㈠ 什么是自动重合闸为什么要采用自动重合闸
自动重合闸装置是将因故跳开后的断路器按需要自动重新投入的一种自动装置。电力系统运行版经验表明,架空线路绝权大多数的故障都是瞬时性的,永久性故障一般不到10%。因此,在由继电保护动作切除短路故障之后,电弧将自动熄灭,绝大多数情况下短路处的绝缘可以自动恢复。
㈡ “自动重合闸”(ARD)的工作原理
自动重合闸(auto-reclosing) 广泛应用于架空线输电和架空线供电线路上的有效反事故内措施(电缆输、容供电不能采用)。即当线路出现故障,继电保护使断路器跳闸后,自动重合闸装置经短时间间隔后使断路器重新合上 。大多数情况下,线路故障(如雷击、风害等)是暂时性的,断路器跳闸后线路的绝缘性能(绝缘子和空气间隙)能得到恢复,再次重合能成功,这就提高了电力系统供电的可靠性。少数情况属永久性故障,自动重合闸装置动作后靠继电保护动作再跳开,查明原因,予以排除再送电。一般情况下,线路故障跳闸后重合闸越快,效果越好。重合闸允许的最短间隔时间为0.15~0.5秒 。线路额定电压越高,绝缘去电离时间越长。自动重合闸的成功率依线路结构、电压等级、气象条件、主要故障类型等变化而定。据中国电力部门统计,一般可达60%~90%。用电部门的另一种广泛应用的反事故措施是备用电源自动投入,通常所需时间为0.2~0.5秒。它所需投资不多而维持正常供电带来的经济效益甚大。
㈢ 为什么用plc而不用单片机实现自动重合闸装置
首先肯定一点的是,可以用单片机实现自动重合闸装置。
其实PLC本身也是个单片机开发系统,只不过PLC的用户界面好!对操作用户技术要求不高,有上三个月的学习就能操作了。用户可以很方便地完成调整调试工作!最简单的拿个手持编程器或1台电脑就解决问题了。而采用单片机的话,需要专业开发人员开发,周期长,不方便现场的调整调试。当然了,稍有批量的话,单片机系统还是很有成本优势的。
㈣ 电力系统中的输电线路为什么采用自动重合闸
自动重合闸在电力系统中的作用
自动重合闸(ZCH)装置是将因故障跳开后的断路器按需要自动投入的一种自动装置。
运行经验表明,架空线路大多数故障是瞬时性的,如:
(1)雷击过电压引起绝缘子表面闪络。
(2)大风时的短时碰线。
(3)通过鸟类身体(或树枝)放电。
此时,若保护动——>熄弧——>故障消除——>合断路器——>恢复供电。
手动(停电时间长)效果不显著,自动重合(1”)效果明显。
作用:(P153)
(1)对暂时性故障,可迅速恢复供电,从而能提高供电的可靠性。
(2)对两侧电源线路,可提高系统并列运行的稳定性,从而提高线路的输送容量。
(3)可以纠正由于断路器或继电保护误动作引起的误跳闸。
应用:1KV及以上电压的架空线路或电缆与架空线路的混合线路上,只要装有断路器,一般应装设ZCH(P153,最后一段)。
但是,ZCH本身不能判断故障是瞬时性的,还是永久性的。所以若重合于永久性故障时,其不利影响:
(1)使电力系统又一次受到故障的冲击;
(2)使断路器的工作条件恶化(因为在短时间内连续两次切断短路电流)。
据运行资料统计,ZCH成功率60~90%,经济效益很高——>广泛应用。
二、对自动重合闸的基本要求:
(1)动作迅速。 ,一般0.5”~1.5”。
tu——故障点去游离,tz——断路器消弧室及传动机构准备好再次动作。
(2)不允许任意多次重合,即动作次数应符合预先的规定,如一次或两次。
(3)动作后应能自动复归,准备好再次动作。
(4)手动跳闸时不应重合(手动操作或遥控操作)。
(5)手动合闸于故障线路不重合(多属于永久性故障)。
欢迎大家加入网络继电保护团队!
