㈠ 如右图所示,是探究真空能不能传播声音的实验装置.(1)真空能不能传播声音呢这是科学探究中的环节之
(1)真空能不能传播声音呢?这是科学探究中的“提出问题”环节.
(2)逐渐回抽出罩内的答空气,罩内空气越来越稀薄,听到的闹钟声音逐渐变小,由此猜想,假如把玻璃罩内的空气全部抽去,我们将不能听到声音.
(3)这说明,声音的传播需要介质,由此可以推理得出:声音不能在真空中传播.
故答案为:(1)提出问题;(2)小;不能听到;(3)介质.
㈡ 如果测量真空度,需要对本实验装置进行怎样的改进
如果测量真空度,需要对本实验装置进行怎样的改进
:测量真空度的回两种常用方法: 一是用“绝对压答力”、“绝对真空度”表示的真空度; 由于绝对真空是理想状态,根本不可能达到所以在在实际情况中,我们常说的真空度其实是介于0到一个大气压之间的值。用绝对压力表示的真空度一般采用的是绝压表测量,
㈢ 物理实验室常见的真空应用有哪些
物理实验室常见的真空应用有:真空抽滤器、废液抽取仪、旋转蒸发仪、真空干燥箱、冻干机等设备。
在实验室中用的较多的就是无油活塞式(多用于微生物检测)和耐腐蚀隔膜式(多用于化学实验室)两种,活塞式一般和真空抽滤、微生物检测、废液抽取、真空干燥箱等设备配套使用。耐腐蚀隔膜式一般和旋转蒸发仪、真空干燥箱、离心浓缩等配套使用。
非干式真空泵,例如油式真空泵、水循环真空泵。非干式真空泵共同点是它需要借助其他的物质(如水和油)达到理想的真空度,在实验室中使用最多的就是油旋片泵,一般和冻干机、真空干燥箱等配套使用。
真空泵的作用
真空泵的用途十分广泛,被应用在例如冶金、化工、食品、医药等多种工业生产及民生相关的行业中。除了工业生产等领域,真空泵也广泛的应用于各种化工及生物学实验室等领域。一般在实验室中使用的真空泵用途有两大类:真空抽滤及真空干燥。
真空抽滤一般搭配各种实验室真空过滤装置,如溶剂过滤器、砂芯过滤瓶、布氏漏斗过滤瓶、瓶顶式过滤器、微生物限度检测过滤装置、多联过滤器等等。简单地说就是利用真空泵、微型真空泵等能提供真空的设备,使固体、液体混合物等分离速度加快的一种应用。
真空抽滤常常被医疗、科研等进行试验时用到,所以一般情况下,体积庞大、噪音高、功耗高的大型真空泵并不合适,常用的是微型真空泵、小型真空泵。
真空干燥是利用低压状态下液体沸点降低,在常温下即能沸腾蒸发,从而使样品去水或溶剂等物质,从而达到样品浓度升高或结晶的方法。
㈣ 土体或排水板内真空度观测常用哪些仪器
真空预压属于排水固结法测量仪
本发明涉及一种真空固结状态下测量土体某点真空度及孔压的实验装置,特别是涉及真空固结状态下对衰减现象的研究,能提供科学有效的数据。本发明还涉及一种上述真空固结状态下测量土体某点真空度及孔压的实验装置的试验操作方法。
背景技术:
真空预压属于排水固结法的一种高真空击密法,是一种快速加固地基的新技术,近年来被用于软土地区的地基处理。真空预压法适用于建筑工程超软地基的加固,特别是不良基础施工的填土同时也适用于饱和均质钻性土及含薄层砂夹层的粘性土,其工作原理是使土体中的孔隙水流入砂井并被排出以达到固结的目的。
但是随着固结的进行,淤泥厚度不同固结程度不同,不同方向上出现了衰减现象。需要我们对真空固结状态下的土体进行真空度和孔隙水压力的测量。目前测量仪器有真空表和孔隙水压计,但是真空表在抽真空状态下淤泥会将真空表插入淤泥部分导管堵塞,且非空心状态,真空表无法准确测量真空固结状态下土体某点真空度。另外,在实际工程中无法保证淤泥一定是饱和状态,在使用孔压计测量的时候无法保证数据的准确性,且在负压状态下,孔压计的参数与真空度的数据对比欠佳,无法得出衰减呈现何种方式以及衰减量。
技术实现要素:
本发明所要解决的技术问题是提供一种真空固结状态下测量土体某点真空度及孔压的实验装置,该实验装置能够更加方便快捷且精准的测得地下土体某点真空度和孔压数据。
为此,本发明提供的真空固结状态下测量土体某点真空度及孔压的实验装置,其特征是:包括连接管道,连接管道包括相互对接的上部储水管道、中管道、中间内腔和下管道,所述中管道内装入有上部实验土体,所述下管道内装入有下部实验土体,所述中管道和下管道的土体上下端分别设置有滤膜,滤膜能够透水,所述上部储水管道中存储有蒸馏水,下管道通过进导管与蓄水腔连接,蓄水腔通出导管与抽水机构连接,蓄水腔除进导管和出导管外其他部位密封状态,所述中间内腔与负压真空表连接,所述进导管上连接有负压真空表。
优选的,所述上部储水管道和下管道配置有对接机构,中管道和下管道连接并打入土体取地下土体。
优选的,所述中间内腔设置于中间管道内,中间管道上端与所述中管道连接、下端与所述下管道连接。
