定關系換算得到。

16.2.2 滾動軸承的類型

滾動軸承類型繁多,可從不同角度進行分類。按滾動體形狀分為球軸承和滾子軸承。球形滾動體與內外圈的接觸是點接觸,運轉時摩擦損耗小,承載能力和抗沖擊能力弱;滾子滾動體與內外圈是線接觸,承載能力和抗沖擊能力強,但運轉時摩擦損耗大。按滾動體的列數,滾動軸承又分為單列、雙列以及多列。

按軸承所承受的載荷的方向或公稱接觸角的不同,滾動軸承可以分為以下幾種。

向心軸承。向心軸承主要用於承受徑向載荷,0°≤α≤45°。向心軸承又分為徑向接觸軸承(α=0°)和向心角接觸軸承(0°<α≤45°)。

推力軸承。主要用於承受軸向載荷,45°<α≤90°。推力軸承又可分為軸向接觸軸承(α=90°)和推力角接觸軸承(45°<α<90°)。

16.2.3 滾動軸承的代號

為了統一表徵各類軸承的特點,便於阻止生產和選用,Gb/T 272-1933和JB/T 2974-2004規定了一般用途的滾動軸承代號的編制方法。滾動軸承代號由字母和數字表示,並由前置代號、基本代號和後置代號三部分構成。基本代號是軸承代號的主體,代表軸承的基本類型、結構和尺寸,由軸承類型代號、直徑系列、寬度系列和內徑代號構成。前置代號和後置代號是軸承在結構形狀、尺寸、公差、技術要求等方面有改變時,在基本代號左右增加的補充代號。

類型代號。類型代號用數字或字母表示。若代號為「0」,則可省略。

尺寸系列代號。尺寸系列代號由軸承的寬度系列代號和直徑系列代號組合而成。對於同一內徑的軸承,在承受大小不同的載荷時,可使用大小不同的滾動體,從而使軸承的外徑和寬度相應地發生了變化。寬度系列是指相同內外徑的向心軸承有幾個不同的寬度,寬度系列代號有8,0,1,2,3,4,5,6,對應於相同內徑軸承的寬度尺寸依次遞增。直徑系列是指相同內徑的軸承有幾個不同的外徑,直徑系列代號有7,8,9,0,1,2,3,4,5,對應於相同內徑軸承的外徑尺寸依次遞增。

內徑代號。內徑代號表示軸承內圈孔徑的大小,滾動軸承內徑可以從1mm到幾百mm變化。對常用內徑d=20~480mm的軸承,內徑一般為5的倍數,內徑代號的兩位數字表示軸承內徑尺寸被5除得的商數。對於內徑為10mm,12mm,15mm,17mm的軸承,內徑代號依次為00,01,02和03。對於內徑為500mm,22mm,28mm,32mm的軸承,用公稱內徑毫米數直接表示,但在與尺寸系列代號之間用「/」分開。

內部結構代號。內部結構代號表示軸承內部結構變化。代號含義隨不同類型、結構而異。

公差等級代號。表示軸承的精度等級,分為2級、4級、5級、6級、6X級和0級,共6個級別,依次由高級到低級,其代號分別為/P2,/P4,/P5,/P6,/P5X,/P0。公差等級中,6X級僅適用於圓錐滾子軸承,0級為普通級,在軸承代號中不標出。

游隙代號。常用的軸承徑向游隙系列分為1組、2組、0組、3組、4組、和5組,共6個組別,依次由小到大。0組游隙是常用的游隙組別,在軸承代號中不標出。其餘的游隙組別在軸承代號中分別用/C1,/C2,/C3,/C4,/C5表示。公差等級代號與游隙代號同時表示時,可進行簡化,取公差等級代號加上游隙組號組合表示,例如/P63表示公差等級6,徑向游隙3組。

配置代號,表示一對軸承的配置方式。

成套軸承分部件代號。表示軸承的分部件,用字母表示。滾動軸承的分部件表示可以自由地從軸承上分離下來的帶或不帶滾動體,或帶保持架和滾動體的軸承套圈或軸承墊圈,以及可以自由地從軸承上分離下來的滾動體與保持架的組件。

16.3 滾動軸承的選擇

16.3.1 軸承的載荷

軸承所受載荷的大小、方向和性質,是選擇軸承類型的主要依據。

根據軸承所受載荷的大小。在選擇軸承類型時,由於滾動軸承中主要元件間是線接觸,宜用於承受較大的載荷,承載後變形的也較小。而球軸承中主要為點接觸,宜用於承受較輕的或中等的載荷,故在載荷較小時,應優先選用球軸承。

根據軸承所受載荷的方向。在選擇軸承類型時,對於純軸向載荷,一般選用推力軸承;對於受較小的純軸向載荷可選用推力球軸承;較大的純軸向載荷可選用推力滾子軸承。對於純徑向載荷,一般選用深溝球軸承、圓柱滾子軸承或滾針軸承。當軸承在承受徑向載荷的同時,還有不大的軸向載荷時,可選用深溝球軸承或接觸角不大的角接觸球軸承或圓柱滾子軸承;當軸向載荷較大的時候,可選用接觸角較大的角接觸球軸承或圓柱滾子軸承,或者選用向心軸承和推力軸承組合在一起的結構。

