导航:首页 > 装置知识 > 卷场机传动装置课程设计

卷场机传动装置课程设计

发布时间:2022-09-15 14:34:47

① 液压卷扬机结构分析

由液压卷扬机的工作原理可知,卷扬机由下列主要部件组成:①液压马达:液压马达型式常为轴向柱塞式和径向柱塞式马达,轻载卷扬机可采用端面配油的摆线齿轮马达;②制动器:其结构为液压常闭多片盘式制动器,弹簧制动液压松开;③减速器:一般为一级或二级行星轮系;④卷筒和机架:⑤阀块:阀块由梭阀、平衡阀及油路块集成。图4-1就是此种类型结构卷扬机。

1.自带减速器的卷扬机

图4-4所示AF15000型液压卷扬机是将液压马达、制动器和减速器等部件组成一体,称为卷扬机减速机。减速机外壳与卷筒固定,而液压马达外壳与支架固定。不同规格型号的减速机,配以相应卷筒和机架,即组成液压卷扬机的系列产品。

图4-4 AF15000型液压卷扬机

2.具有自由下放功能的卷扬机

具有自由下放功能的液压卷扬机有两种型式结构。一种是传动输出轴与卷筒之间设一离合器,离合器结构类似制动器,详见图4-5ILYJ5系列自由下放卷扬机。离合器也是常闭式,弹簧闭合,液压分离,由单独换向阀控制。

图4-5 ILYJ5系列自由下放卷扬机

图4-6是具有自由下放速度可调的液压卷扬机,在卷筒上设有闸带制动器,通过控制液压缸中压力,即可实现重载自由下放过程中的速度调节。

图4-6 ILYJ5系列自由下放速度可调的卷扬机

另一种具有自由下放功能液压卷扬机的液压原理见图4-7,液压卷扬机上加一外控油路,来控制制动器和液控单向阀。卷扬机实行自由下放作业时,卷扬机的换向阀处于中位,接通外控油路,使制动器松开、液控单向阀打开,液压马达进油口与出油口连通,卷扬机在负载作用下实现自由下放动作。这种卷扬机比采用离合器自由下放的卷扬机结构简单,液压岩心钻机上应用较多。

3.RW300型液压卷扬机

(1)结构:图4-8为美国BRADENRW300型卷扬机的结构图,此卷扬机设计最大提升能力13950kg。

图4-8中,液压马达16固定在液压马达座13上,并固定在右侧底座12上。液压马达主轴通过内轮18的花键传给卷扬机主轴,主轴左端为一轴齿轮,因此液压马达输出轴直接驱动一级中心轮6转动,一级行星轮25通过滚针轴承24支承在一级行星轮轴26上。一级中心轮通过一级行星轮驱动内齿圈7转动。

图4-7 外控自由下放卷扬机的液压系统图

第一行星轮系的中心轮通过一级行星轮驱动一级行星架(系杆)1转动,而该行星轮架通过花键与二级中心轮3连接在一起,而二级中心轮通过滑动轴承支承在卷扬机主轴(中心轮6)上。二级中心轮通过二级行星轮驱动内齿圈转动,通过二级行星轮驱动二级行星架2转动,而该行星架通过花键与三级中心轮4连接在一起,三级行星架5固定不动,三级中心轮通过三级行星轮22驱动内齿圈7转动。

图4-8 RW300型卷扬机结构图

内轮18与外套筒15之间装有凸轮楔块17,三者构成一单向离合器。外套筒左端外圆加工成齿槽与摩擦片21内齿相啮合。摩擦片外齿与液压马达座13内齿相啮合。卷扬机不工作时通过弹簧14,活塞9压紧摩擦片,使外套筒不能转动。形成具有双制动系统的液压卷扬机。

(2)工作原理:RW300型液压卷扬机的液压系统见图4-9。图4-10为卷扬机的双重制动系统结构图。

图4-9 制动液压系统图

图4-10 双重制动系统结构图

这种卷扬机的特点是在输入轴与多片摩擦离合器之间又装一个带有凸轮楔块摩擦滚动元件的离合器,使卷扬机不必松开摩擦离合器就可提升。

图4-10所示为双重制动系统结构图,其中凸轮楔块式定向离合器由内轮5,外套筒2和凸轮楔块3等组成。内轮内孔为花键轴孔与液压马达轴配合,外套筒外表面加工成凹槽,与一组带有凸齿的摩擦片相配合。

工作原理:当主轴逆时针回转提升外负载时如图4-11所示,凸轮楔块被摩擦力矩带动而滚向间隙宽敞的部分,这时定向离合器处于分离状态,多片摩擦离合器处于弹簧推力作用压紧处于啮合状态不工作。主轴通过行星轮系带动卷筒作提升工作。不受凸轮楔块离合器的影响。

图4-11 自由转动状态

图4-12 锁定状态

提升动作停止时,由于负载的自重会使卷筒反向(顺时针)转动,顺时针转动导致凸轮楔块收缩,并楔紧与内轮和外套筒之间,使定向离合器进入接合状态(图4-12),从而紧紧地将主轴锁住不动,阻止由负载自重引起的反向转动。

卷扬机下降负载时,接通油路,当油压未达到平衡阀开启压力时,液压马达保持不动,另外当油压未达到多片摩擦离合器打开压力时,液压马达也保持不动(图4-12)。只有当油压升至平衡阀的开启压力,同时达到松开多片摩擦离合器压力时,液压马达才能转动,负载下降。平衡阀的开度决定流量和负载下降速度,增加进入液压马达的油量就能够增强压力并加大平衡阀的开度,从而提高负载下降速度。降低流量会使压力降低,平衡阀开度减小,从而降低负载的下降速度。

当操纵阀处于中间位置时,压力下降,平衡阀关闭,负载运动停止。

(3)轮系传动比计算:图4-13为RW300型卷扬机传动简图。设各齿轮齿数z1=15;z2=19;z3=54;z4=26;z5=20;z6=66;z7=20;z8=23。试求主轴转速n1与卷筒转速n6的传动比。

解:首先划分轮系,此轮系有两个周转轮系,一个定轴轮系。中心轮1、行星轮2、内齿圈3与系杆H1组成一级行星轮系;中心轮4、行星轮5、内齿圈6与系杆H2组成二级行星轮系;中心轮7、行星轮8、内齿圈6与系杆H3(系杆为固定件)组成定轴轮系。

图4-13 RW300型卷扬机传动简图

从传动简图4-13中可知:n3=n6;n4=nH1;n7=nH2

写出各轮系传动比,并代入数值

液压动力头岩心钻机设计与使用

由式a得 n1=-3.6n6+4.6nH1

由式b得 nH1=-2.54n6+3.54nH2

由式c得 nH2=-3.3n6

上述三式整理后

液压动力头岩心钻机设计与使用

即卷筒与主轴旋转方向相反,传动比i16=69

② 液压卷扬机

卷扬机又称升降机,是钻机的主要执行部件之一。卷扬机主要用于钻进过程中钻具和 套管的升降,采用绳索取心钻进工艺,钻机还要单独配备一提升力较小的绳索取心卷扬机。

1.基本要求

钻进过程中,升降系统的主要作用是升降钻具。升降工序时间占整个钻孔钻探总时间 的比值随孔深而增加,一个2000m深的钻孔,比值能占到20%~35%。所以说,升降系统 的完善程度,直接影响钻探效率与质量,升降系统应满足以下基本要求:

(1)升速度大小、级数、调速范围与起重量的确定,应能最大限度地降低升降工序的机动时间和尽可能提高功率利用率。

(2)下钻时,由于操作或孔内情况骤然变化,使升降系统承受较大的动负载;孔内发生卡钻时需进行强力起拔。因此要求升降系统结构与强度能适应这种负载特点。

(3)升降钻具时,微动升降动作频繁,这种动作能否准确完成,不仅影响钻进效率,而且影响钻进质量(如提钻时,发生岩心脱落);处理孔内事故过程的微控升降准确与否,直接影响排除事故的速度和效果。因此,除操作原因外,要求卷扬机起放灵敏,平稳可靠。