㈤ PLC对输电线路自动重合闸控制实现毕业设计 带写的来
QQ:五九七二九二五八三 一八七六五六八五五八五
机电一体化专业毕业论文设计
主要编写,三菱(西门子)程序+CAD图(IO分配表、接线图、流程图) 信誉第一!
把你的要求交给你们那边的负责人,由负责人给我们,我们看过后确定价格,付费等都由负责人经办,绝对信誉。
您的潜力,我们的动力 !!!
㈥ 电气自动化毕业论文设计
我在一个论坛发现一些资料,也许对你有用,分要记得给我,
1. PLC电镀行车控制系统设计
2. 机械手模型的PLC控制系统设计
3. PLC在自动售货机控制系统中的应用
4. 基于PLC控制的纸皮压缩机
5. 基于松下系列PLC恒压供水系统的设计
6. 基于PLC的自动门电控部分设计
7. 基于PLC的直流电机双闭环调速系统设计
8. 基于PLC的细纱机电控部分设计
9. 燃气锅炉温度的PLC控制系统
10. 交流提升系统PLC操作控制台
11. 基于PLC铝带分切机控制系统的设计
12. 高层建筑电梯控制系统设计
13. 转炉气化冷却控制系统
14. 高炉上料卷扬系统
15. 调速配料自动控制系统
16. 基于PLC的砌块成型机的电气系统设计
17. PLC在停车场智能控制管理系统应用
18. PLC 在冷冻干燥机的应用
19. 基于PLC的过程控制
20. 电器装配线PLC控制系统
21. 基于PLC的过程控制系统的设计
22. 基于PLC的伺服电机试验系统设计
23. 陶瓷压砖机PLC电气控制系统的设计
24. 多工位组合机床的PLC控制系统
25. 基于PLC的车床数字化控制系统设计
26. PLC实现自动重合闸装置的设计
27. 混凝土搅拌站控制系统设计
28. 基于PLC控制的带式输送机自动张紧装置
29. 基于PLC的化学水处理控制系统的设计
30. S7-300 PLC在电梯控制中的应用
31. 模糊算法在线优化PI控制器参数的PLC设计
32. 神经网络在线优化PI参数的PLC及组态设计
33. 模糊算法优化PI参数的PLC实现及组态设计
34. BP算法在线优化PI控制器参数的PLC实现
35. 推钢炉过程控制系统设计
36. 焦炉电机车控制系统的设计
37. 基于PLC的锅炉控制系统设计
38. 热量计的硬件电路设计
39. 高层建筑PLC控制的恒压供水系统的设计
40. 材料分拣PLC控制系统设计
41. 基于PLC控制的调压调速电梯拖动系统设计
42. 基于PLC的七层交流变频电梯控制系统设计
43. 五层交流双速电梯PLC电气控制系统的设计
44. 四层交流双速电梯的PLC电气控制系统的设计
45. 三层楼交流双速电梯的PLC电气控制系统的设计
46. PLC在恒温控制过程中的应用
47. 变频器在恒压供水控制系统中的应用
48. 基于西门子PLC的Z3040型摇臂钻床改造
49. PLC控制的恒压供水系统的设计
50. 油库上位机计量系统设计
51. 三层楼电梯的PLC自控系统的设计
52. 基于PCS-2000B过程实验装置的模糊解耦控制系统设
53. 深孔钻机床的PLC电气控制系统设计
54. 基于PLC的多台全自动洗衣机控制系统
55. 多层住宅楼电梯的PLC控制系统的设计
56. 城市主干道十字路口交通灯PLC控制系统
57. PLC在变电所备用电源的应用
58. 基于松下PLC的智能交通灯控制系统设计
59. 基于PLC和组态软件的交通灯监控系统的设计
60. 变频器在中央空调中的应用
61. 变频器在自动配料系统中的应用
62. 变频调速恒压供水系统 变频器plc 毕业论文
63. 自动输送与分拣系统
64. 液体包装机电器系统的PLC控制系统
65. 知识竞赛抢答器PLC设计
66. 基于PLC的给煤机控制系统的设计
67. 基于S7-200和VB高炉上料控制系统设计