16.3.2 軸承的轉速

從工作轉速對軸承要求看,可以確定以下幾點:球軸承與滾子軸承相比較,有較高的極限轉速,故在高速時應優先選用球軸承;在內徑相同的條件下,外徑越小,則滾動體越小,運轉時滾動體加在外圈滾道上的離心慣性力也就越小,因而也就更適於在更高的轉速下工作;保持架的材料與結構對軸承轉速影響極大,實體保持架比沖壓保持架允許更高一些的轉速、青銅實體保持架允許更高的轉速;推力軸承的極限轉速均很低,當工作轉速高時,若軸向載荷不十分大,可以用角接觸球軸承承受純軸向力;若工作轉速略超過樣本規定的極限轉速,可以提高軸承的公差等級,或適當加大軸承的徑向游隙、選用循環潤滑或油霧潤滑、加強對潤滑油的冷卻等措施改善軸承的高速性能。

16.3.3 軸承的調心性能

軸承能夠自動補償軸和箱體中心線的相對偏斜,從而保持軸承正常工作狀態的能力成為軸承的調心性。調心球軸承和調心滾子軸承都具有良好的調心性能,它們所允許的軸線偏斜角分別為3°和1°~2.5°。

圓柱滾子軸承和滾針軸承對軸承的偏斜最為敏感,這類軸承在偏斜狀態下的承載能力可能低於球軸承。因此在軸的剛度和軸承座孔的支承剛度較低時,應盡量避免使用這類軸承。

16.3.4 軸承的安裝和拆卸

便於裝拆,也是在選擇軸承類型時應考慮的一個因素。在軸承座沒有剖分面而必須沿軸向安裝和拆卸軸承部件時,應優先選用內、外圈可分離的軸承。當軸承在長軸上安裝時,為了便於裝拆,可以選用其內圈孔為1:12的圓錐孔(用以安裝在緊定襯套上)的軸承。

16.3.5 運轉精度

用滾動軸承支承的軸,其軸向及徑向運轉精度既與軸承零件的精度及彈性變形有關,也與相鄰部件的精度及彈性變形有關。因此,對於運轉精度要求高的軸承,需選用過盈配合。

16.3.6 經濟性要求

球軸承比滾子軸承價格便宜,調心軸承價格較高。在滿足使用功能的前提下,應盡量選用球軸承、低精度、低價格的軸承。

此外,軸承類型的選擇還要考慮軸承裝置整體設計要求,如軸承的配置使用性、游動性等要求,如支承剛度要求較高時,可成對採用角接觸型軸承,需調整徑向間隙時宜採用帶內錐孔的軸承,支點跨距大、軸的變形大或多支點軸,宜採用調心軸承,空間受限時,可採用滾針軸承。

16.4 滾動軸承的載荷分析、失效形式和設計准則

16.4.1 滾動軸承的工作情況分析

滾動軸承工作時各元件間的運動關系。滾動軸承是承受載荷而又旋轉的支承件。作用於軸承上的載荷通過滾動體由一個套圈傳遞給另一個套圈。內、外圈相對回轉,滾動體既自傳又繞軸承中心公轉。

滾動軸承中的載荷分布。以向心軸承為例,假定軸承僅受徑向載荷,考慮有一個滾動體的中心位於徑向載荷的作用線上,上半圈的滾動體不承受載荷,下半圈滾動體受載荷,且滾動體在不同位置受的載荷大小也在變化。

軸承元件上的載荷及應力變化。由軸承的載荷分布可知,滾動軸承工作時,滾動體所處位置不同,軸承各元件所受的載荷和應力隨時都在變化。在承載區內,滾動體所受的載荷由0逐漸增加到最大值,然後再逐漸減小到0。滾動體受的是變載荷和變應力。

16.4.2 滾動軸承的失效形式及設計准則

滾動軸承的主要失效形式:

疲勞點蝕。滾動軸承在工作時,滾動體或套圈的滾動表面反復受脈動循環變化接觸應力的作用,工作一段時間後,出現疲勞裂紋並繼續發展,使金屬表面產生麻坑或片狀剝落,造成疲勞點蝕。通常疲勞點蝕是滾動軸承的主要失效形式,,軸承的設計就是針對這種失效而展開的。

塑性變形。在較大的靜載荷及沖擊載荷作用下,在滾動接觸表面將會產生永久性的凹坑,會增大摩擦力矩,在軸承運轉中產生強烈振動和雜訊,降低運轉精度,即軸承因塑性變形而失效。因此對這種工況下的軸承需做靜強度計算。

磨損。由於密封不好、灰塵及雜質侵入軸承造成滾動體和滾道表面產生磨粒磨損,或由於潤滑不良引起軸承早期磨損或燒傷。

其他失效形式。由於裝拆操作、維護不當引起元件破裂。

滾動軸承設計准則,選定軸承類型後,決定軸承尺寸時,應針對主要失效形式進行計算。疲勞點蝕失效是疲勞壽命計算的主要依據,塑性變形是靜強度計算的主要依據。對一般工作條件下做回轉的滾動軸承應進行接觸疲勞壽命計算,還應做靜強度計算;對於不轉動、擺動或低速轉的軸承,要求控制塑性變形,應做靜強度計算;高速軸承由於發熱易造成磨損和燒傷,除進行壽命計算外,還要核驗極限轉速。