(4)提高升降工序的准确性和速度,避免事故,卷扬机的操纵位置应便于操作者观察 孔口。

(5)卷扬机的布局应有利于排绕钢丝绳。

2.液压卷扬机工作原理

如图4-12所示,卷扬机采用轴向柱塞式液压马达1驱动主轴8,经过行星轮系统10减速 传至卷筒9,通过钢丝绳进行提升或下降工作。在卷筒右端装有制动器,并设有环形液压 缸。从图中可知弹簧3通过液压缸活塞4压紧摩擦片6,由于制动底座是固定的,这时定位 盘5被制动,主轴8不能转动。

图4-12 液压卷扬机结构图

在油路设计上液压马达与环形液压缸油路是并联的。当卷扬机启动时,同时向液压马 达和环形液压缸供压力油,进入环形液压缸的压力油克服弹簧张力使制动器松开,卷筒工 作。卷扬机的提升或下降,均由液压马达驱动。当油路卸荷时,环形液压缸的压力消失,制动器在弹簧的张力作用下,定位盘被制动,卷筒处于刹车状态。在下放钻具时,当下放 速度过快,超过液压马达供油时,由于回油路上平衡阀的限速作用使钻具以一定速度呈匀 速下降。

3.轮系传动比计算

图4-1 3为卷扬机传动简图,此轮系是一个混合轮系。混合轮系是既有定轴轮系又有周转轮系。在计算混合轮系的传动比时,不能把它看做一个整体,而用一个统一的公式来进 行计算,必须把混合轮系中定轴轮系部分和周转轮系部分分开,然后分别按不同的方法计 算它们的传动比,最后联立求解。

划分轮系的时候,关键是把其中的周转轮系找出来。周转轮系的特点是有行星轮,所 以首先要找到行星轮,然后找出杆系(注意杆系不一定是简单的杆状),以及与行星轮啮 合的所有中心轮。每一个杆系连同杆系上的行星轮和行星轮相啮合的中心轮就组成一个周 转轮系。在一个复杂的混合轮系中,可能包含有几个周转轮系(每个杆系都对应一个周转 轮系),当将这些周转轮系划出来后,剩下的便是定轴轮系。

图4-13 卷扬机传动简图

先把卷扬机中的轮系分出来,如图4-13所示,由齿轮1、2、3与杆系H组成的周转轮 系。左边由于杆系H1是固定的,所以齿轮4、5与齿轮3组成一个定轴轮系。齿轮4与4′ 是 一个双联齿轮,杆系H由内齿轮花键与4外齿轮啮合,连接成一体。

现分别计算它们的传动比:

定轴轮系的传动比为:

深部找矿钻探技术与实践

周转轮系的传动比为:

深部找矿钻探技术与实践

由于齿轮4、与杆系H是一个内、外齿轮啮合的联轴器,

深部找矿钻探技术与实践

上两式联立求出:

深部找矿钻探技术与实践

根据上式中给出的齿轮齿数值,可求出不同的传动比,而得出不同的卷筒转速。

4.液压卷扬机的使用与维护

使用液压卷扬机前必须对卷扬机结构机械性能了解透彻。并遵守操作规程和安全指南。

(1)定期更换齿轮油。包括:

1)换油:运行完第一个1 00h后应该更换齿轮油,之后每运行1000h或者6个月更换一次,两者当中选择间隔时间较短的一个来执行。齿轮油必须更换以防止磨损部件损害到齿 轮运行的可靠性和安全性,以及对轴承、齿轮和密封圈的侵蚀。如果不能按照推荐的最小 间隔时间换油,则可能导致出现间歇性刹车滑动,从而造成卷扬机损坏,甚至严重的人身 伤害。

2)油面:齿轮油面应每运行500h或者3个月检查一次,两者中选择时间较短的来执 行。检查油面时,拆下位于卷筒座中心位置的大螺塞。油面应该位于与此开口底部持平的 位置。

3)推荐使用行星齿轮油:实践经验表明使用合适的行星齿轮油对于保证刹车离合器 的可靠性和安全性,以及获得较长的齿轮寿命具有至关重要的作用。

如果使用的行星轮油类型和黏度不恰当,则可能导致间歇性刹车离合器滑动,造成卷 扬机损坏,甚至造成严重的人身伤害。某些齿轮润滑剂含有大量的防滑添加剂,这些可能 导致刹车离合器滑动并造成刹车离合器圆盘和密封圈的损伤。由于环境温度导致油的黏度 发生变化,这对于刹车离合器运行的可靠性也具有关键性作用。实验表明过重或者过稠的 齿轮油可能导致间歇性刹车离合器滑动。所以必须确保卷扬机上的齿轮油的黏度与其主要 的环境温度相适应。

(2)卷扬机启动前进行预热程序。每次启动之前应进行预热程序,当环境温度低于 4℃时,必须进行预热。

启动时应当按照推荐的最低可靠性能运行,同时保持液压卷扬机控制阀处于齿轮的空 挡上,从而保证有足够的时间来预热系统。然后卷扬机应当以低速来回运行几次,以便将 预热的液压油灌注到所有润滑点上,并使齿轮油润滑流过行星齿轮装置。

如果不对卷扬机进行适当预热,尤其是在环境温度较低的情况下没有适当的预热,将 可能导致由于较高的反压力启动刹车而出现临时性刹车滑动,从而可能造成卷扬机损坏和 严重的人身伤害。

