⑴ 乙酰乙酸乙酯有哪些特殊现象
乙酰乙酸乙酯的酸性和互变异构现象,乙酰乙酸乙酯有互变异构现象,在烯醇式时有类似于酚的性质,与氯化铁反应形成配合物,呈紫红色.
⑵ 实验室制备乙酰乙酸乙酯的方法
乙酰乙酸乙酯的制备
1、乙酸乙酯自缩合法(实验室制备方法):首先将金属钠切为薄片,然后与乙酸乙酯回流反应至反应完全,冷却后加入50%乙酸使pH约为6,最后依次用饱和食盐水洗涤。在常压蒸馏出多余的乙酸乙酯后,再使用减压蒸馏方法蒸出乙酰乙酸乙酯,产率约为50%。 2、双乙烯酮与乙醇酯化法:双乙烯酮和无水乙醇在浓硫酸催化下进行酯化,得乙酰乙酸乙酯粗品。再经减压蒸馏得成品。3、乙酸乙酯与乙醇钠Claisen缩合:乙酸乙酯中加入无水乙醇和金属钠,油浴加热约1小时,得红色带有绿色荧光的液体,稍待冷却后加入50%的乙酸酸化至呈弱酸性。分液取酯层,再经减压蒸馏可得产品。①试验中有钠反应,为避免发生爆炸必须保证无水的条件。②油浴温度不要太高,约110℃,避免乙酸乙酯溢出。
乙酰乙酸乙
⑶ 脱氢醋酸是一种难溶于水的低毒、高效广谱抗菌剂,可由乙酰乙酸乙酯经脱醇缩合而成,反应原理为图1:实验
(1)纯液体加热易暴沸,加入沸石,可防止暴沸,故答案为:防止暴沸;
(2)步骤②中,在60~70min内低温加热,可防止反应物挥发,使反应物充分反应;反应为可逆反应,大火加热蒸出乙醇,有利于平衡向正方向移动,提高原料的利用率,
故答案为:使原料充分反应而不被蒸馏出去;使平衡正向移动,提高原料的利用率;
(3)进行水蒸气蒸馏,应提供水蒸气,则水蒸气蒸馏装置中烧瓶A的作用是提供水蒸气,玻璃管可起到平衡烧瓶内大气压的作用,能防止装置中压强过大引起事故、又能防止压强过小引起倒吸,
故答案为:提供水蒸气;起稳压作用(既能防止装置中压强过大引起事故、又能防止压强过小引起倒吸);
(4)可用质谱法测定有机物的相关分子质量,故答案为:质谱仪.
⑷ 实验室制取乙酸乙酯的制取装置图和步骤
一、制取乙酸乙酯的装置图:
三、装置中通蒸汽的导管不能插在饱和碳酸钠溶液之中目的:
防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。
⑸ 乙酰乙酸乙酯加入饱和醋酸铜,出现沉淀,再加氯仿沉淀消失,为什么写出方程式
加入醋酸铜产生沉淀原因:
在乙酰乙酸乙酯的稀醇结构中,存在两个配位中心(酯羰基和羟基),可以和某些金属离子如铜、钡、铝等形成螯合物,反应很灵敏,可用于某些金属离子的定量测定。
加入氯仿消失原因:酮式结构时的有机物被萃取,破坏了烯醇结构。
该实验涉及的中间物:
⑹ 三乙的制备
酸 化 :加50%醋酸,至反应液呈弱酸性(固体溶完)。 分 液:反应液转入分液漏斗,加等体积饱和氯化钠溶液,振摇,静置。
?干 燥 :分出乙酰乙酸乙酯层,用无水硫酸钠干燥。 蒸馏:水浴蒸去乙酸乙酯,剩余物移至 25mL克氏蒸馏瓶,减压蒸馏,收集馏分。