此外,決定軸承工作能力的因素還有軸承組合的合理結構、潤滑和密封等,它們對保證軸承正常工作其重要作用。

16.5 滾動軸承尺寸的選擇計算

16.5.1 基本額定壽命L

一個滾動軸承的壽命是指軸承中任一個滾動體或滾道首次出現疲勞擴展之前,一個套圈相對於另一個套圈的轉數,或在一定轉速下的工作小時數。

滾動軸承的壽命是相當離散的,由於製造精度、材料的均質程度等的差異,即使是同樣材料、同樣尺寸以及同一批生產出來的軸承在完全相同的條件下工作,它們的壽命也會不相同。

對一批軸承可用數理統計方法,分析計算一定可靠度R或失效概率n下的軸承壽命。一般在計算中取R=0.9,此時Ln = L10,稱為基本額定壽命。

16.5.2 基本額定動載荷C

軸承的壽命與所受載荷的大小有關,工作載荷越大,引起的接觸應力也就越大,因而在發生點蝕破壞前所能接受的應力變化次數也就越少,亦即軸承的壽命越短。把基本額定壽命軸承所能承受最大載荷取為基本額定動載荷。基本額定動載荷指的是大小和方向恆定的載荷,是向心軸承承受純徑向載荷或推力軸承承受純軸向載荷的能力。

16.5.3 當量動載荷P

為了進行壽命計算,須將實際載荷換算成一個與C載荷性質相同的假定載荷。在這個假定載荷作用下,軸承的壽命與實際載荷作用下的壽命相同,稱該假定載荷為當量動載荷,用P表示。在恆定的徑向載荷Fr和軸向載荷Fa作用下,當量動載荷為 P=XFr+YFa 。其中,X,Y分別是徑向動載荷系數和軸向動載荷系數。向心軸承只承受徑向載荷時P=Fr;推力軸承只承受軸向載荷時P=Fa。

16.5.4 壽命計算

軸承的載荷P與基本額定壽命L10之間的關系 PⁿL10=Cⁿx1=常數 ,其中,n=ε,下同;P是當量動載荷;L10是基本額定壽命;C是基本額定動載荷;ε是壽命指數,對於球軸承ε=3,滾子軸承ε=10/3。可得滾動軸承的基本額定壽命L10為 L10=(C/P)ⁿ ,在實際工程計算中,軸承壽命常用小時表示,此時基本額定壽命Lh(單位為小時)為 Lh=(10的6次方/60n)·(C/P)ⁿ 。其中,n次方之外的n是軸承的轉速,單位r/min。

如果載荷P和轉速n已知,預期計算壽命Lh'也確定,則所需軸承應具有的基本額定動載荷C'可計算得出 C'=P(60nLh'/10的6次方)括弧內開ε次方 。如果要講該數值用於高溫軸承,需要將C乘以溫度系數Ft,即對C值加以修正。考慮機械工作時的沖擊、振動對軸承載荷的影響,應將P乘以載荷系數Fp,對當量動載荷進行修正。

修正後,公式變為 L10=(FtC/FpP)ⁿ,Lh=(10的6次方/60n)·(FtC/FpP)ⁿ, C'=FpP(60nLh'/10的6次方)括弧內開ε次方/Ft 。這三個公式是設計計算時常用的軸承壽命計算式,由此可確定軸承的壽命或型號。

16.5.5 角接觸向心軸承軸向載荷的計算

為了使角接觸向心軸承的內部軸向力得到平衡,以免軸竄動,通常這種軸承都要成對使用,對稱安裝。Fa為軸向外載荷,F'是徑向載荷Fr產生的內部軸向力。O₁,O₂點分別為軸承1和軸承2的壓力中心,即支反力作用點。把內部軸向力F'的方向與外加軸向載荷Fa的方向一致的軸承標為2,另一端標為軸承1。取軸和與其相配合的軸承內圈為分離體,如達到軸向平衡時,應滿足 Fa+F₂'=F₁' 。

如果求得不滿足上式的時候,會出現兩種情況。當Fa+F₂'>F₁'時,則軸有向右躥動的趨勢,相當於軸承1被「壓緊」,軸承2被「放鬆」,但實際上軸必須處於平衡位置,所以被「壓緊」的軸承所受的總軸向力Fa₁必須與Fa+F₂'相平衡,即 Fa₁=Fa+F₂' ,而被「放鬆」的軸承2隻受其本身內部軸向力F₂',即Fa₂=F₂'。當Fa+F₂'<F₁'時,同前理,軸承1隻受其本身內部軸向力F₁',即Fa₁=F₁',軸承2所受的總軸向力為 Fa₂=F₁'-Fa 。

綜上,計算角接觸向心軸承所受軸向力的方法可以歸結為:先通過內部軸向力及外加軸向載荷的計算與分析,判定被「放鬆」或被「壓緊」的軸承;然後確定被「放鬆」軸承的軸向力僅為其本身內部軸向力,被「壓緊」軸承的軸向力則為除去本身內部軸向力後其餘各軸向力的代數和。

16.5.6 滾動軸承的靜載荷

基本額定靜載荷C0。對於轉速很低或緩慢擺動的滾動軸承,一般不會產生疲勞點蝕。但為了防止滾動體和內、外因產生過大的塑性變形,應進行靜強度計算。軸承受力最大的滾動體與滾道接觸中心處引起的接觸應力達到一定值的載荷,作為軸承靜載荷的界限,稱為基本額定靜載荷,以C0表示。對向心軸承來說,基本額定靜載荷是指使軸承套圈僅產生相對純徑向位移的載荷的徑向分量,稱之為徑向基本額定靜載荷,用C0r表示。對推力軸承,基本額定靜載荷是指中心軸向載荷,稱為軸向基本額定靜載荷,用C0a表示。

當量靜載荷P0。如果軸承的實際載荷情況與基本額定靜載荷的假定情況不同時,要將實際靜載荷換算為一個假想載荷。在該假想載荷下軸承中受載最大的滾動體與滾道接觸處產生的永久變形量與實際載荷作用下的相同,把這個假想載荷叫做當量靜載荷。其計算式為 P0=X0Fr+Y0Fa ,其中X0,Y0是徑向靜載荷系數和軸向靜載荷系數。