(3)在卷扬机卷筒上缠绕钢丝绳时,不要期望靠手将其捋紧,而应将其抓住“一把倒 一把”地将其缠紧。

(4)不要使用断股的钢丝绳。

(5)不要对卷扬机的任何部分进行焊接。

(6)不要超过液压卷扬机规格中的最大油压力和流量。

(7)保持液压系统洁净并避免受到污染。

(8)每年对卷扬机所有齿轮部件进行一次拆卸和检测。

③ 求一张卷扬机的设计图纸,卷扬机F=12t, 吊绳牵引v=0.3m/s, 卷筒直径D=500mm,做过课题的跪求分享下感谢

一级直齿轮减速器说明书和装配技术数据滚筒圆周力:F=1200N带速:V=2.1M/S滚筒直径:D=400mm全题目:一级圆柱直齿轮减速器参考书目:《机械设计基础》任成高《简明机械零件设计实用手册》胡家秀其他也可发给我参考啊万分感谢!!!也把它发到我的邮箱里面看看吧。。[email protected]不过你也可以到我的博客里面看看哦。/机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器目录设计任务书……………………………………………………1传动方案的拟定及说明………………………………………4电动机的选择…………………………………………………4计算传动装置的运动和动力参数……………………………5传动件的设计计算……………………………………………5轴的设计计算…………………………………………………8滚动轴承的选择及计算………………………………………14键联接的选择及校核计算……………………………………16连轴器的选择…………………………………………………16减速器附件的选择……………………………………………17润滑与密封……………………………………………………18设计小结………………………………………………………18参考资料目录…………………………………………………18机械设计课程设计任务书题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器一.总体布置简图1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器二.工作情况:载荷平稳、单向旋转三.原始数据鼓轮的扭矩T(N•m):850鼓轮的直径D(mm):350运输带速度V(m/s):0.7带速允许偏差(%):5使用年限(年):5工作制度(班/日):2四.设计内容1.电动机的选择与运动参数计算;2.斜齿轮传动设计计算3.轴的设计4.滚动轴承的选择5.键和连轴器的选择与校核;6.装配图、零件图的绘制7.设计计算说明书的编写五.设计任务1.减速器总装配图一张2.齿轮、轴零件图各一张3.设计说明书一份六.设计进度1、第一阶段:总体计算和传动件参数计算2、第二阶段:轴与轴系零件的设计3、第三阶段:轴、轴承、联轴器、键的校核及草图绘制4、第四阶段:装配图、零件图的绘制及计算说明书的编写传动方案的拟定及说明由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。电动机的选择1.电动机类型和结构的选择因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。2.电动机容量的选择1)工作机所需功率PwPw=3.4kW2)电动机的输出功率Pd=Pw/ηη==0.904Pd=3.76kW3.电动机转速的选择nd=(i1’•i2’…in’)nw初选为同步转速为1000r/min的电动机4.电动机型号的确定由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求计算传动装置的运动和动力参数传动装置的总传动比及其分配1.计算总传动比由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:i=nm/nwnw=38.4i=25.142.合理分配各级传动比由于减速箱是同轴式布置,所以i1=i2。因为i=25.14,取i=25,i1=i2=5速度偏差为0.5%<5%,所以可行。各轴转速、输入功率、输入转矩项目电动机轴高速轴I中间轴II低速轴III鼓轮转速(r/min)96096019238.438.4功率(kW)43.963.843.723.57转矩(N•m)39.839.4191925.2888.4传动比11551效率10.990.970.970.97传动件设计计算1.选精度等级、材料及齿数1)材料及热处理;选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。2)精度等级选用7级精度;3)试选小齿轮齿数z1=20,大齿轮齿数z2=100的;4)选取螺旋角。初选螺旋角β=14°2.按齿面接触强度设计因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算按式(10—21)试算,即dt≥1)确定公式内的各计算数值(1)试选Kt=1.6(2)由图10-30选取区域系数ZH=2.433(3)由表10-7选取尺宽系数φd=1(4)由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62(5)由表10-6查得材料的弹性影响系数ZE=189.8Mpa(6)由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;(7)由式10-13计算应力循环次数N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8N2=N1/5=6.64×107(8)由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98(9)计算接触疲劳许用应力取失效概率为1%,安全系数S=1,由式(10-12)得[σH]1==0.95×600MPa=570MPa[σH]2==0.98×550MPa=539MPa[σH]=[σH]1+[σH]2/2=554.5MPa2)计算(1)试算小齿轮分度圆直径d1td1t≥==67.85(2)计算圆周速度v===0.68m/s(3)计算齿宽b及模数mntb=φdd1t=1×67.85mm=67.85mmmnt===3.39h=2.25mnt=2.25×3.39mm=7.63mmb/h=67.85/7.63=8.89(4)计算纵向重合度εβεβ==0.318×1×tan14=1.59(5)计算载荷系数K已知载荷平稳,所以取KA=1根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,故KHβ=1.12+0.18(1+0.6×1)1×1+0.23×1067.85=1.42由表10—13查得KFβ=1.36由表10—3查得KHα=KHα=1.4。故载荷系数K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05(6)按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得d1==mm=73.6mm(7)计算模数mnmn=mm=3.743.按齿根弯曲强度设计由式(10—17mn≥1)确定计算参数(1)计算载荷系数K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96(2)根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数Yβ=0。88(3)计算当量齿数z1=z1/cosβ=20/cos14=21.89z2=z2/cosβ=100/cos14=109.47(4)查取齿型系数由表10-5查得YFa1=2.724;Yfa2=2.172(5)查取应力校正系数由表10-5查得Ysa1=1.569;Ysa2=1.798(6)计算[σF]σF1=500MpaσF2=380MPaKFN1=0.95KFN2=0.98[σF1]=339.29Mpa[σF2]=266MPa(7)计算大、小齿轮的并加以比较==0.0126==0.01468大齿轮的数值大。2)设计计算mn≥=2.4mn=2.54.几何尺寸计算1)计算中心距z1=32.9,取z1=33z2=165a=255.07mma圆整后取255mm2)按圆整后的中心距修正螺旋角β=arcos=1355’50”3)计算大、小齿轮的分度圆直径d1=85.00mmd2=425mm4)计算齿轮宽度b=φdd1b=85mmB1=90mm,B2=85mm5)结构设计以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。轴的设计计算拟定输入轴齿轮为右旋II轴:1.初步确定轴的最小直径d≥==34.2mm2.求作用在齿轮上的受力Ft1==899NFr1=Ft=337NFa1=Fttanβ=223N;Ft2=4494NFr2=1685NFa2=1115N3.轴的结构设计1)拟定轴上零件的装配方案i.I-II段轴用于安装轴承30307,故取直径为35mm。ii.II-III段轴肩用于固定轴承,查手册得到直径为44mm。iii.III-IV段为小齿轮,外径90mm。iv.IV-V段分隔两齿轮,直径为55mm。v.V-VI段安装大齿轮,直径为40mm。vi.VI-VIII段安装套筒和轴承,直径为35mm。2)根据轴向定位的要求确定轴的各段直径和长度1.I-II段轴承宽度为22.75mm,所以长度为22.75mm。2.II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。3.III-IV段为小齿轮,长度就等于小齿轮宽度90mm。4.IV-V段用于隔开两个齿轮,长度为120mm。5.V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。6.VI-VIII长度为44mm。4.求轴上的载荷66207.563.5Fr1=1418.5NFr2=603.5N查得轴承30307的Y值为1.6Fd1=443NFd2=189N因为两个齿轮旋向都是左旋。故:Fa1=638NFa2=189N5.精确校核轴的疲劳强度1)判断危险截面由于截面IV处受的载荷较大,直径较小,所以判断为危险截面2)截面IV右侧的截面上的转切应力为由于轴选用40cr,调质处理,所以([2]P355表15-1)a)综合系数的计算由,经直线插入,知道因轴肩而形成的理论应力集中为,,([2]P38附表3-2经直线插入)轴的材料敏感系数为,,([2]P37附图3-1)故有效应力集中系数为查得尺寸系数为,扭转尺寸系数为,([2]P37附图3-2)([2]P39附图3-3)轴采用磨削加工,表面质量系数为,([2]P40附图3-4)轴表面未经强化处理,即,则综合系数值为b)碳钢系数的确定碳钢的特性系数取为,c)安全系数的计算轴的疲劳安全系数为故轴的选用安全。I轴:1.作用在齿轮上的力FH1=FH2=337/2=168.5Fv1=Fv2=889/2=444.52.初步确定轴的最小直径3.轴的结构设计1)确定轴上零件的装配方案2)根据轴向定位的要求确定轴的各段直径和长度d)由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。e)考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。f)该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。g)该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。h)为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。i)轴肩固定轴承,直径为42mm。j)该段轴要安装轴承,直径定为35mm。2)各段长度的确定各段长度的确定从左到右分述如下:a)该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。b)该段为轴环,宽度不小于7mm,定为11mm。c)该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。d)该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。e)该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。f)该段由联轴器孔长决定为42mm4.按弯扭合成应力校核轴的强度W=62748N.mmT=39400N.mm45钢的强度极限为,又由于轴受的载荷为脉动的,所以。III轴1.作用在齿轮上的力FH1=FH2=4494/2=2247NFv1=Fv2=1685/2=842.5N2.初步确定轴的最小直径3.轴的结构设计1)轴上零件的装配方案2)据轴向定位的要求确定轴的各段直径和长度I-IIII-IVIV-VV-VIVI-VIIVII-VIII直径607075877970长度105113.758399.533.255.求轴上的载荷Mm=316767N.mmT=925200N.mm6.弯扭校合滚动轴承的选择及计算I轴:1.求两轴承受到的径向载荷5、轴承30206的校核1)径向力2)派生力3)轴向力由于,所以轴向力为,4)当量载荷由于,,所以,,,。由于为一般载荷,所以载荷系数为,故当量载荷为5)轴承寿命的校核II轴:6、轴承30307的校核1)径向力2)派生力,3)轴向力由于,所以轴向力为,4)当量载荷由于,,所以,,,。由于为一般载荷,所以载荷系数为,故当量载荷为5)轴承寿命的校核III轴:7、轴承32214的校核1)径向力2)派生力3)轴向力由于,所以轴向力为,4)当量载荷由于,,所以,,,。由于为一般载荷,所以载荷系数为,故当量载荷为5)轴承寿命的校核键连接的选择及校核计算代号直径(mm)工作长度(mm)工作高度(mm)转矩(N•m)极限应力(MPa)高速轴8×7×60(单头)25353.539.826.012×8×80(单头)4068439.87.32中间轴12×8×70(单头)4058419141.2低速轴20×12×80(单头)75606925.268.518×11×110(单头)601075.5925.252.4由于键采用静联接,冲击轻微,所以许用挤压应力为,所以上述键皆安全。连轴器的选择由于弹性联轴器的诸多优点,所以考虑选用它。二、高速轴用联轴器的设计计算由于装置用于运输机,原动机为电动机,所以工作情况系数为,计算转矩为所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)其主要参数如下:材料HT200公称转矩轴孔直径,轴孔长,装配尺寸半联轴器厚([1]P163表17-3)(GB4323-84三、第二个联轴器的设计计算由于装置用于运输机,原动机为电动机,所以工作情况系数为,计算转矩为所以选用弹性柱销联轴器TL10(GB4323-84)其主要参数如下:材料HT200公称转矩轴孔直径轴孔长,装配尺寸半联轴器厚([1]P163表17-3)(GB4323-84减速器附件的选择通气器由于在室内使用,选通气器(一次过滤),采用M18×1.5油面指示器选用游标尺M16起吊装置采用箱盖吊耳、箱座吊耳放油螺塞选用外六角油塞及垫片M16×1.5润滑与密封一、齿轮的润滑采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。二、滚动轴承的润滑由于轴承周向速度为,所以宜开设油沟、飞溅润滑。三、润滑油的选择齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。四、密封方法的选取选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。轴承盖结构尺寸按用其定位的轴承的外径决定。设计小结由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的设备。