优选的,所述连接管道配置有安装座,安装座上设置有负压真空表、蓄水腔和抽水机构,负压真空表包括上负压真空表和下负压真空表,所述安装座包括底座、主轴和安装架,安装架的套接孔套接在主轴上并可沿主轴上下移动,安装架与主轴的套接处配置有可解锁的锁杆,锁杆配置有手轮,锁杆穿过安装架与套接孔中的锁紧瓦转动连接,所述中间管道固定设置在安装架上,所述上负压真空表固定在安装架上,中间管道通过处于安装架上的上部通道与所述上负压真空表导通;所述底座上设置有可与下管道对接的对接端口,对接端口与设置于底座上的下部通道导接,所述蓄水腔、下负压真空表和抽水机构固定设置于所述底座上,下负压真空表与下部通道导通,所述下部通道的外端与所述蓄水腔连接,蓄水腔与所述抽水机构连接。
优选的,所述负压真空表外设置有对准负压真空表表盘的存储式摄像机。
优选的,所述负压真空表外配置有电子读数系统,电子读数系统与计算机连接,计算机随时记录负压真空表数据。
㈤ 真空测试仪有什么作用
检漏测试仪连接到一个特别设计用来容纳需要被测试的包装的测试腔。包装被置于要被抽真空的实验腔内。双传感器技术不仅用来监测真空度同样也监测预定测试时间段中的真空变化。绝对真空和真空差压的变化暗示了当前包装中存在泄漏和缺陷。一项测试的灵敏度取决于传感器的灵敏度、包装的形式、包装测试时的夹具以及测试中的关键参数:时间和压力。
采用磁控放电法进行测量。将真空开关灭弧室的两触头拉开一定的距离,施加电场脉冲高压,将灭弧室置于螺线管圈内或将新型电磁线圈置于灭弧室外侧,向线圈通以大电流,从而在灭弧室内产生与高压同步的脉冲磁场。这样,在脉冲强磁场和强电场的作用下,灭弧室中的带电离子作螺旋运动,并与残余气体分子发生碰撞电离,所产生的离子电流与残余气体密度即真空度近似成比例关系。对于不同的真空管型号(管型),由于其结构不同,在同等触头开距、同等真空度、同等电场与磁场的条件下,离子电流的大小也不相同。通过实验可以标定出各种管型的真空度与离子电流间的对应关系曲线。当测知离子电流后,就可以通过查询该管型的离子电流一真空度曲线获得该管型的真空度。
HSXZKG-I真空度检测仪
真空度测试仪是电力系统中普遍使用的高压电器,其核心部件是真空灭弧室,由于灭弧室是以真空条件作为工作基础的,所以它不象油开关,SF6开关那样容易检测其质量。传统上,真空断路器用户判断灭弧室真空度的方法是工频耐压法,这种方法只能粗略判断真空度严重化的灭弧室。
㈥ 关于真空实验是什么
波义耳听说德国物理学家盖里克(Otto yon Guericke,1602—1686)在1650年建造了第一台空气泵,目的是探讨真空(不包含物质的空间)是否存在。关于这个问题,亚里士多德没有经过试验,就断然回答“不”。盖里克的空气泵类似抽水泵,它的各个部件相当紧凑以至足够密封。盖里克把容器中的气体抽空,成功地证明了真空的可能性。亚里士多德说过,声音在真空中无法传播,而盖里克证明,在他所创造的真空里,人们确实听不到钟声(正如亚里士多德所想),尽管如此,声音可以在液体、固体和空气中传播。通过进一步实验,盖里克证明动物无法在真空容器中生活,蜡烛不能在其中燃烧(当时对气体还知之甚少——氧气甚至还没有被发现)。在一场引人注目的演示中,他还证明,即便50个人同时猛拉一根拴在活塞上的绳索,都无法克服空气压力使得活塞进入真空状态。
波义耳把化学科学带到近代。1657年,波义耳开始听说这些实验,并且得到胡克的帮助,胡克心灵手巧,善于制作各种器具装备。他们两人设计了比盖里克更好的空气泵。这次实验成功之后,人们常常把空气泵产生的真空叫做“波义耳真空”。
当时化学家和物理学家面临的重要挑战之一,是设计能够进行精确定量测试的仪器。波义耳还发明了温度计,那是一种真空并且完全封闭的装置。他也是第一位证明伽利略关于自由落体定律为正确的人:在真空中,不同重量的物体以同样的速率下落。如果没有空气阻力,羽毛不会浮在空气中,它将和比它重得多的铅块以同样的速率下落。在另一个有趣的实验中,波义耳还证明,钟的滴答声在真空中是听不到的,但是电的吸力可以穿过真空并在另一侧产生效应。
根据这些真空实验,波义耳开始研究气体的性质。
㈦ 实验用自来水做动力的真空抽滤装置叫什么名字,各部件叫什么名字
那个叫减压抽滤装置.你说的那个球形容器部件叫水流泵.其他各部件还有布氏漏斗、抽滤瓶、安全瓶.要具体知道的话,可以自己到网络找一下.减压抽滤装置大学实验室会有.
㈧ 真空铃实验不能直接说明真空不能传声
把正在响铃的闹钟放在玻璃罩内,逐渐抽出罩内的空气,使玻璃罩内的空气内越来越稀薄,容发现闹钟的声音逐渐减弱;进一步推断,当罩内完全没有空气时,声音将完全消失,因此可以得出结论:真空不能传声.
由于使用设备限制,可能玻璃罩内没有完全抽成真空,也可能是悬挂闹钟的线能够传声,声音可以继续传播,所以还会听到声音;
故答案为:减弱;不能;玻璃罩内没有完全抽成真空(或悬挂闹钟的线能够传声).