按靜載荷選擇軸承。公式為 C0≥S0P0 ,其中,S0是靜強度安全系數,P0是當量靜載荷。S0的取值取決於軸承的使用條件,當要求軸承轉動很平穩時,S0應大於1,以避免軸承滾動表面的局部塑性變形量過大;當對軸承轉動平穩性要求不高時,或軸承僅做擺動運動時,S0可取1或小於1,以盡量使軸承在保證正常運行的條件下發揮最大的靜載能力。

16.6 滾動軸承的組合設計

16.6.1 軸與軸承座孔的剛度和同軸度

軸和安裝軸承的箱體或軸承座,以及軸承組合中受力的其他零件必須有足夠的剛度。因為這些零件的變形都要阻礙滾動體的滾動而導致軸承的提前失效。

為了保證軸承正常工作,應保證軸的兩軸頸的同軸度和箱體上兩軸承孔的同軸度。保持同軸度最有效的辦法是採用整體結構的箱體,並將安裝軸承的兩個孔一次加工而成。

16.6.2 軸承的配置

合理的軸承配置應保證軸和軸上零件在工作中的正確位置,防止軸向竄動,固定其軸向位置,當受到軸向力時,能將力傳到機體上,同時,為了避免軸因受熱伸長致使軸承受過大的附載入荷,甚至卡死,又須允許它有一定的軸向游動量。為此,採取的配置方法有下列三種:

雙支點各單向固定。由兩個軸承各限制一個方向的軸向移動。考慮到軸受熱伸長,在一端的軸承外圈與軸承蓋端面之間留有一定的間隙。對於可調游隙式軸承,則在裝配時將間隙留在軸承內部。

一支點雙向固定,另一端支點游動。對於跨距較大且工作溫度較高的軸,其熱伸長量較大,應採用一支點雙向固定,另一端支點游動的支承結構。作為固定支撐的軸承,應能承受雙向軸向載荷,故內、外圈在軸向都要固定。

兩支點全游動。當軸和軸上零件已從其他方面得到軸向固定時,兩個支承就應該是全游動的。

16.6.3 滾動軸承的軸向固定

軸承內、外圈都應可靠固定,固定方法的選擇取決於軸承上的載荷性質、大小及方向,以及軸承類型和其在軸上的位置等。當沖擊振動愈嚴重,軸向載荷愈大,轉速愈高時,所用的固定方法應愈可靠。

軸承內圈軸向固定的常用方法有:用軸用彈性擋圈和軸肩固定,主要用於承受軸向載荷不大及轉速不很高的單列向心球軸承;用軸端擋圈和軸肩固定,可用於軸徑較大的場合,能在高轉速下承受較大的軸向載荷;用圓螺母和止動墊圈固定,拆裝方便,用於軸向載荷大、轉速高的場合;用緊定襯套、止動墊圈和圓螺母固定,用於光軸上軸向力和轉速都不大的、內圈為圓錐孔的軸承。

軸承外圈軸向固定的常用方法由:用嵌入箱體溝槽內的孔用彈性擋圈和凸台固定,常用於單列向心球軸承;用軸用彈性擋圈嵌入軸承外圈的止動槽內固定,適用於箱體不變設置凸台且外圈帶有止動槽的軸承;用軸承端蓋和凸台固定,適用於高速及承受很大軸向載荷的各類向心和向心推力軸承;用軸承蓋和套杯的凸台固定,適用於不宜在箱體上設置凸台等場合;用螺紋環固定,適用於軸承轉速極高,軸向載荷大,不適用於軸承固定的場合。

16.6.4 滾動軸承游隙的調整方法

為保證軸承正常工作,應使軸承內部留有一定間隙,稱為軸承游隙。調整游隙的常用方法有:

加厚或減薄端蓋與箱體間墊片的方法來調整游隙;通過調整螺釘,經過軸承外圈壓蓋,移動外圈來實現,在調整後應擰緊防松螺母;靠軸上的圓螺母來調整,但這種方法由於必須在軸上制出應力集中嚴重的螺紋,削弱了軸的強度。

當軸上有圓錐齒輪或蝸輪等零件時,為了獲得正確的嚙合位置,在安裝時或工作中需要有適當調整軸承的游隙和位置的裝置。

16.6.5 滾動軸承的預緊

滾動軸承的預緊,就是在安裝軸承時用某種方法使滾動體和內、外圈之間產生一定的初始壓力和預變形,以保證軸承內、外圈均處於壓緊狀態,使軸承在工作載荷下,處於負游隙狀態運轉。預緊的目的是:增加軸承的剛度;使旋轉軸在軸向和徑向正確定位,提高軸的旋轉精度;降低軸的振動和雜訊,減小由於慣性力矩引起的滾動體相對於內、外圈滾道的滑動;補償因磨損造成的軸承內部游隙變化;延長軸承壽命。

常用的預緊裝置:夾緊一對圓錐滾子軸承的外圈而預緊;在一對軸承中間裝入長度不等的套筒而預緊;夾緊一對磨窄了的軸承內圈或外圈而預緊;上述三種裝置由於工作時的溫升而使各零件間的尺寸關系發生變化時,預緊力的大小也隨之改變,採用預緊彈簧,則可以得到穩定的預緊力。

16.6.6 滾動軸承的配合與裝拆

為了防止軸承內圈與軸以及外圈與外殼孔在機器運轉時產生不應有的相對滑動,必須選擇正確的配合。滾動軸承是標准件,其內圈的孔為基準孔,與軸的配合採用基孔制;外圈的外圓柱面為基準軸,與軸承座孔的配合採用基軸制。