④ 卷扬机工作原理

卷扬机工作原理:
电机经减速机带动钢丝绳滚筒,收放钢丝绳,通过不同的滑轮改变方向。工艺要求主要是滚筒转速即钢丝绳运动速度和制动系统的安全可靠性。卷扬机属于较简单的提升或牵引机械。
卷扬机(又叫绞车/电葫芦),是用卷筒缠绕钢丝绳或链条提升或牵引重物的轻小型起重设备。卷扬机可以垂直提升、水平或倾斜拽引重物。卷扬机分为手动卷扬机和电动卷扬机两种。现在以电动卷扬机为主。

电动卷扬机是由电动机、传动机构和卷筒或链轮组成,分钢丝绳电动葫芦和环链电动葫芦两种。

卷扬机可单独使用,也可作起重、筑路和矿井提升等机械中的组成部件,因操作简单、绕绳量大、移置方便而广泛应用。主要运用于建筑、水利工程、林业、矿山、码头等的物料升降或平拖。

⑤ 卷扬机的工作原理及构造

卷扬机的工作原理是把电能经过电动机转换为机械能,即电动机的转子转动输出,经三角带、轴、齿轮减速后再带动卷筒旋转。卷筒卷绕钢丝绳并通过滑轮组,使起重机吊钩提升或落下载荷Q,把机械能转变为机械功,完成载荷的垂直运输装卸工作。电动卷扬机构造由电动机、联轴节、制动器、齿轮箱和卷筒组成,共同安装在机架上。

电动卷扬机又可称为电动葫芦。对于起升高度和装卸量大,工作繁忙的情况下,要求调速性能好,特别要空钩能快速下降。对安装就位或敏感的物料,要能以微动速度下降。

卷扬机包括JK快速卷扬机和JM慢速卷扬机,仅能在地上使用,它以电动机为动力,经弹性联轴节,三级封闭式齿轮减速器,牙嵌式联轴节驱动卷筒,采用电磁制动。

该产品通用性高、结构紧凑、体积小、重量轻、起重大、使用转移方便,被广泛应用于建筑、水利工程、林业、矿山、码头等的物料升降或平拖,还可作现代化电控自动作业线的配套设备。

(5)卷场机传动装置课程设计扩展阅读

卷扬机使用时的注意事项:

1、卷筒上的钢丝绳应排列整齐,如发现重叠和斜绕时,应停机重新排列。严禁在转动中用手、脚拉踩钢丝绳。钢丝绳不许完全放出,最少应保留三圈。

2、钢丝绳不许打结、扭绕,在一个节距内断线超过10%时,应予更换。

3、作业中,任何人不得跨越钢丝绳,物体(物件)提升后,操作人员不得离开卷扬机。休息时物件或吊笼应降至地面。

4、作业中,司机、信号员要同吊起物保持良好的可见度,司机与信号员应密切配合,服从信号统一指挥。

5、作业中如遇停电情况,应切断电源,将提升物降至地面。

6、工作中要听从指挥人员的信号,信号不明或可能引起事故时应暂停操作,待弄清情况后方可继续作业。

⑥ 如何确定轴的支点位置和传动零 件上力的作用点

目 录
第一部分 设计任务书----------------------------------------------------------------3第二部分 电传动方案的分析与拟定---------------------------------------------------5第三部分 电动机的选择计算----------------------------------------------------------6第四部分 各轴的转速、转矩计算------------------------------------------------------7第五部分 联轴器的选择-------------------------------------------------------------9第六部分 锥齿轮传动设计---------------------------------------------------------10第七部分 链传动设计--------------------------------------------------------------12第八部分 斜齿圆柱齿轮设计-------------------------------------------------------14第九部分 轴的设计----------------------------------------------------------------17第十部分 轴承的设计及校核-------------------------------------------------------20第十一部分 高速轴的校核---------------------------------------------------------22第十二部分 箱体设计---------------------------------------------------------------23第十三部分 设计小结---------------------------------------------------------------24

第一部分 设计任务书
1.1 机械设计课程的目的
机械设计课程设计是机械类专业和部分非机械类专业学生第一次较全面的机械设计训练,是机械设计和机械设计基础课程重要的综合性与实践性教学环节。其基本目的是:
(1) 通过机械设计课程的设计,综合运用机械设计课程和其他有关先修课程的理论,结合生产实际知识,培养分析和解决一般工程实际问题的能力,并使所学知识得到进一步巩固、深化和扩展。
(2) 学习机械设计的一般方法,掌握通用机械零件、机械传动装置或简单机械的设计原理和过程。
(3) 进行机械设计基本技能的训练,如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据,进行经验估算和数据处理等。

1.2 机械设计课程的内容
选择作为机械设计课程的题目,通常是一般机械的传动装置或简单机械。
课程设计的内容通常包括:确定传动装置的总体设计方案;选择电动机;计算传动装置的运动和动力参数;传动零件、轴的设计计算;轴承、联轴器、润滑、密封和联接件的选择及校核计算;箱体结构及其附件的设计;绘制装配工作图及零件工作图;编写设计计算说明书。
在设计中完成了以下工作:
① 减速器装配图1张(A0或A1图纸);
② 零件工作图2~3张(传动零件、轴、箱体等);
③ 设计计算说明书1份,6000~8000字。