; 减压蒸馏是分离和提纯有机化合物的常用方法之一。它特别适用于那些在常压蒸馏时未达沸点即已受热分解、氧化或聚合的物质。 液体的沸点是指它的蒸气压等于外界压力时的温度,因此液体的沸点是随外界压力的变化而变化的,如果借助于真空泵降低系统内压力,就可以降低液体的沸点,这便是减压蒸馏操作的理论依据。;减压蒸馏装置; 实验室通常用水泵或油泵进行减压。 水泵:系用玻璃或金属制,其效能与其构造、水压及水温有关。水泵所能达到的最低压力为当时室温下的水蒸气压。例如在水温为 6-8 ℃时,水蒸气压为 0.93-1.07kPa ;在夏天,若水温为 30 ℃,则水蒸气压为 4.2kPa 左右。 现在一般用循环水泵代替简单水泵,在使用时比油泵更加方便、实用和简单。 油泵的效能决定于油泵的机械结构以及真空泵油的好坏。好的油泵能抽至真空度为 13.3Pa ,油泵结构较精密,工作条件要求较严。蒸馏时,如果有挥发性的有机溶剂、水或酸的蒸气,都会损坏油泵。因为挥发性的有机溶剂蒸气被油吸收后,就会增加油的蒸气压,影响真空效能。而酸性蒸气会腐蚀油泵的机件。水蒸气凝结后与油形成浓稠的乳浊液,破坏了油泵的正常工作,因此使用时必须十分注意油泵的保护。;减压蒸馏操作步骤 ;减压蒸馏注意事项 ;乙酰乙酸乙酯沸点与压力的关系;
⑺ 用乙酸乙酯与钠制备乙酰乙酸乙酯的实验中副反应有什么怎么分离副产物
13.2羧酸微生物和取代羧酸
(一)基本概念
1.羧酸衍生物:羧酸分子中羧基上的羟基被其它原子或原子团取代的产物叫做羧酸衍生物。羧酸衍生物包括酰卤、酸酐、酯、酰胺等。
2.取代酸:羧酸分子中烃基上的氢原子被其它原子团取代的产物叫做取代酸。取代酸分为卤代酸、羟基酸、羰基酸。
3.羰基酸:分子中既含有羰基又含有羧基的化合物称为羰基酸。根据所含的是醛基还是酮基,将其分为醛酸和酮酸。
4.羟基酸:分子中含有羧基和羟基的化合物称为羟基酸。羟基酸可分为醇酸和酚酸,羟基连接在脂肪烃基上的是醇酸,连接在芳香烃基上的是酚酸。
(二)基本知识
1.结构
(1)羧酸衍生物的结构
重要的羧酸衍生物有酰卤,酸酐,酯,酰胺。羧酸衍生物在结构上的共同特点是都含有酰基( ),酰基与其所连的基团都能形成p-π共轭体系,通常p电子是朝着双键方向转移,呈供电子效应。酰氯、酸酐、酯分子间不能通过氢键而缔合,沸点比相应羧酸低。
(2)乙酰乙酸乙酯的互变异构
乙酰乙酸乙酯不是一个结构单一的物质,在室温下存在酮式与烯醇式的互变异构:
92.5% 7.5%
上述结构分别叫做乙酰乙酸乙酯的酮式和烯醇式异构体,在室温下,二者之间以一定比例(92.5%酮式和7.5%烯醇式)呈动态平衡存在;彼此互变的速度极快,不能将二者分离。温度低时互变速度变慢。互变异构现象在生物体内比较常见,烯醇式和酮式的含量随化合物的结构不同而不同,一般以酮式比较稳定,但有时烯醇式为主要形式,甚至完全为烯醇式,如酚。
2.命名
(1)羧酸衍生物的命名
酰卤和酰胺根据酰基称为“某酰某”。
酸酐的命名是在相应羧酸的名称之后加一“酐”字。
酯的命名是根据形成它的酸和醇称为“某酸某酯”。
(2)羟基酸的命名
醇酸是以羧酸为母体,羟基作为取代基来命名的。酚酸是以芳香酸为母体,羟基为取代基来命名的。自然界存在的羟基酸常按其来源而采用俗名。
(3)羰基酸的命名
羰基酸的命名与醇酸相似,也是以羧酸为母体,羰基的位次用阿拉伯数字或希腊字母表示。
3.羧酸衍生物的化学性质
(1)水解反应四种羧酸衍生物都能水解生成相应的羧酸。
反应的活性不同。酰氯和酸酐容易水解,酯和酰胺的水解都需要酸或碱作催化剂,并且还要加热。水解的活性次序是:酰氯>酸酐>酯>酰胺