選擇軸承配合種類時,一般原則是對於轉速高、載荷大、溫度高、有振動的軸承應選用較緊的配合,而經常拆卸的軸承,應選用較松的配合。

軸承組合設計時,應考慮軸承的裝拆,以使在裝拆過程中不致損壞軸承和其他零件。

拆卸時,常用拆卸器或壓力機把軸承從軸上拆下來。

16.6.7 滾動軸承的潤滑

潤滑的主要目的是降低摩擦力、減輕磨損。此外,還有降低接觸應力、散熱、吸振、防銹等作用。

軸承的潤滑劑主要有潤滑脂和潤滑油兩種。此外,也有使用固體潤滑劑的。

脂潤滑。對於球軸承dn<160000,圓柱、圓錐軸承dn<100000~120000,調心滾子軸承dn<80000,推力球軸承dn<40000,一般採用潤滑脂潤滑。採用脂潤滑的結構簡單,潤滑脂不易流失,受溫度影響不大,對載荷性質、運動速度的變化有較大的適應性,使用時間較長。常用潤滑脂為鈣基潤滑脂和鈉基潤滑脂。

油潤滑。從滾動軸承潤滑和散熱的效果來看,油潤滑較好,但需要復雜的供油系統和密封裝置。油潤滑時,常用的潤滑方法有以下幾種:油浴潤滑,把軸承局部浸入潤滑油中;滴油潤滑,用給油器使油成滴滴下,油因轉動部分的攪動,在軸承箱內形成油霧狀,滴下的油將運動中摩擦熱量帶走,起冷卻作用;飛濺潤滑,用進入油池內的齒輪或甩油環的旋轉將油飛濺進行潤滑;噴油潤滑,用油泵將潤滑油增壓,通過油管或機體上特製的油孔,經噴嘴將油噴射到軸承中去,流過軸承的潤滑油,經過過濾冷卻後再循環使用;油霧潤滑,超高速的軸承可以採用油霧潤滑,潤滑油在油霧發生器中變成油霧。

固體潤滑。常用的固體潤滑方法有:用黏結劑將固體潤滑劑黏結在滾道和保持架上;把固體潤滑劑加入工程塑料和粉末冶金材料中,製成有自潤滑性能的軸承零件;用電鍍、高頻濺射、離子鍍層、化學沉積等技術使固體潤滑劑或軟金屬在軸承零件摩擦表面形成一層均勻緻密的薄膜。常用的固體潤滑劑有二硫化鉬、石墨、聚四氟乙烯等。

16.6.8 滾動軸承的密封

密封是為了防止灰塵、水分及其他雜質進入軸承,並組織軸承內潤滑劑的流失。

軸承的密封方法很多,通常可歸納成兩大類,即接觸式密封和非接觸式密封

接觸式密封。這類密封的密封件與軸接觸。工作時軸旋轉,密封件與軸之間有摩擦與磨損,故軸的轉速高時不宜採用。

毛氈圈密封。將矩形截面毛氈圈安裝在軸承端蓋的梯形槽內,利用毛氈圈與軸接觸起密封作用。

密封圈密封。密封圈由耐油橡膠、皮革或塑料製成。安裝時用螺旋彈簧把密封唇口箍緊在軸上,有較好的密封效果,適用於軸的圓周速度v<7m/s,工作溫度為-40~100℃的用紙或油潤滑的軸承。

非接觸式密封。這類密封利用間隙(或加甩油環)密封,轉動件與固定件不接觸,故允許軸有很高的轉速。

間隙密封。在軸承端蓋與軸間留有很小的徑向間隙而獲得密封,間隙越小,軸向寬度越長,密封效果越好。

迷宮式密封。在軸承端蓋和固定於軸上轉動件間制出曲路間隙而獲得密封,有徑向迷宮式和軸向迷宮式兩種。

擋油環密封。擋油環與軸承座孔間由很小的徑向間隙,且擋油環外突出軸承座孔端面∆=1~2mm。工作時擋油環隨軸一同轉動,利用離心力甩去落在擋油環上的油和雜物,起密封作用。

甩油密封。油潤滑時,在軸上開出溝槽或裝入一個環,都可以把欲向外流失的油甩開,再經過軸承端蓋的集油腔及與軸承腔相通的油孔流回。或者在緊貼軸承處裝一甩油環,在軸上車有螺旋式送油槽,可有效防止油外流。