1.3 机械设计课程设计的步骤
机械设计课程设计的步骤通常是根据设计任务书,拟定若干方案并进行分析比较,然后确定一个正确、合理的设计方案,进行必要的计算和结构设计,最后用图纸表达设计结果,用设计计算说明书表示设计依据。
机械设计课程设计一般可按照以下所述的几个阶段进行:
1.设计准备
① 分析设计计划任务书,明确工作条件、设计要求、内容和步骤。
② 了解设计对象,阅读有关资料、图纸、观察事物或模型以进行减速器装拆试验等。
③ 浮系课程有关内容,熟悉机械零件的设计方法和步骤。
④ 准备好设计需要的图书、资料和用具,并拟定设计计划等。
2.传动装置总体设计
① 确定传动方案——圆柱齿轮传动,画出传动装置简图。
② 计算电动机的功率、转速、选择电动机的型号。
③ 确定总传动比和分配各级传动比。
④ 计算各轴的功率、转速和转矩。
3.各级传动零件设计
① 减速器内的传动零件设计(齿轮传动)。
4.减速器装配草图设计
① 选择比例尺,合理布置试图,确定减速器各零件的相对位置。
② 选择联轴器,初步计算轴径,初选轴承型号,进行轴的结构设计。
③ 确定轴上力作用点及支点距离,进行轴、轴承及键的校核计算。
④ 分别进行轴系部件、传动零件、减速器箱体及其附件的结构设计。
5.减速器装配图设计
① 标注尺寸、配合及零件序号。
② 编写明细表、标题栏、减速器技术特性及技术要求。
③ 完成装配图。
6.零件工作图设计
① 轴类零件工作图。
② 齿轮类零件工作图。
③ 箱体类零件工作图。

第一部分 题目及要求
卷扬机传动装置的设计
1. 设计题目
设计一卷扬机的传动装置。传动装置简图如下图所示。
(1)卷扬机数据
卷扬机绳牵引力F(N)、绳牵引速度v(m/s)及卷筒直径D(mm)见附表。
(2)工作条件
用于建筑工地提升物料,空载启动,连续运转,三班制工作,工作平稳。
(3) 使用期限
工作期限为十年,每年工作300天,三班制工作,每班工作4小时,检修期间隔为三年。
(4) 产批量及加工条件
小批量生产,无铸钢设备。
2. 设计任务
1)确定传动方案;
2)选择电动机型号;
3)设计传动装置;
4)选择联轴器。
3. 具体作业
1)减速器装配图一张;
2)零件工作图二张(大齿轮,输出轴);
3)设计说明书一份。
4. 数据表

牵引力F/N 12 10 8 7
牵引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
卷筒直径D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480

卷扬机传动装置的设计
5. 设计题目
设计一卷扬机的传动装置。传动装置简图如下图所示。
(1)卷扬机数据
卷扬机绳牵引力F(N)、绳牵引速度v(m/s)及卷筒直径D(mm)见附表。
(2)工作条件
用于建筑工地提升物料,空载启动,连续运转,三班制工作,工作平稳。
(5) 使用期限
工作期限为十年,每年工作300天,三班制工作,每班工作4小时,检修期间隔为三年。
(6) 产批量及加工条件
小批量生产,无铸钢设备。
6. 设计任务
1)确定传动方案;
2)选择电动机型号;
3)设计传动装置;
4)选择联轴器。
7. 具体作业
1)减速器装配图一张;
2)零件工作图二张(大齿轮,输出轴);
3)设计说明书一份。
8. 数据表

牵引力F/N 12 10 8 7
牵引速度v/(m/s) 0.3,0.4 0.3,0.4,0.5,0.6
卷筒直径D/mm 470,500 420,430,450,470,500 430,450,500 440,460,480

第二部分 传动方案的分析与拟定
确定总传动比:
由于Y系列三相异步电动机的同步转速有750,1000,1500和3000r/min四种可供选择.根据原始数据,得到卷扬机卷筒的工作转速为

按四种不同电动机计算所得的总传动比分别是:
电动机同步转速
750 1000 1500 3000
系统总传动比
32.71 43.61 65.42 130.83

确定电动机转速:
综合考虑电动机和传动装置的尺寸、重量、价格以及总传动比,750转的低速电动机传动比虽小,但电动机极数大价格高,故不可取。3000转的电动机重量轻,价格便宜,但总传动比大,传动装置外廓尺寸大,制造成本高,结构不紧凑,也不可取。剩下两种相比,如为使传动装置结构紧凑,选用1000转的电动机较好;如考虑电动机重量和价格,则应选用1500转的电动机。现选用1500转的电动机,以节省成本。
确定传动方案:

验算:通常V带传动的传动比常用范围为 ,二级圆柱齿轮减速器为 ,则总传动比的范围为 ,因此能够满足以上总传动比为65.42的要求。

第三部分 电动机的选择计算
1、确定电动机类型
按工作要求和条件,选用Y系列笼型三相异步电动机,封闭式结构。
2、确定电动机的功率
工作机的功率
KW

效率的选择:
1. V带传动效率: η1 = 0.96
2. 7级精度圆柱齿轮传动:η2 = 0.98
3. 滚动轴承: η3 = 0.99
4. 弹性套柱销联轴器: η4 = 0.99
5. 传动滚筒效率: η5 = 0.96
传动装置总效率为

工作机所需电动机功率
kw
因载荷平稳,电动机额定功率 略大于 即可。由Y系列电动机技术数据,选电动机的额定功率 为7.5 kw,结合其同步转速,选定电动机的各项参数如下:
取同步转速: 1500r/min ——4级电动机
型号: Y132M-4
额定功率: 7.5kW
满载功率: 1440r/min
堵转转矩/额定转矩: 2.2
最大转矩/额定转矩: 2.2

第四部分 确定传动装置总传动比和分配各级传动比
1、确定总传动比

2、分配各级传动比
取V带传动的传动比 ,则减速器的传动比 为

取两级圆柱齿轮减速器高速级的传动比

则低速级的传动比

第五部分 运动参数及动力参数计算
0轴(电动机轴):
P0 = Pd =7.2 kW
n0 = nm = 1440 r/min
T0 = 9550×( )= N?m
1轴(高速轴):
P1 = P0η1 = kW
n1 = = r/min
T1 = 9550×( )= N?m
2轴(中间轴):
P2 = P1η2η3 = kW
n2 = r/min
T2 = 9550×( )= N?m
3轴(低速轴):
P3 = P2η2η3 = kW
n3 = r/min
T3 = 9550×( )= N?m
4轴(输出轴):
P4 = P3η3η4 = kW
n4 = r/min
T4 = 9550×( )= N?m

输出轴功率或输出轴转矩为各轴的输入功率或输入转矩乘以轴承效率(0.99),即
P’= 0.99P

轴名 功率P(kW) 转矩T(N?m) 转速
n(r/min) 传动比
i 效率
η
输入 输出 输入 输出
电动机轴 7.20 47.75 1440
3.8 0.96
1轴 6.91 3.047 155.91 154.35 378.95
4.809 0.97
2轴 6.70 2.896 811.99 803.83 78.80
3.435 0.97
3轴 6.50 2.753 2705.97 2678.91 22.94
1 0.98
输出轴 6.37 2.590 2651.85 2625.33 22.94

第六部分 传动零件的设计计算
高速级斜齿圆柱齿轮设计
材料选择:小齿轮40Cr (调质)硬度280HBs;
大齿轮45#钢(调质)硬度240HBs;(硬度差40HBs)
七级精度,取Z1=21,Z2= =4.809×21=100.989,取Z2=101,
初选螺旋角β=14°,
按齿轮面接触强度设计:

1) 试选载荷系数 Kt=1.6
2) 由动力参数图,小齿轮传递的转矩

3) 由表10-7(机械设计)选取齿宽系数
4) 由表10-6查得材料的弹性影响系数
5) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限 ;大齿轮的接触疲劳强度极限 ;
6) 由式10-13计算应力循环次数

7) 由图10-19查得接触疲劳寿命系数 ;
8) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得

9)由图10-26(机械设计)得
εα1 = 0.76
εα2 = 0.86
则端面重合度
10)由图10-30选取区域系数ZH = 2.433
11) 计算许用接触应力
=
12)计算:
试算小齿轮分度圆直径 ,由计算公式得
计算圆周速度

