1. (懂阀门设计的朋友进来)API 6A 和 API 6D 分别是个什么标准他们有什么区别
区别:
1、内容区别:
(1)API 6A 是《井口装置和采油树规范》。
(2)API 6D是《管线阀门》。
2、针对对象区别:PI 6A主要针对的是井口装灶虚置和采油树。API 6D主要针对的是管线阀门。
3、标准区别:对井口装置和采油树要求的标准不能应用于管线阀门上。
(1)井口装置各阀的设计压力都一样吗扩展阅读:
管线阀门的选择:
1、截止和开放介质用的阀门:
流道为直通式的阀门,其流阻较小,通常选择作为截止和开放介质用的阀门。向下闭合式阀门(截止阀、柱塞阀)由于其流道曲折,流阻比其他阀门高,故较少选用。在允许有较高流阻的场合,信灶可选用闭合式阀门。
2、控制流量用的阀门:
(1)通常选择易于调节流量的阀门作为控制流量用。向下闭合式阀门(如截止阀)适于这一用途,因为它的阀座尺寸与关闭件的行程之间成正比关系。
(2)旋转式阀门(旋塞阀、蝶阀、球阀)和挠曲阀体式阀门(夹紧阀、隔膜阀)也可用于节流控制,但通常只能在有限的阀门口径范围内适用。闸阀是以圆盘形闸板对圆形阀滑辩扮座口做横切运动,它只有在接近关闭位置时,才能较好地控制流量,故通常不用于流量控制。
3、换向分流用的阀门:
根据换向分流的需要,这种阀门可有三个或更多的通道。旋塞阀和球阀较适用于这一目的,因此,大部分用于换向分流的阀门都选取这类阀门中的一种。但是在有些情况下,其他类型的阀门,只要把两个或更多个阀门适当地相互连接起来,也可作换向分流用。
2. 怎么控制油气井
钻井工作不仅要求速度快,而且要求质量好。井身质量的好坏是油气井完井质量的前提和基础,它直接影响到油气田勘探和开发工作的顺利进行。
井身轴线偏离铅垂方向的现象叫井斜。大量实践说明,井斜严重将给钻井、油气田开发及采油等带来各种危害,甚至引起事故。因此,有关井斜的一些指标是衡量一口井井身质量的重要参数。
井身斜度大了,为钻达同一目的层所需的进尺就会增加。这样不仅费用高,而且还可能由于深度的误差,使地质资料不真实而得出错误的结论,漏掉油气层。井斜过大、井底偏离设计位置过多,将会打乱油气田开发井网分布方案,影响油气层的采收率。
井斜使井眼变曲。钻具在弯曲井眼中旋转容易产生疲劳折断。钻具在严重弯曲的井段内,受下部钻具拉力的作用,将给井壁和套管以接触压力,加剧钻具和套管的磨损。同时,在长期的旋转和起下钻中,井壁将被钻具磨起“键槽”而造成卡钻。
固井时,在井斜变化大的严重弯曲井段,比钻具刚度大的套管及测井仪器将不易下入,易发生卡钻;下入井内的套管由于井斜不能居中,使水泥浆不易充满整个套管外环形空间而影响固井质量。
综上所述,井斜的危害是多方面的,后果是严重的,需要引起钻井工作者的注意。
旋转钻井发展至今,还很难钻成一口一点都不斜的直井。井眼总是或多或少要斜的。井斜给钻井、开采带来的危害程度与井斜的严重程度有关。轻微的井斜不致造成危害;严重井斜可能引发事故甚至使井报废。那么,什么样的井斜程度才是被允许的呢?这就存在一个井斜控制标准问题。在此标准之内的井,即可认为是可以接受的“直井”,从而避免徒劳追求绝对直井的行为,把井身质量建立在工程实际的基础上。
我国井斜控制的标准为井眼曲率不大于3°/100m。至于井斜角及其他规定,要根据各地区的具体情况而定。胜利油田的评价情况见表5-1。
图5-8定向井轨迹示意图
实际上,可以说“三段式”井身轨迹只是“S型”井身轨迹的一种特殊情况而已。“S型”井身轨迹可以作为所有常规二维定向井井身轨迹的代表,使井身轨迹的设计得到和谐的统一。
常规井身轨迹设计应遵循以下原则:
(1)能实现钻定向井的目的。对于裂缝性油层、厚度小的油层,为了增大油层的裸露面积、提高产量,往往设计成水平井或多底井。为满足采油工艺的要求,丛式定向井多数设计成“S型”井身结构。为了避开井下障碍或防止井眼交叉,井身结构还可以设计成三维“S型”。对于救险井,主要是要求准确钻达目标。因事故需侧钻的定向井,只要避开井下落鱼(即井下落物),斜出一定的水平位移即可。
(2)尽可能利用地层的造斜规律,可以大大减少人工造斜的工作量和困难。
(3)要有利于满足采油工艺的要求。井眼曲率不宜过大,以利于改善抽油杆的工作条件;最好是垂直井段进入油层,以便于坐封封隔器以及进行其他增产措施。
(4)要有利于安全、优质、快速钻井。这就要求选择合适的井眼曲率、井身轨迹、造斜点以及相关的井身结构。
2.井身轨迹控制井身轨迹控制包括井斜控制和方位控制两个方面。在定向钻进过程中,为确保井眼按预定的井身轨迹发展,需要进行井身轨迹控制。一旦井眼偏离井身轨迹,也需要进行井身轨迹控制。因此,井身轨迹控制是定向钻井技术中最重要的内容之一。
井斜控制即控制井眼井斜角的变化,可以采用两种方法:一种是利用造斜工具造斜或增斜。有特殊需要时,也可以利用造斜工具来降斜。另一种方法是利用井底钻具组合进行增斜、降斜和稳斜。