酯在酸催化下的水解,是酯化反应的逆反应,但水解不完全;在碱作用下水解时,产生的酸可与碱生成盐而破坏平衡体系,所以在足够碱的存在下,水解可以进行到底。酯在碱溶液中的水解反应又叫皂化反应。
(2)醇解和氨解酰氯、酸酐和酯都能进行醇解和氨解反应,所得主要产物分别为酯和酰胺( )。
酯的醇解生成另一种酯和醇,这种反应称为酯交换反应。此反应在有机合成中可用于从低级醇酯制取高级醇酯(反应后蒸出低级醇)。
水解、醇解和氨解反应,对于水、醇和氨来说,是其中的活泼氢原子被酰基所取代的反应。这种在化合物分子中引入酰基的反应称为酰化反应,所用试剂叫酰化剂。
羧酸衍生物的酰化能力强弱顺序为:酰卤>酸酐>酯>酰胺。实际应用常选酰氯和酸酐。
(3)酰胺的化学性质
酸碱性酰胺因氮原子上的未共用电子对与碳氧双键形成p-π共轭,碱性很弱,接近于中性。酰亚胺显弱酸性。
与亚硝酸的反应氨基被羟基取代,生成相应的羧酸,同时放出氮气。
霍夫曼(Hofmann)降级反应酰胺与次卤酸钠的碱溶液作用,脱去羧基生成比原来少一个碳的胺的反应,称为霍夫曼降级反应。
4.羟基酸的性质
⑴酸性羟基连在脂肪烃基上时,由于羟基是吸电子基团,因此醇酸的酸性比相应的羧酸强,羟基距羧基越近,对酸性的影响就越大。在酚酸中,羟基处于羧基的邻位时,其氢原子能与羧基氧原子形成分子内氢键,降低了羧基中羟基氧原子的电子云密度,使氢原子更易解离,同时也使形成的羧酸负离子稳定化。这是邻羟基苯甲酸酸性增强的主要原因。
⑵醇酸的脱水反应α-羟基酸受热时,两分子间相互酯化,生成交酯。
β-羟基酸受热发生分子内脱水,主要生成α,β-不饱和羧酸。
γ-和δ-羟基酸受热,生成五元和六元环内酯。
⑷酚酸的脱羧羟基处于邻对位的酚酸,对热不稳定,当加热到熔点以上时,则脱去羧基生成酚。
5.羰基酸的性质
α-酮酸与稀硫酸共热时,脱羧生成醛;与浓硫酸共热时,脱羰生成少一个碳原子的羧酸。
β-酮酸在高于室温的情况下,即脱去羧基生成酮,此反应称为酮式分解。
β-酮酸与浓碱共热时,α-和β-碳原子间的键发生断裂,生成两分子羧酸盐,此反应称为酸式分解。
例1用系统命名法命名下列化合物。
⑴ ⑵ ⑶
⑷ ⑸CH3OOC(CH2)4COOCH3⑹
分析:⑴不饱和脂肪酸命名时,双键应放在主链中,苯环做取代基,编号由羧基开始。
⑵二元羧酸,要将2个羧基放在主链的两端,所以该化合物母体是丙二酸。
⑶取代酰卤,以酰卤为母体,链上的羟基做取代基。
⑷这是一个由邻苯二甲酸脱水形成的酸酐。
⑸这是一个二元羧酸形成的酯,母体是六个碳的已二酸。
⑹这是芳香族羧酸,苯环为取代基,脂肪酸为母体,编号由羧基开始。
解:(1)3-苯基丙烯酸(2)乙基丙二酸(3)3-羟基戊酰氯。
(4)邻苯二甲酸酐(5)已二酸二甲酯(6)3-甲基-4-氯苯甲酸。
例2用化学方法鉴别下列化合物:乙酸、乙二酸、丙二酸。
分析:三种物质都是羧酸,它们既有通性又有特性,利用特性可以鉴别。
解:乙酸无变化无变化
丙二酸无变化产生气泡
乙二酸褪色
例3按酸性由强至弱顺序排列:乙酸、草酸、苯酚、乙醇。