计算齿宽b及模数
= 1×60.59 = 60.59 mm
mnt = = mm
h = 2.25 mnt = mm

计算纵向重合度
纵向重合度 =0.318×φdZ1tanβ =
计算载荷系数K
已知,KA=1,取Kv=1.05(由图10-8查得),由表10-4查得的计算公式
∴KHβ = 1.15+0.18(1+0.6φd2)+0.23×10-3×60.59 = 1.45
由图10-13,得KFβ = 1.4
由表10-3,得
∴K = KA?Kv?KHα?KHβ = 1×1.05×1.3×1.45 = 1.98
按实际得载荷系数校正所算得德分度圆直径,由试(10-10a)得

计算模数
mn= =
13) 按齿根弯曲强度设计

由图10-20c查得小齿轮的弯曲疲劳强度极限 ;大齿轮的弯曲疲劳强度极限 ;
由图10-18查得弯曲疲劳寿命系数 ;
计算弯曲疲劳许用应力
取弯曲疲劳安全系数S=1.4,由式10-12得

计算载荷系数
K = KA?Kv?KFα?KFβ = 1×1.05×1.3×1.4= 1.91
根据纵向重合度εβ=1.6650,由图10-28,查得螺旋角影响系数Yβ=0.88
计算当量齿数
= 22.9883

查取齿形系数
由表10-5查得 YFα1=2.69,YFα2=2.20,
查取应力校正系数
由表10-5查得 YSα1=1.56,YSα2=1.79
计算大、小齿轮的 并加以比较

大齿轮的数值较大。
设计计算

经园整,mn=2 mm
∵ ,∴mn=2.5 mm
Z1 = = ,取Z1=25,Z2=120

几何尺寸计算:
中心距 a =
经园整,a = 187 mm
修正螺旋角, =
∵β变动不大,
∴εα、εβ、ZH无需修正。
计算大、小齿轮的分度直径
mm
mm
计算齿轮宽度
b = φdd1 = mm
园整后,B2=65mm,B1=70mm

da1 = d1+2ha1 =69.48
da2 = d2+2ha2 = 315.08
df1 = d1-2hf1 = 49.48
df2 = d2-2hf2 =305.08

第九部分 轴的设计
1) 高速轴:
初定最小直径,选用材料45#钢,调质处理。取A0=112(下同)
则dmin = A0 = mm
∵最小轴径处有键槽
∴dmin’ = 1.07 dmin = 17.72mm
∵最小直径为安装联轴器外半径,取KA=1.7,同上所述已选用TL4弹性套柱联轴器,轴孔半径d=20mm
∴取高速轴的最小轴径为20mm。
由于轴承同时受径向和轴向载荷,故选用单列圆锥滚子轴承按国标T297-94选取30206。
D×d×T=17.25mm
∴轴承处轴径d=30mm
高速轴简图如下:
2)
取l1=38+46=84mm,l3=72mm,取挡圈直径D=28mm,取d2=d4=25mm,d3=30mm,l2=l4=26.5mm,d1=d5=20mm。
齿轮轮毂宽度为46mm,取l5=28mm。

联轴器用键:园头普通平键。
b×h=6×6,长l=26mm
齿轮用键:同上。b×h=6×6,长l=10mm,倒角为2×45°
3) 中间轴:
中间轴简图如下:
初定最小直径dmin= =22.1mm
选用30305轴承,
d×D×T = 25×62×18.25mm
∴d1=d6=25mm,取l1=27mm,l6=52mm
l2=l4=10mm,d2=d4=35mm,l3=53mm
d3=50mm,d5=30mm,l5=1.2×d5=36mm
齿轮用键:园头普通键:b×h=12×8,长l=20mm
4) 低速轴:
低速轴简图如下: 初定最小直径:
dmin = = 34.5mm
∵最小轴径处有键槽
∴dmin’=1.07dmin=36.915mm
取d1=45mm,d2=55mm,d3=60mm,d4=d2=55mm
d5=50mm,d6=45mm,d7=40mm;
l1=45mm,l2=44mm,l3=6mm,l4=60mm,l5=38mm,l6=40mm,l7=60mm
齿轮用键:园头普通键:b×h=16×6,长l=36mm
选用30309轴承:d×D×T = 40×90×25.25mm;B=23mm;C=20mm

⑦ 带式输送机传动装置(机械设计课程设计)

一)选择电抄动机袭1。选择电动机容量 P=FV/η P=4000*2/η η是带式输送机的效率,你没写出来。2。选取电动机额定功率 查表3。确定电动机转速 n=60V/πD n=60*2*1000/π*450 毫米转化米/1000 然后查表。二)计算传动装置的总传动比并分配各级传动比。总传动比等于电动机转速除以n。 分配有:动机道减速箱,动力轴道中间轴,间轴道输出轴 。 开始的就这么多了。我打字好慢的,累的不行了 呵呵

⑧ 机械设计课程设计带式运输机传动装置的设计

给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2 、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3 、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100 ,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比: u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;
则 h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取 φ
齿宽: b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1 、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2 、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。
则 d =42mm L = 50mm
L = 55mm
L = 60mm
L = 68mm
L =55mm
L
四、滚动轴承的选择
1 、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2 、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1 、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2 、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3 、输入轴与带轮联接采用平键联接 =25mm L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4 、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11

⑨ 求带式输送机传动装置课程设计F=2300 v=1.5,滚筒直径D=400,哪位大神以前有的 你能不能发给我

一、传动方案拟定
第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器
(1) 工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。
(2) 原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;
滚筒直径D=220mm。
运动简图
二、电动机的选择
1、电动机类型和结构型式的选择:按已知的工作要求和 条件,选用 Y系列三相异步电动机。
2、确定电动机的功率:
(1)传动装置的总效率:
η总=η带×η2轴承×η齿轮×η联轴器×η滚筒
=0.96×0.992×0.97×0.99×0.95
=0.86
(2)电机所需的工作功率:
Pd=FV/1000η总
=1700×1.4/1000×0.86
=2.76KW
3、确定电动机转速:
滚筒轴的工作转速:
Nw=60×1000V/πD
=60×1000×1.4/π×220
=121.5r/min

根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min
符合这一范围的同步转速有960 r/min和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表
方案 电动机型号 额定功率 电动机转速(r/min) 传动装置的传动比
KW 同转 满转 总传动比 带 齿轮
1 Y132s-6 3 1000 960 7.9 3 2.63
2 Y100l2-4 3 1500 1420 11.68 3 3.89

综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。
4、确定电动机型号
根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为
Y100l2-4。
其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。
三、计算总传动比及分配各级的传动比
1、总传动比:i总=n电动/n筒=1420/121.5=11.68
2、分配各级传动比
(1) 取i带=3
(2) ∵i总=i齿×i 带π
∴i齿=i总/i带=11.68/3=3.89
四、运动参数及动力参数计算
1、计算各轴转速(r/min)
nI=nm/i带=1420/3=473.33(r/min)
nII=nI/i齿=473.33/3.89=121.67(r/min)
滚筒nw=nII=473.33/3.89=121.67(r/min)
2、 计算各轴的功率(KW)
PI=Pd×η带=2.76×0.96=2.64KW
PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW

3、 计算各轴转矩
Td=9.55Pd/nm=9550×2.76/1420=18.56N?m
TI=9.55p2入/n1 =9550x2.64/473.33=53.26N?m