組合密封。將上述各種密封方式組合在一起,以充分發揮其密封性能,提高整體密封效果。

Ⅳ 在進行滾動軸承的組合設計時應考慮哪些問題

滾動軸承的組合設計
1 軸承的固定
在確定了軸承的類型和型號以後,還必須正確的進行滾動軸承的組合結構設計,才能保證軸承的正常工作。
軸承的組合結構設計包括:
1)軸系支承端結構;
2)軸承與相關零件的配合;
3)軸承的潤滑與密封;
4)提高軸承系統的剛度。
1. 兩端固定(兩端單向固定)
普通工作溫度下的短軸(跨距L<400mm),支點常採用兩端單向固定方式,每個軸承分別承受一個方向的軸向力。如圖,為允許軸工作時有少量熱膨脹,軸承安裝時應留有軸向間隙0.25mm-0.4mm(間隙很小,結構圖上不必畫出),間隙量常用墊片或調整螺釘調節。
特點:限制軸的雙向移動。適用於工作溫度變化不大的軸。
注意:考慮受熱伸長,軸承蓋與外端面之間留補償間隙c,c=0.2~0.3mm。
2.一端雙向固定、一端游動
當軸較長或工作溫度較高時,軸的熱膨脹收縮量較大,宜採用一端雙向固定、一端游動的支點結構,如圖。
固定端由單個軸承或軸承組承受雙向軸向力,而游動端則保證軸伸縮時能自由游動。為避免松脫,游動軸承內圈應與軸作軸向固定(常採用彈性擋圈)。用圓柱滾子軸承作游動支點時,軸承外圈要與機座作軸向固定,靠滾子與套圈間的游動來保證軸的自由伸縮。
特點:一個支點雙向固定,另一個支點作軸向游動。
深溝球軸承作為游動支點,軸承外圈與端蓋留間隙。
圓柱滾子軸承作為游動支點,軸承外圈應雙向固定。
適用:溫度變化較大的長軸。
2 軸承組合的調整
1.軸承間隙的調整
調整方法:(1)軸承蓋與機座的墊片厚度調整;
(2)用螺釘調整軸承外圈壓蓋的移動。
2.軸承預緊
目的:提高精度、剛度,減小振動。
安裝時根據軸承的預緊力要求使軸承中保持一定軸向力,從而確保一定游隙,
3.軸承組合位置的調整
使軸上零件(齒輪、帶輪等)具有準確的工作位置。
3. 滾動軸承的配合
軸承內圈孔與軸的配合採用基孔制;
軸承外圈與軸承座孔的配合採用基軸制。
4. 滾動軸承的的裝拆
金工設計中,應考慮裝拆軸承時不損壞軸承和其它零部件。
l在機器保養和修理中需要拆卸某些結構,如果這些結構的拆卸很困難,或者在拆卸中很容易損壞某些零件,則會給保養和修理帶來困難或增加成本。結構設計中應事先考慮拆卸的需要。
l滾動軸承通常的設計壽命與整機不一致,需要在使用過程中多次更換,當與軸承之間有裝配關系的零件損壞時也需要對軸承進行拆卸,拆卸軸承時應使拆卸力不經過滾動體傳遞,以防使滾動體發生塑性變形。
拆卸滾動軸承通常使用專門的工具,設計軸系結構式應為工具的使用留有足夠得為空間,這些數據可以在滾動軸承手冊中找到。

Ⅳ 軸承座與軸及軸承之間如何配合的

一般情況下(普通軸承);
軸承座是固定軸承的,一般安裝在一個固定的基礎上。
軸承安裝在軸承座內,外環不會動作。
軸安裝在軸承內環里,和內環緊配合。
軸和軸承內環是運動的,其他是不動作的。

Ⅵ 滾動軸承里軸承內圈與軸頸、軸承外圈與軸承座孔是如何配合的

滾動軸承的配合是指軸承內圈與軸頸、軸承外圈與軸承座孔的配合。由於滾動軸承是標准件,故內圈與軸頸的配合採用基孔制,外圈與軸承座孔的配合採用基軸制。配合的松緊程度根據軸承工作載荷的大小、性質、轉速高低等確定。

轉速高、載荷大、沖擊振動比較嚴重時應選用較緊的配合,旋轉精度要求高的軸承配合也要緊一些;游動支承和需經常拆卸的軸承,則應配合松一些。對於一般機械,軸與內圈的配合常選用m6、k6、js6等,外圈與軸承座孔的配合常選用J7、H7、G7等。

由於滾動軸承內徑的公差帶在零線以下,因此,內圈與軸的配合比圓柱公差標准中規定的基孔制同類配合要緊些。如圓柱公差標准中H7/k6、H7/m6均為過渡配合,而在軸承內圈與軸的配合中就成了過盈配合。

(6)滾動軸承如何配合剛度擴展閱讀:

滾動軸承優點

1、摩擦阻力小,功率消耗小,機械效率高,易起動;

2、尺寸標准化,具有互換性,便於安裝拆卸,維修方便;

3、結構緊湊,重量輕,軸向尺寸更為縮小;

4、精度高,負載大,磨損小,使用壽命長;

5、部分軸承具有自動調心的性能;

6、適用於大批量生產,質量穩定可靠,生產效率高;

7、傳動摩擦力矩比流體動壓軸承低得多,因此摩擦溫升與功耗較低;

8、起動摩擦力矩僅略高於轉動摩擦力矩;

9、軸承變形對載荷變化的敏感性小於流體動壓軸承;

10、只需要少量的潤滑劑便能正常運行,運行時能夠長時間提供潤滑劑;

11、軸向尺寸小於傳統流體動壓軸承;

12、可以同時承受徑向和推力組合載荷;

13、在很大的載荷-速度范圍內,獨特的設計可以獲得優良的性能;

14、軸承性能對載荷、速度和運行速度的波動相對不敏感。

參考資料來源:

網路-滾動軸承

網路-軸承套圈

Ⅶ 選用滾動軸承時,主要應考慮哪些因素

滾動軸承類型多種多樣,選用時可考慮以下方面因素,從而進行選擇。
1.載荷的大小、方向和性質球軸承適於承受輕載荷,滾子軸承適於承受重載荷及沖擊載荷。當滾動軸承受純軸向載荷時,一般選用推力軸承;當滾動軸承受純徑向載荷時,一般選用深溝球軸承或短圓柱滾子軸承;陌貝網提供實時供需信息,當滾動軸承受純徑向載荷的同時,還有不大的軸向載荷時,可選用深溝球軸承、角接觸球軸承、圓錐滾子軸承及調心球或調心滾子軸承;當軸向載荷較大時,可選用接觸角較大的角接觸球軸承及圓錐滾子軸承,或者選用向心軸承和推力軸承組合在一起,這在極高軸向載荷或特別要求有較大軸向剛性時尤為適合。
2.允許轉速因軸承的類型不同有很大的差異。一般情況下,摩擦小、發熱量少的軸承,適於高轉速。設計時應力求滾動軸承在低於其極限轉速的條件下工作。
3.剛性軸承承受負荷時,軸承套圈和滾動體接觸處就會產生彈性變形,變形量與載荷成比例,其比值決定軸承剛性的大小。一般可通過軸承的預緊來提高軸承的剛性;此外,在軸承支承設計中,考慮軸承的組合和排列方式也可改善軸承的支承剛度。
4.調心性能和安裝誤差軸承裝入工作位置後,往往由於製造誤差造成安裝和定位不良。此時常因軸產生撈度和熱膨脹等原因,使軸承承受過大的載荷,引起早期的損壞。自動調心軸承可自行克服由安裝誤差引起的缺陷,因而是適合此類用途的軸承。
5.安裝和拆卸圓錐滾子軸承、滾針軸承等,屬於內外圈可分離的軸承類型(即所謂分離型軸承),安裝拆卸方便。
6.市場性即使是列入產品目錄的卧式車床軸承,市場上不一定有銷售;反之,未列入產品目錄的軸承有的卻大量生產。因而,應清楚使用的軸承是否易購得。

Ⅷ 如何提高交叉滾子軸承安裝時的配合精度

交叉滾子軸承,因被分割的內環或外環,在裝入滾柱和間隔保持器後,與交叉滾柱軸環固定在一起,以防止互相分離,故安裝交叉滾柱軸環時操作簡單。由於滾柱為交叉排列,因此只用1套交叉滾柱軸環就可承受各個方向的負荷,與傳統型號相比,剛性提高3~4倍。同時,因交叉滾子軸承內圈或外圈是兩分割的構造,軸承間隙可調整,即使被施加預載,也能獲得高精度地旋轉運動。
1、具有出色的旋轉精度
交叉滾子軸承內部結構採用滾子呈90°相互垂直交叉排列,
滾子之間裝有間隔保持器或者隔離塊,可以防止滾子的傾斜所滾子之間相互磨察。另外,不會發生滾子的一方接觸現象或者鎖死現象;同時因為內外環是分割的結構,間隙可以調整,即使被施加預壓,也能獲得高精度的旋轉運動。
2、操作安裝簡化
被分割成2部分的外環或者內環,在裝入滾子和保持器後,被固定在一起,所以安裝時操作非常簡單。
3、承受較大的軸向和徑向負荷
因為滾子在呈90°的V型溝槽滾動面上通過間隔保持器被相互垂直排列。
4、大幅節省安裝空間
交叉滾子軸承的內外環尺寸被最小限度的小型化,特別是超薄結構是接近極限的小型尺寸,並且具有高剛性,所以最適合於工業機器人的關節部位或者旋轉部位、機械加工中心的旋轉工作台、機械手旋轉部、精密旋轉工作台、醫療儀器、計量器具、IC製造裝置等廣泛用途。
5.轉速能力高
6.減少軸長度和加工成本,熱膨脹導致幾何尺寸的變化有限
7.採用尼龍分隔器,轉動慣量低,啟動扭矩低,易於控制角分度
8.優化預緊力,剛度大,引導滾子運轉精度高
9.滲碳鋼提供優良的抗沖擊力和表面抗磨能力
10.簡單但潤滑充分
國產交叉圓柱滾子軸承的分類和型號系列
RB型(外圈分割型)
RB系列型號為交叉圓柱滾子軸承的基本型,內、外環尺寸被最小限度地小型化,其構造是外環是分割型,內環是一體設計,適合於要求內環旋轉精度高的部位。
RE型(內圈分割型)
RE系列型號是由XRB型的設計理念產生的新型式,主要尺寸與XRB型相同。其構造是內環是分割型,外環是一體設計,適合於要求外環旋轉精度高的部位。
RU型(內、外圈一體型)
RU系列型號由於已進行了安裝孔的加工,就不需要固定法蘭和支撐座。另外,由於採用採用帶座的的一體化內外環結構,安裝對性能幾乎沒有影響,因此能夠獲得穩定的旋轉精度和扭矩。能用於外環和內環旋轉。
RBC型(外圈分割型)
RBC系列型號(對應IKO公司CRBC系列)其構造是外環是分割型,內環是一體設計,帶保持架滿裝滾子軸承。適合於要求內環旋轉精度高的部位。
CRBH型(內、外圈一體型)
CRBH系列型號內、外環都是一體結構,用於外環和內環旋轉。
RA型(外圈分割、超薄型)
RA系列型號是將RB型內、外環厚度減小到極限的緊湊型。適合於需要重量輕、緊湊設計的部位,例如機器人和機械手旋轉部位。
SX型(外圈分割型)
SX系列型號結構與RB系列類似,外環是兩分割的結構,通過三個彈簧卡環連接,內環一體設計,適用於要求內環旋轉精度高的地方。
XRU08型(內外圈一體型)
XSU08系列與RU系列相近,內外環已進行了安裝孔的加工,就不需要固定法蘭和支撐座。由於採用採用帶座的的一體化內外環結構,安裝對性能幾乎沒有影響,因此能夠獲得穩定的旋轉精度和扭矩。能用於外環和內環旋轉。
第一推力角接觸球軸承推力角接觸球軸承接觸角一般為60°常用的推力角接觸球軸承一般為雙向推力角接觸球軸承,主要用於精密機床主軸,一般與雙列圓柱滾子軸承一起配合使用,可承受雙向軸向載荷,具有精度高,剛性好,溫升低,轉速高,裝拆方便等優點。第二深溝球軸承在結構上深溝球軸承的每個套圈均具有橫截面大約為球的赤道圓周長的三分之一的連續溝型滾道。深溝球軸承主要用於承受徑向載荷,也可承受一定的軸向載荷。當滾動軸承的徑向游隙增大時,具有角接觸球軸承的性質,可承受兩個方向交變的軸向載荷。與尺寸相同的其它類型軸承相比,該類軸承摩擦系數小,極限轉速高,精度高,是用戶選型時首選的軸承類型。深溝球軸承結構簡單,使用方便,是生產批量最大,應用范圍最廣的一類軸承。第三推力圓錐滾子軸承由於推力圓錐滾子軸承中的滾動體為圓錐滾子,在結構上滾動母線與墊圈的滾道母線均匯交於軸承的軸心線上某一點,因而滾動表面可形成純滾動、極限轉速高於推力圓柱滾子軸承。特點:推力圓錐滾子軸承可承受單向的軸向載荷。推力圓錐滾子軸承的類型代號為90000型。
交叉圓柱滾子軸承簡介 交叉滾子軸承有兩大類組成,一種是交叉圓柱滾子軸承,另一種是交叉圓錐滾子軸承;交叉滾子軸承在國外已經有很長的應用歷史,但在國內也僅僅是最近幾年才進入大眾的視界,由於自身的特殊性和擁有其他軸承所不可比擬的優越性而被廣泛使用。 主要特點 :1、具有出色的旋轉精度 ,交叉滾子軸承內部結構採用滾子呈90°相互垂直交叉排列(這也是交叉滾子軸承的名稱由來),滾子之間裝有間隔保持器或者隔離塊,可以防止滾子的傾斜貨滾子之間相互磨察,有效防止了旋轉扭矩的增加。 此交叉圓柱滾子軸承已被快易優收錄,另外,不會發生滾子的一方接觸現象或者鎖死現象;同時因為標准型交叉滾子軸承內外環是分割的結構,間隙可以調整,即使被施加予壓力,也能獲得高精度的旋轉運動。
2、操作安裝簡化標准型交叉滾子軸承被分割成2部分的外環或者內環,在裝入滾子和保持器後,被固定在一起,安裝時可以通過微調連接螺栓和固定法蘭來達到理想的負載狀態,所以安裝操作非常簡單。
3、承受較大的軸向和徑向負荷因為滾子在呈90°的V型溝槽滾動面上通過間隔保持器被相互垂直排列,這種設計使交叉滾子軸承就可以承受較大的徑向負荷、軸向負荷及力矩負荷等所有方向的負荷。
4、大幅節省安裝空間交叉滾子軸承的內外環尺寸被最小限度的小型化,特別是超薄結構是 接近極限的小型尺寸,並且具有高剛性,所以最適合與工業機器人的關節部位或者旋轉部位、機械加工中心的旋轉工作台、機械手旋轉部、精密旋轉工作台、醫療儀器、計量器具、IC製造裝置等廣泛用途。