分析:苯酚中的羟基氧原子能与苯环形成p-π共轭,酚羟基电离出氢离子后共轭体系较稳定,因而,苯酚的酸性强于乙醇;在乙酸分子中,羟基氧原子能与羰基形成p-π共轭,羧基电离出氢离子后,两个氧原子与碳原子间的共价键平均化,剩余的酸根离子更稳定,因此,乙酸的酸性强于苯酚;草酸分子中相当于在乙酸分子的α碳原子上连一个强吸电子基团,增强了羧基电离的能力,因而草酸的酸性最强。
解:酸性由强至弱顺序:草酸>乙酸>苯酚>乙醇
例4某有机化合物分子式为C7H6O3,可溶于NaHCO3水溶液中,与FeCl3有颜色反应;在碱性条件下与乙酸酐反应生成C9H8O4;在酸催化下与甲醇反应生成C8H8O3;硝化后主要得到两种一元硝化产物。试推测该化合物的结构并写出各步反应式。
分析:由能溶于NaHCO3水溶液中并与FeCl3有颜色反应,说明显酸性物质是酚类;与乙酸酐反应生成C9H8O4是酰基化反应,在原分子中酚羟基上的氢原子换成乙酰基;在酸催化下与甲醇反应生成C8H8O3是羧酸与醇的酯化反应;由此可初步推断此有机化合物是苯环上有酚羟基和羧基。又因硝化后主要得到两一元硝化产物,进一步说明两官能团的相对位置是在邻位。
解:该化合物的结构式为:
例5完成下列反应,写出主要产物:
⑴
⑵
⑶
⑷
⑸
分析:根据化学性质解此题
解:⑴
⑵
⑶
⑷
⑸
⑻ 乙酰乙酸乙酯制备2-庚烯的过程。求解
先合成2-己醇,然后把2-己醇和浓硫酸按1:3混合迅速加热到170℃,
使酒精分解制得2-庚烯。浓硫酸在反应过程里起催化剂和脱水剂的作用
CH3COCH2COOEt——EtONa——>——CH3CH2CH2Cl——>CH3COCH(CH2CH2CH3)COOEt——NaOH,脱CO2——>CH3CO(CH2)3CH3——H2——>CH3CH(OH)(CH2)3CH3
得对应的醇, 脱水后的烯烃加氢, 最后水解得目标产物。
乙酰乙酸乙酯制备过程如下:
2CH3CO2C2H5+C2H5ONa+H2O-H+===CH3COCH2CO2C2H5 + C2H5 OH
三、试剂
乙酸乙酯 25g(27.5ml 0.38mol)、Na 2.5g (0.11mol) (m.p. 97.5℃、d:0.97g/cm3)
二甲苯 12.5ml(b.p. 140℃、d:0.8678 g/cm3) ( 苯:b.p. 80.1℃甲苯: b.p 110.6℃)
乙酰乙酸乙酯 (d:1.025 g/cm3) HOAc 50% 15ml
饱和NaCl 无水Na2SO4
四、装置
无水干燥回流装置;减压蒸馏装置。
五、实验步骤
1、熔钠:在表面皿上迅速将Na切成薄片,立即放入带干燥管的回流瓶中(内装12.5ml二甲苯),加热熔之。塞住瓶口振摇使之成为钠珠。回收二甲苯。
2、加酯回流:迅速放入27.5ml乙酸乙酯,反应开始。若慢可温热。回流1.5h至钠基本消失,得橘红色溶液,有时析出黄白色沉淀(均为烯醇盐)。
3、酸 化 :加50%醋酸,至反应液呈弱酸性(固体溶完)。
4、分 液:反应液转入分液漏斗,加等体积饱和氯化钠溶液,振摇,静置。
5、干 燥 :分出乙酰乙酸乙酯层,用无水硫酸钠干燥。
6、精 馏 :水浴蒸去乙酸乙酯,剩余物移至 25ml克氏蒸馏瓶,减压蒸馏,收集馏分。
⑼ 乙酸乙酯是重要的化工原料。实验室合成乙酸乙酯的装置如下图所示。 有关数据及副反应: 副反应:C 2 H