TII =9.55p2入/n2=9550x2.53/121.67=198.58N?m

五、传动零件的设计计算
1、 皮带轮传动的设计计算
(1) 选择普通V带截型
由课本[1]P189表10-8得:kA=1.2 P=2.76KW
PC=KAP=1.2×2.76=3.3KW
据PC=3.3KW和n1=473.33r/min
由课本[1]P189图10-12得:选用A型V带
(2) 确定带轮基准直径,并验算带速
由[1]课本P190表10-9,取dd1=95mm>dmin=75
dd2=i带dd1(1-ε)=3×95×(1-0.02)=279.30 mm
由课本[1]P190表10-9,取dd2=280
带速V:V=πdd1n1/60×1000
=π×95×1420/60×1000
=7.06m/s
在5~25m/s范围内,带速合适。
(3) 确定带长和中心距
初定中心距a0=500mm
Ld=2a0+π(dd1+dd2)/2+(dd2-dd1)2/4a0
=2×500+3.14(95+280)+(280-95)2/4×450
=1605.8mm
根据课本[1]表(10-6)选取相近的Ld=1600mm
确定中心距a≈a0+(Ld-Ld0)/2=500+(1600-1605.8)/2
=497mm
(4) 验算小带轮包角
α1=1800-57.30 ×(dd2-dd1)/a
=1800-57.30×(280-95)/497
=158.670>1200(适用)
(5) 确定带的根数
单根V带传递的额定功率.据dd1和n1,查课本图10-9得 P1=1.4KW
i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得 △P1=0.17KW
查[1]表10-3,得Kα=0.94;查[1]表10-4得 KL=0.99
Z= PC/[(P1+△P1)KαKL]
=3.3/[(1.4+0.17) ×0.94×0.99]
=2.26 (取3根)
(6) 计算轴上压力
由课本[1]表10-5查得q=0.1kg/m,由课本式(10-20)单根V带的初拉力:
F0=500PC/ZV[(2.5/Kα)-1]+qV2=500x3.3/[3x7.06(2.5/0.94-1)]+0.10x7.062 =134.3kN
则作用在轴承的压力FQ
FQ=2ZF0sin(α1/2)=2×3×134.3sin(158.67o/2)
=791.9N

2、齿轮传动的设计计算
(1)选择齿轮材料与热处理:所设计齿轮传动属于闭式传动,通常
齿轮采用软齿面。查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为45钢,调质,齿面硬度260HBS;大齿轮材料也为45钢,正火处理,硬度为215HBS;
精度等级:运输机是一般机器,速度不高,故选8级精度。
(2)按齿面接触疲劳强度设计
由d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
确定有关参数如下:传动比i齿=3.89
取小齿轮齿数Z1=20。则大齿轮齿数:Z2=iZ1= ×20=77.8取z2=78
由课本表6-12取φd=1.1
(3)转矩T1
T1=9.55×106×P1/n1=9.55×106×2.61/473.33=52660N?mm
(4)载荷系数k : 取k=1.2
(5)许用接触应力[σH]
[σH]= σHlim ZN/SHmin 由课本[1]图6-37查得:
σHlim1=610Mpa σHlim2=500Mpa
接触疲劳寿命系数Zn:按一年300个工作日,每天16h计算,由公式N=60njtn 计算
N1=60×473.33×10×300×18=1.36x109
N2=N/i=1.36x109 /3.89=3.4×108
查[1]课本图6-38中曲线1,得 ZN1=1 ZN2=1.05
按一般可靠度要求选取安全系数SHmin=1.0
[σH]1=σHlim1ZN1/SHmin=610x1/1=610 Mpa
[σH]2=σHlim2ZN2/SHmin=500x1.05/1=525Mpa
故得:
d1≥ (6712×kT1(u+1)/φ[σH]2)1/3
=49.04mm
模数:m=d1/Z1=49.04/20=2.45mm
取课本[1]P79标准模数第一数列上的值,m=2.5
(6)校核齿根弯曲疲劳强度
σ bb=2KT1YFS/bmd1
确定有关参数和系数
分度圆直径:d1=mZ1=2.5×20mm=50mm
d2=mZ2=2.5×78mm=195mm
齿宽:b=φdd1=1.1×50mm=55mm
取b2=55mm b1=60mm
(7)复合齿形因数YFs 由课本[1]图6-40得:YFS1=4.35,YFS2=3.95
(8)许用弯曲应力[σbb]
根据课本[1]P116:
[σbb]= σbblim YN/SFmin
由课本[1]图6-41得弯曲疲劳极限σbblim应为: σbblim1=490Mpa σbblim2 =410Mpa
由课本[1]图6-42得弯曲疲劳寿命系数YN:YN1=1 YN2=1
弯曲疲劳的最小安全系数SFmin :按一般可靠性要求,取SFmin =1
计算得弯曲疲劳许用应力为
[σbb1]=σbblim1 YN1/SFmin=490×1/1=490Mpa
[σbb2]= σbblim2 YN2/SFmin =410×1/1=410Mpa
校核计算
σbb1=2kT1YFS1/ b1md1=71.86pa< [σbb1]
σbb2=2kT1YFS2/ b2md1=72.61Mpa< [σbb2]
故轮齿齿根弯曲疲劳强度足够
(9)计算齿轮传动的中心矩a
a=(d1+d2)/2= (50+195)/2=122.5mm
(10)计算齿轮的圆周速度V
计算圆周速度V=πn1d1/60×1000=3.14×473.33×50/60×1000=1.23m/s
因为V<6m/s,故取8级精度合适.

六、轴的设计计算
从动轴设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.53/121.67)1/3mm=32.44mm
考虑键槽的影响以及联轴器孔径系列标准,取d=35mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.53/121.67=198582 N
齿轮作用力:
圆周力:Ft=2T/d=2×198582/195N=2036N
径向力:Fr=Fttan200=2036×tan200=741N
4、轴的结构设计
轴结构设计时,需要考虑轴系中相配零件的尺寸以及轴上零件的固定方式,按比例绘制轴系结构草图。
(1)、联轴器的选择
可采用弹性柱销联轴器,查[2]表9.4可得联轴器的型号为HL3联轴器:35×82 GB5014-85
(2)、确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。轴外伸端安装联轴器,齿轮靠油环和套筒实现
轴向定位和固定,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,联轴器靠轴肩平键和过盈配合
分别实现轴向定位和周向定位
(3)、确定各段轴的直径
将估算轴d=35mm作为外伸端直径d1与联轴器相配(如图),
考虑联轴器用轴肩实现轴向定位,取第二段直径为d2=40mm
齿轮和左端轴承从左侧装入,考虑装拆方便以及零件固定的要求,装轴处d3应大于d2,取d3=4 5mm,为便于齿轮装拆与齿轮配合处轴径d4应大于d3,取d4=50mm。齿轮左端用用套筒固定,右端用轴环定位,轴环直径d5
满足齿轮定位的同时,还应满足右侧轴承的安装要求,根据选定轴承型号确定.右端轴承型号与左端轴承相同,取d6=45mm.
(4)选择轴承型号.由[1]P270初选深沟球轴承,代号为6209,查手册可得:轴承宽度B=19,安装尺寸D=52,故轴环直径d5=52mm.
(5)确定轴各段直径和长度
Ⅰ段:d1=35mm 长度取L1=50mm

II段:d2=40mm
初选用6209深沟球轴承,其内径为45mm,
宽度为19mm.考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L2=(2+20+19+55)=96mm
III段直径d3=45mm
L3=L1-L=50-2=48mm
Ⅳ段直径d4=50mm
长度与右面的套筒相同,即L4=20mm
Ⅴ段直径d5=52mm. 长度L5=19mm
由上述轴各段长度可算得轴支承跨距L=96mm
(6)按弯矩复合强度计算
①求分度圆直径:已知d1=195mm
②求转矩:已知T2=198.58N?m
③求圆周力:Ft
根据课本P127(6-34)式得
Ft=2T2/d2=2×198.58/195=2.03N
④求径向力Fr
根据课本P127(6-35)式得
Fr=Ft?tanα=2.03×tan200=0.741N
⑤因为该轴两轴承对称,所以:LA=LB=48mm