Ⅸ 滾動軸承在安裝時為什麼要留出軸向間隙應如何調整

滾動軸承的間隙分為徑向間隙和軸向間隙,其功用是保證滾動體的正常運轉和潤滑以及補償熱伸長,調整方式下面詳細介紹。

(9)滾動軸承如何配合剛度擴展閱讀:

1、滾動軸承介紹:

(1)滾動軸承(rollingbearing)是將運轉的軸與軸座之間的滑動摩擦變為滾動摩擦,從而減少摩擦損失的一種精密的機械元件。

(2)滾動軸承一般由內圈、外圈、滾動體和保持架四部分組成,內圈的作用是與軸相配合並與軸一起旋轉;外圈作用是與軸承座相配合,起支撐作用。

(3)滾動體是藉助於保持架均勻的將滾動體分布在內圈和外圈之間,其形狀大小和數量直接影響著滾動軸承的使用性能和壽命;保持架能使滾動體均勻分布,引導滾動體旋轉起潤滑作用。

2、間隙重要性:

(1)裝配時都要調整好軸向間隙(但有些間隙不可調的軸承不必留軸向間隙),以補償軸在溫度升高時的熱伸長,從而保證滾動體的正常運轉。

(2)若軸向間隙過小時,會造成軸承轉動困難、發熱,甚至使滾動體卡死或破損;若軸向間隙過大,則會導致運轉中產生異聲,甚至會造成嚴重振動或使保持架破壞。

閱讀全文

與滾動軸承如何配合剛度相關的資料

熱點內容
同志電影歐美 瀏覽:89
你的名字免費下載 瀏覽:930
長春德信機電設備工程有限公司怎麼樣 瀏覽:946
龍口市瑞宏五金製品有限公司 瀏覽:936
奧迪儀表顯示怎麼轉換 瀏覽:289
什麼樣的製冷板好 瀏覽:242
少年兒童電影大全免費觀看 瀏覽:147
機械裝置渲染 瀏覽:993
午夜電影網站在線觀看 瀏覽:539
仙俠電影高分 瀏覽:542
歐美電影叫艾比的 瀏覽:794
男人穿內褲電影 瀏覽:328
行車位士的設備號是什麼意思 瀏覽:268
窗戶五金件安裝標准 瀏覽:293
《法國航空》啄木鳥 瀏覽:587
用什麼儀器可以檢查出眼分泌物 瀏覽:272
機械設計怎麼下采購單 瀏覽:649
小電影網址導航 瀏覽:166
高爾夫製冷劑加多少升 瀏覽:896
手機設備id怎麼找回 瀏覽:257