68. 基于S7-300PLC的污水处理PH值中和实验系统
69. 基于PLC与组态软件的远程测控系统的设计
70. 基于PLC与组态软件的多泵恒压供水控制系统的设计
71. 基于PLC与人机界面的工业伺服自动控制系统
72. 仓储堆垛机PLC控制系统的实现
73. PLC水压试验控制系统
74. PLC实现十字路信号灯自动控制
75. 基于FXON系列PLC的六层电梯控制设计
76. 基于PLC的教学挖土机的控制研究
77. 基于变频调速在泵站控制系统中应用的研究
78. 基于PLC的异步电机变频器控制研究
79. 西门子S7-300在温度控制中的应用
80. 变频器在卷扬机上的应用
81. 模块化培训系统分类站的设计
82. 模块化培训系统提取站的设计
83. PLC在机床中的应用设计
84. 基于西门子802S系统改造 C6132普通车床
85. 基于PLC的三层电梯控制系统毕业设计
86. 基于MCGS和THPLC-D型PLC实训装置的交通灯模拟控
87. 基于PLC控制的火力发电厂输灰系统的设计
88. PLC在火电厂石子煤系统上设计及改造方案
89. 基于废水处理PLC电气控制系统的研究
90. 双面钻孔组合机床的PLC控制系统设计
91. PLC在工业机械手中的应用
92. 基于PLC的电梯系统设计
93. 基于PLC的三相步进电动机控制系统
94. 基于PLC变频器控制的恒压供水系统设计
95. 用PLC对十字路口交通灯进行控制模拟
96. 造纸机电气传动控制系统设计
97. 基于PLC的流量监控系统设计
98. 基于欧姆龙PLC控制的全自动洗衣机设计
99. 纸机传动系统方案选择与程序设计
100. 锅炉输煤PLC控制系统下位机设计
101. 三菱FX2N PLC在冷冻干燥机中的应用
102. 基于西门子PLC的中央空调变频调速系统设计
103. 铜铝管焊机PLC控制程序的设计
104. PLC在自动验瓶机控制系统中的应用
105. PLC在6刀自动刀架系统设计中的应用
106. 基于PLC的摇臂钻床控制系统设计
107. PLC在板式过滤器中的应用
108. 基于PLC的智能交通灯监控系统设计
109. 基于PLC的贮料罐控制系统设计
110. PLC在粮食存储物流控制系统设计中的应用
111. 变频调速式疲劳试验装置控制系统设计
112. 基于PLC的霓虹灯控制系统
113. PLC在砂光机控制系统上的应用
114. 磨石粉生产线控制系统的设计
115. 自动药片装瓶机PLC控制设计
116. 装卸料小车多方式运行的PLC控制系统设计
117. PLC控制的自动罐装机系统
118. 基于CPLD的可控硅中频电源
119. 贮丝生产线PLC控制的系统
120. 景观温室控制系统的设计
121. PLC在电梯自动化控制中的应用
122. 基于PLC的气动机械手控制系统
123. 基于PLC的自动售货机的设计
124. PLC控制的行车自动化控制系统
125. PLC变频调速恒压供水系统
126. 自动铣床PLC控制系统毕业设计
127. 组态控制交通灯
128. 组态控制皮带运输机系统设计 济
129. 组态控制抢答器系统设计
130. 数控技术中进给系统开发设计
131. PLC控制的升降横移式自动化立体车库
132. PLC在电动单梁天车中的应用
133. PLC在液体混合控制系统中的应用
134. 智能组合秤控制系统设计
135. 自动送料装车系统PLC控制设计
136. PLC在数控技术中进给系统的开发中的应用
137. PLC在船用牵引控制系统开发中的应用
138. 基于PLC的组合机床控制系统设计
139. S7-200PLC在数控车床控制系统中的应用
140. PLC在改造z-3040型摇臂钻床中的应用
141. PLC控制自动门设计
142. PLC控制锅炉输煤系统
143. 机械手PLC控制设计