(1)绘制轴受力简图(如图a)
(2)绘制垂直面弯矩图(如图b)
轴承支反力:
FAY=FBY=Fr/2=0.74/2=0.37N
FAZ=FBZ=Ft/2=2.03/2=1.01N
由两边对称,知截面C的弯矩也对称。截面C在垂直面弯矩为
MC1=FAyL/2=0.37×96÷2=17.76N?m
截面C在水平面上弯矩为:
MC2=FAZL/2=1.01×96÷2=48.48N?m
(4)绘制合弯矩图(如图d)
MC=(MC12+MC22)1/2=(17.762+48.482)1/2=51.63N?m
(5)绘制扭矩图(如图e)
转矩:T=9.55×(P2/n2)×106=198.58N?m
(6)绘制当量弯矩图(如图f)
转矩产生的扭剪文治武功力按脉动循环变化,取α=0.2,截面C处的当量弯矩:
Mec=[MC2+(αT)2]1/2
=[51.632+(0.2×198.58)2]1/2=65.13N?m
(7)校核危险截面C的强度
由式(6-3)

σe=65.13/0.1d33=65.13x1000/0.1×453
=7.14MPa< [σ-1]b=60MPa
∴该轴强度足够。

主动轴的设计
1、选择轴的材料 确定许用应力
选轴的材料为45号钢,调质处理。查[2]表13-1可知:
σb=650Mpa,σs=360Mpa,查[2]表13-6可知:[σb+1]bb=215Mpa
[σ0]bb=102Mpa,[σ-1]bb=60Mpa
2、按扭转强度估算轴的最小直径
单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,
从结构要求考虑,输出端轴径应最小,最小直径为:
d≥C
查[2]表13-5可得,45钢取C=118
则d≥118×(2.64/473.33)1/3mm=20.92mm
考虑键槽的影响以系列标准,取d=22mm
3、齿轮上作用力的计算
齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.64/473.33=53265 N
齿轮作用力:
圆周力:Ft=2T/d=2×53265/50N=2130N
径向力:Fr=Fttan200=2130×tan200=775N
确定轴上零件的位置与固定方式
单级减速器中,可以将齿轮安排在箱体中央,轴承对称布置
在齿轮两边。齿轮靠油环和套筒实现 轴向定位和固定
,靠平键和过盈配合实现周向固定,两端轴
承靠套筒实现轴向定位,靠过盈配合实现周向固定 ,轴通
过两端轴承盖实现轴向定位,
4 确定轴的各段直径和长度
初选用6206深沟球轴承,其内径为30mm,
宽度为16mm.。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长36mm,安装齿轮段长度为轮毂宽度为2mm。
(2)按弯扭复合强度计算
①求分度圆直径:已知d2=50mm
②求转矩:已知T=53.26N?m
③求圆周力Ft:根据课本P127(6-34)式得
Ft=2T3/d2=2×53.26/50=2.13N
④求径向力Fr根据课本P127(6-35)式得
Fr=Ft?tanα=2.13×0.36379=0.76N
⑤∵两轴承对称
∴LA=LB=50mm
(1)求支反力FAX、FBY、FAZ、FBZ
FAX=FBY=Fr/2=0.76/2=0.38N
FAZ=FBZ=Ft/2=2.13/2=1.065N
(2) 截面C在垂直面弯矩为
MC1=FAxL/2=0.38×100/2=19N?m
(3)截面C在水平面弯矩为
MC2=FAZL/2=1.065×100/2=52.5N?m
(4)计算合成弯矩
MC=(MC12+MC22)1/2
=(192+52.52)1/2
=55.83N?m
(5)计算当量弯矩:根据课本P235得α=0.4
Mec=[MC2+(αT)2]1/2=[55.832+(0.4×53.26)2]1/2
=59.74N?m
(6)校核危险截面C的强度
由式(10-3)
σe=Mec/(0.1d3)=59.74x1000/(0.1×303)
=22.12Mpa<[σ-1]b=60Mpa
∴此轴强度足够

(7) 滚动轴承的选择及校核计算
一从动轴上的轴承
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)由初选的轴承的型号为: 6209,
查[1]表14-19可知:d=55mm,外径D=85mm,宽度B=19mm,基本额定动载荷C=31.5KN, 基本静载荷CO=20.5KN,
查[2]表10.1可知极限转速9000r/min

(1)已知nII=121.67(r/min)

两轴承径向反力:FR1=FR2=1083N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1083=682N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=682N FA2=FS2=682N
(3)求系数x、y
FA1/FR1=682N/1038N =0.63
FA2/FR2=682N/1038N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1083+0)=1624N
P2=fp(x2FR1+y2FA2)= 1.5×(1×1083+0)=1624N
(5)轴承寿命计算
∵P1=P2 故取P=1624N
∵深沟球轴承ε=3
根据手册得6209型的Cr=31500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×31500/1624)3/60X121.67=998953h>48000h
∴预期寿命足够

二.主动轴上的轴承:
(1)由初选的轴承的型号为:6206
查[1]表14-19可知:d=30mm,外径D=62mm,宽度B=16mm,
基本额定动载荷C=19.5KN,基本静载荷CO=111.5KN,
查[2]表10.1可知极限转速13000r/min
根据根据条件,轴承预计寿命
L'h=10×300×16=48000h
(1)已知nI=473.33(r/min)
两轴承径向反力:FR1=FR2=1129N
根据课本P265(11-12)得轴承内部轴向力
FS=0.63FR 则FS1=FS2=0.63FR1=0.63x1129=711.8N
(2) ∵FS1+Fa=FS2 Fa=0
故任意取一端为压紧端,现取1端为压紧端
FA1=FS1=711.8N FA2=FS2=711.8N
(3)求系数x、y
FA1/FR1=711.8N/711.8N =0.63
FA2/FR2=711.8N/711.8N =0.63
根据课本P265表(14-14)得e=0.68
FA1/FR1<e x1=1 FA2/FR2<e x2=1
y1=0 y2=0
(4)计算当量载荷P1、P2
根据课本P264表(14-12)取f P=1.5
根据课本P264(14-7)式得
P1=fP(x1FR1+y1FA1)=1.5×(1×1129+0)=1693.5N
P2=fp(x2FR1+y2FA2)=1.5×(1×1129+0)= 1693.5N
(5)轴承寿命计算
∵P1=P2 故取P=1693.5N
∵深沟球轴承ε=3
根据手册得6206型的Cr=19500N
由课本P264(14-5)式得
LH=106(ftCr/P)ε/60n
=106(1×19500/1693.5)3/60X473.33=53713h>48000h
∴预期寿命足够

七、键联接的选择及校核计算
1.根据轴径的尺寸,由[1]中表12-6
高速轴(主动轴)与V带轮联接的键为:键8×36 GB1096-79
大齿轮与轴连接的键为:键 14×45 GB1096-79
轴与联轴器的键为:键10×40 GB1096-79
2.键的强度校核
大齿轮与轴上的键 :键14×45 GB1096-79
b×h=14×9,L=45,则Ls=L-b=31mm
圆周力:Fr=2TII/d=2×198580/50=7943.2N
挤压强度: =56.93<125~150MPa=[σp]
因此挤压强度足够
剪切强度: =36.60<120MPa=[ ]
因此剪切强度足够
键8×36 GB1096-79和键10×40 GB1096-79根据上面的步骤校核,并且符合要求。

阅读全文

与卷场机传动装置课程设计相关的资料

热点内容
美食摄影器材怎么挑选 浏览:509
燕秀工具箱30 浏览:619
机械加工积销瘤是什么意思 浏览:971
化工甲类乙类装置设计规范 浏览:203
线上教育设备哪个好 浏览:321
空气体积分数的实验装置图 浏览:934
狼派机械键盘按键怎么取 浏览:546
海马600氦气阀门 浏览:328
公务员考农业机械管理站如何 浏览:713
哈弗h9后备箱工具箱 浏览:106
仪表盘带D的什么车 浏览:624
主设备传送模式什么意思 浏览:521
13款朗逸车仪表怎么调 浏览:892
如何用电工技术实验装置 浏览:626
宇明不锈钢阀门厂电话 浏览:41
电厂滑动轴承怎么做 浏览:831
重力工具箱部分 浏览:554
深圳健身器材在哪里 浏览:34
阀门用于工程什么部位 浏览:801
直埋暖气管阀门滤网检修吗 浏览:571