方位控制是控制井眼方位角的变化,也可采用两种方法:一种是利用地层特性的自然漂移与井底钻具组合达到目的。另一种方法是利用造斜工具强行改变井眼方位。
无论是井斜控制还是方位控制,都要利用两种基本工具,造斜工具和井底钻具组合。在定向钻井发展初期,人们就开始利用造斜工具控制井斜和方位。随着造斜工具的发展,有关造斜工具的理论和现场使用已日益成熟。至于井底钻具组合,虽然人们很早就发现它对井斜和方位的变化都有很大影响,但在很长时间内对它的研究不够。从20世纪50年代起,美国学者鲁宾斯基开始研究钻具组合的力学性能,主要用于打直井。直到60年代,才有人提出定向钻井的井底钻具组合的力学模型。井底钻具组合的研究一时间成了热门,不少学者使用不同的数学、力学方法进行研究和分析,至今方兴未艾。
3.井身轨迹测量定向井测量资料是控制井身轨迹的依据。在井身轨迹的控制过程中,需要及时、准确地了解和掌握定向井基本参数的变化,才能采取相应措施,确保井身轨迹沿预定路径发展。定向钻井实践证明:要完成高质量的定向井,除了合理的井身轨迹设计和有效的井身轨迹控制外,还需要使用性能优良的定向井测量仪器和装备。目前这种趋势日益明显。
从20世纪50年代至今,井身轨迹测量技术发展极快,主要经历了以下过程:钻杆打印地面定向→氟氢酸玻璃管定向→单、多点磁性测斜仪定向→单、多点陀螺测斜仪定向→有线随钻测斜定向系统定向→无线随钻测斜定向系统定向。
钻杆打印地面定向和氟氢酸玻璃管定向方法效率低、精度差,已被淘汰。单、多点磁性测斜仪和陀螺测斜仪是目前定向井施工中使用最多的测斜工具。有线随钻测斜定向系统是20世纪70年代中期研究成功的,广泛用于造斜段测量。无线随钻测斜定向系统是70年代末期出现的,已在北海油田及美国某些油田使用,尚处于发展及完善阶段。
3. 环空测井抽油井环空带压测试井口装置
1. 在油田开发过程中,一种创新技术引起了广泛关注,即环空测井抽油井的专用井口装置,它有效解决了环空动态测试工艺在井口配套设备上的难题。
2. 该装置的设计核心包括防喷管、涡轮系统及仪器下柱,特别强调了防喷管水平安装部件的使用。其优势在于防喷管具有较大的通径,非常适合大型环空测试仪器的操作。
3. 结构上的精心设计使得该装置能够承受重负载,从而确保了在测试过程中的安全与可靠性。同时,装置在执行抽油井动态测试时,能够保证油井的正常运行,确保了测试数据的准确性。
4. 经过在数百口井的应用,该装置的经济效益得到了广泛认可。技术规格方面,装置能承受的最大工作压力为2*10兆帕,防喷管直径为Ф38毫米。
5. 值得一提的是,装置的长度可根据实际需要的测试仪器长度进行调整,以适应不同的现场条件。
6. 综上所述,这款井口装置是油田工程中的重要创新,提高了测试效率和准确性,为油田的高效运营提供了有力保障。
7. (3)井口装置各阀的设计压力都一样吗扩展阅读指出,环空测井技术是近年来创新和发展起来的一种新型油井测试工艺,它对于探测油田开发中的产液剖面和吸水剖面等动态监测系统具有重要意义。
4. 阀门特种设备制造许可证 A B C级都什么意思
特种设备阀门制造共4个级别:
A1公称压力大于10MPa,且设计温度大于425℃的特殊工况用阀门。
A2公称压力大于或者等于4MPa,且公称直径等于或者等于500mm的特殊工况阀门。
B1除A1、A2级和B2级之外的阀门。
B2公称压力小于或者等于4.0MPa的阀门。
利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压),介质为气体、液化气体、蒸汽或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体,且公称直径大于或者等于50mm的管道。
(4)井口装置各阀的设计压力都一样吗扩展阅读:
阀门前后压差一定,普通阀门的开度在较大范围内变化时,其流量变化不大,而到某一开度时,流量急剧变化,即调节性能不佳。调节阀可以按照信号的方向和大小,改变阀芯行程来改变阀门的阻力数,从而达到调节流量目的的阀门。
调节阀分手动调节阀和自动调节阀,而手动或自动调节阀又分许多种类,其调节性能也是不同的。自动调节阀有自力式流量调节阀和自力式压差调节阀等。
盛装气体或者液体,承载一定压力的密闭设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压)的气体、液化气体和最高工作温度高于或者等于标准沸点的液体、容积大于或者等于30L且内直径(非圆形截面指截面内边界最大几何尺寸)大于或者等于150mm的固定式容器和移动式容器。
盛装公称工作压力大于或者等于0.2MPa(表压),且压力与容积的乘积大于或者等于1.0MPa·L的气体、液化气体和标准沸点等于或者低于60℃液体的气瓶;氧舱。