144. 基于西门子PLC控制的全自动洗衣机仿真设计
㈦ 采用重合闸装置有何意义
电力系统采用自动重合闸装置,是为了提高了供电的可靠性,减少了停电损失,而且还提能高电力系统的暂态稳定水平,增强了线路的送电容量。
㈧ 自动重合闸原理
自动重合闸装置
科普中国 | 本词条由“科普中国”科学网络词条编写与应用工作项目审核
审阅专家杜强
所谓自动重合闸装置,是将因故障跳开后的断路器按需要自动投入的一种自动装置。电力系统采用自动重合闸装置,极大地提高了供电的可靠性,减少了停电损失,而且还提高了电力系统的水平,增强了线路的送电容量。
中文名
自动重合闸装置
外文名
Automatic reclosing device
分类
电气式和机械式
类型
电力,科技
电网要求
110 kV及以下
快速
导航
分类
基本要求
应用
限制
简介
随着电力客户对供电可靠性和电能质量水平要求的进一步提高,建立安全可靠的输电线路自动化保护系统已成为线路运行发展的必然方向。[1] 就是将跳闸后的断路器按照要求自动投入的装置。
分类
1 重合闸的分类
1.1 按重合闸的动作来分,可分为电气式和机械式。
1.2 按重合闸作用于断路器的方式,可分为三相普通重合闸、单相重合闸和综合重合闸三种。
1.3 按重合闸的构成原理来分,可分为电磁式、晶体管式、集成电路式、数字(微机)式。
1.4 按动作次数来分,可分为一次式和多次式。
1.5 按使用条件来分,可分为单电源重合闸和双侧电源重合闸。双侧电源重合闸又可分为检定无压重合闸、检定同期和不检定三种。
基本要求
2.1 在下列情况下,重合闸不应动作:由运行值班员手动跳闸或无人值班变电站通过远方遥控装置跳闸时;当按频率自动减负荷装置动作时或负荷控制装置动作跳闸时;当手动合闸送电到故障线路上而保护动作跳闸时;母差保护或断路器失灵保护动作时;当备用电源自投(或互投)装置动作跳闸时或断路器处于不正常状态而不允许实现重合闸时。
2.2 除上述情况外,断路器由于继电保护动作或其他原因跳闸后,重合闸装置应动作,使断路器重新合上。
2.3 重合闸装置在动作后,均应能够自动复归,准备好下一次再动作,但动作次数应符合预先的设定。
2.4 重合闸装置应能够和继电保护配合实现重合闸前加速或后加速功能。
2.5 在双侧电源的线路上,重合闸启动条件应受到同期检定或无压检定的限制,且不可造成非同期重合并网。
2.6 重合闸的启动方式一般采用不对应启动,对于微机、集成电路保护还可采用保护启动方式。
2.7 重合闸动作应具备延时功能,对于220 kV以上电网应有两种以上时间可供选择。
2.8 重合闸装置充电时间应在15~25 s,放电越快越好。
应用
3.1 三相普通一次重合闸方式
电能表外置断路器重合闸
3.1.1 适用于110 kV及以下的电网中,特别是对于集中供电地区的密集型环网中,线路跳闸后不进行重合闸也能稳定运行的线路。
3.1.2 适用于单侧电源辐射形式线路。
3.1.3 不适用于大机组出口处。
3.2 单相重合闸及综合重合闸方式
3.2.1 适用于220 kV及以上的电网中,当发生单相接地故障时,如果使用三相重合闸不能保证系统的稳定性,或者地区系统会出现大面积停电,或者会导致重要负荷停电时,特别是大型机组的高压配电线路。
3.2.2 使用三相重合闸的线路,在使用单相重合闸时对系统恢复供电有较好的效果时。
3.3 检定无压或检定同期重合闸方式
3.3.1 适用于两端均有电源的线路以及不允许非同期合闸的线路。
3.3.2 双回线路上可直接检定另一回线路上有电流来判定同期。
查看更多
搜索发现
什么叫自动重合闸
自动重合闸断路器
重合闸
自动重合开关
自动重合闸的作用
自动闸器
雪肌精适合痘痘肌吗
丰胸产品可以用吗
new听姚婷婷讲《我在时间尽头等你》的选角故事
有奖网络9月十大热词评选啦!
hot湿地飞鸟等你保护!
网络吧 意见反馈 权威合作 网络协议
内容均由网友贡献,编辑、创建、修改和认证均免费 | 详情
词条目录
㈨ 电力系统中为什么要采用自动重合闸
电力系统采用自动重合闸装置,极大地提高了供电的可靠性,减少了停电损失内,而且还提高了电力系统容的水平,增强了线路的送电容量。
在下列情况下,重合闸不应动作:
由运行值班员手动跳闸或无人值班变电站通过远方遥控装置跳闸时;当按频率自动减负荷装置动作时或负荷控制装置动作跳闸时;当手动合闸送电到故障线路上而保护动作跳闸时;母差保护或断路器失灵保护动作时;当备用电源自投(或互投)装置动作跳闸时或断路器处于不正常状态而不允许实现重合闸时。
(9)plc自动重合闸装置的背景扩展阅读
1、正常运行时,当断路器由继电保护动作或其它原因而跳闸后,自动重合闸装置均应动作。
2、由运行人员手动操作或通过遥控装置将断路器断开时,自动重合闸不应起动。
3、继电保护动作切除故障后,自动重合闸装置应尽快发出重合闸脉冲。
4、自动重合闸装置动作次数应符合预先的规定。
5、自动重合闸装置应有可能在重合闸以前或重合闸以后加速继电保护的动作 ,以便加速故障的切除。
6、在双侧电源的线路上实现重合闸时,重合闸应满足同期合闸条件。
7、当断路器处于不正常状态而不允许实现重合闸时,应将自动重合闸装置闭锁。
㈩ 基于PLC控制的带式输送机自动张紧装置的毕业论文谁有!!最好是免费的,简述也行
1. PLC电镀行车控制系统设计
2. 机械手模型的PLC控制系统设计
3. PLC在自动售货机控制系统中的应用
4. 基于PLC控制的纸皮压缩机
5. 基于松下系列PLC恒压供水系统的设计
6. 基于PLC的自动门电控部分设计
7. 基于PLC的直流电机双闭环调速系统设计
8. 基于PLC的细纱机电控部分设计
9. 燃气锅炉温度的PLC控制系统
10. 交流提升系统PLC操作控制台
11. 基于PLC铝带分切机控制系统的设计
12. 高层建筑电梯控制系统设计
13. 转炉气化冷却控制系统
14. 高炉上料卷扬系统
15. 调速配料自动控制系统
16. 基于PLC的砌块成型机的电气系统设计
17. PLC在停车场智能控制管理系统应用
18. PLC 在冷冻干燥机的应用
19. 基于PLC的过程控制
20. 电器装配线PLC控制系统
21. 基于PLC的过程控制系统的设计
22. 基于PLC的伺服电机试验系统设计
23. 陶瓷压砖机PLC电气控制系统的设计
24. 多工位组合机床的PLC控制系统
25. 基于PLC的车床数字化控制系统设计
26. PLC实现自动重合闸装置的设计
27. 混凝土搅拌站控制系统设计
28. 基于PLC控制的带式输送机自动张紧装置
29. 基于PLC的化学水处理控制系统的设计
30. S7-300 PLC在电梯控制中的应用
31. 模糊算法在线优化PI控制器参数的PLC设计
32. 神经网络在线优化PI参数的PLC及组态设计
33. 模糊算法优化PI参数的PLC实现及组态设计
34. BP算法在线优化PI控制器参数的PLC实现
35. 推钢炉过程控制系统设计
36. 焦炉电机车控制系统的设计
37. 基于PLC的锅炉控制系统设计
38. 热量计的硬件电路设计
39. 高层建筑PLC控制的恒压供水系统的设计
40. 材料分拣PLC控制系统设计
41. 基于PLC控制的调压调速电梯拖动系统设计
42. 基于PLC的七层交流变频电梯控制系统设计
43. 五层交流双速电梯PLC电气控制系统的设计
44. 四层交流双速电梯的PLC电气控制系统的设计
45. 三层楼交流双速电梯的PLC电气控制系统的设计
46. PLC在恒温控制过程中的应用
Q.Q,89 ........................................后面接着输入......
36........................................后面接着输入......
28........................................后面接着输入......
136
(4行连着输入就是我的QQ)
47. 变频器在恒压供水控制系统中的应用
48. 基于西门子PLC的Z3040型摇臂钻床改造
49. PLC控制的恒压供水系统的设计