导航:首页 > 装置知识 > 机械传动装置设计的内容

机械传动装置设计的内容

发布时间:2022-06-29 13:12:38

『壹』 机械设计 螺旋输送机传动装置设计

一、传动方案拟定

螺旋输送机用减速器方案如下图所示

FD

V

二、电动机的选择

电动机的选择:选用Y系列三相异步电动机

1.带式输送机所需功率

2.初估电动机额定功率P=

V带效率=0.96,一对滚动轴承效率=0.99,闭式齿轮传动效率=0.97(8级精度),联轴器

3.确定电动机转速

选择同步转速为1500电动机,型号为

4.各尺寸及主要性能如下:

额定功率

同步转速

满载转速

额定转矩

最大转矩

质量

(kg)

4.0

1500

1440

2.2

2.2

43

机座号

中心高

安装尺寸

轴伸尺寸

平键尺寸

外形尺寸

112M

112

A

B

D

E

G

L

HD

AC

AD

190

140

28

60

24

400

265

230

190

三、分配各级传动比

初取V带传动比3

则两斜圆柱齿轮 取

综上取传动比

四、 计算运动和动力参数(传动装置运动和动力参数的计算)

1.各轴转速

电动机轴

I轴

II轴

III轴

卷筒轴IV

2.各轴输入功率

I轴

II轴

III轴

卷筒轴IV

3.各轴输入转矩

I轴

II轴

III轴

卷筒轴IV

五、 减速器外传动零件的设计计算

一 V带的设计计算

1:确定计算功率

由V带的工作情况和工作时间长短等因素 取

2:选择带型

根据计算功率小带轮的转速,由表8-6,可选 SPZ型V带

3:确定带轮的基准直径

1):由表8-7,8-3,初选

2):验算带速度:

故V带选择合适

3):计算从动轮的基准直径

由表8-7,选取

4:确定中心距

初选,带的基准长度

由表8-2取

5:验算主动轮的包角

主动轮的包角符合要求

6:确定窄V带根数z

由查表8-5c和8-5d得:

由表8-8得:

由表8-2得:

代入式(8-22)得:

故z取z=3

7:计算带的预紧力

查表8-4得:

由于新带容易松弛,所以安装新带时的预紧力为上述预紧力的1.5倍

8:计算压紧力

9验算 实际传动比:

9:带轮结构设计

基准宽度

基准线上槽深

基准线下槽深

槽间距

第一槽对称面

至端面的距离

最小带轮缘厚

带轮宽

外径

轮槽角

『贰』 机械设计课程设计---设计盘磨机传动装置!!!

我也在做这个题也 老兄
我只能提供样本给你哈 具体的还是得靠你自己啦
目 录

一 课程设计书 2

二 设计要求 2

三 设计步骤 2

1. 传动装置总体设计方案 3
2. 电动机的选择 4
3. 确定传动装置的总传动比和分配传动比 5
4. 计算传动装置的运动和动力参数 5
6. 齿轮的设计 8
7. 滚动轴承和传动轴的设计 19
8. 键联接设计 26
9. 箱体结构的设计 27
10.润滑密封设计 30
11.联轴器设计 30

四 设计小结 31
五 参考资料 32

一. 课程设计书
设计课题:
设计一用于带式运输机上的两级齿轮减速器.运输机连续单向运转,载荷有轻微冲击,工作环境多尘,通风良好,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限10年(300天/年),三班制工作,滚筒转速容许速度误差为5%,车间有三相交流,电压380/220V。
参数:
皮带有效拉力F(KN) 3.2
皮带运行速度V(m/s) 1.4
滚筒直径D(mm) 400

二. 设计要求
1.减速器装配图1张(0号)。
2.零件工作图2-3张(A2)。
3.设计计算说明书1份。
三. 设计步骤
1. 传动装置总体设计方案
2. 电动机的选择
3. 确定传动装置的总传动比和分配传动比
4. 计算传动装置的运动和动力参数
5. 齿轮的设计
6. 滚动轴承和传动轴的设计
7. 键联接设计
8. 箱体结构设计
9. 润滑密封设计
10. 联轴器设计
1.传动装置总体设计方案:
1. 组成:传动装置由电机、减速器、工作机组成。
2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀,
要求轴有较大的刚度。
3. 确定传动方案:考虑到电机转速高,传动功率大,将V带设置在高速级。
其传动方案如下:

图一:(传动装置总体设计图)
初步确定传动系统总体方案如:传动装置总体设计图所示。
选择V带传动和二级圆柱斜齿轮减速器。
传动装置的总效率
为V带的传动效率, 为轴承的效率,
为对齿轮传动的效率,(齿轮为7级精度,油脂润滑)
为联轴器的效率, 为滚筒的效率
因是薄壁防护罩,采用开式效率计算。
取 =0.96 =0.98 =0.95 =0.99 =0.96
=0.96× × ×0.99×0.96=0.760;
2.电动机的选择
电动机所需工作功率为: P =P/η =3200×1.4/1000×0.760=3.40kW
滚筒轴工作转速为n= = =66.88r/min,
经查表按推荐的传动比合理范围,V带传动的传动比i =2~4,二级圆柱斜齿轮减速器传动比i =8~40,
则总传动比合理范围为i =16~160,电动机转速的可选范围为n =i ×n=(16~160)×66.88=1070.08~10700.8r/min。
综合考虑电动机和传动装置的尺寸、重量、价格和带传动、减速器的传动比,
选定型号为Y112M—4的三相异步电动机,额定功率为4.0
额定电流8.8A,满载转速 1440 r/min,同步转速1500r/min。

方案 电动机型号 额定功 率
P
kw 电动机转速

电动机重量
N 参考价格
元 传动装置的传动比
同步转速 满载转速 总传动 比 V带传 动 减速器
1 Y112M-4 4 1500 1440 470 230 125.65 3.5 35.90

3.确定传动装置的总传动比和分配传动比

(1)总传动比
由选定的电动机满载转速n 和工作机主动轴转速n,可得传动装置总传动比为 =n /n=1440/66.88=17.05
(2)分配传动装置传动比
= ×
式中 分别为带传动和减速器的传动比。
为使V带传动外廓尺寸不致过大,初步取 =2.3(实际的传动比要在设计V带传动时,由所选大、小带轮的标准直径之比计算),则减速器传动比为
= =17.05/2.3=7.41
根据展开式布置,考虑润滑条件,为使两级大齿轮直径相近,查图得高速级传动比为 =3.24,则 = =2.29

4.计算传动装置的运动和动力参数
(1) 各轴转速
= =1440/2.3=626.09r/min
= =626.09/3.24=193.24r/min
= / =193.24/2.29=84.38 r/min
= =84.38 r/min
(2) 各轴输入功率
= × =3.40×0.96=3.26kW
= ×η2× =3.26×0.98×0.95=3.04kW
= ×η2× =3.04×0.98×0.95=2.83kW
= ×η2×η4=2.83×0.98×0.99=2.75kW
则各轴的输出功率:
= ×0.98=3.26×0.98=3.19 kW
= ×0.98=3.04×0.98=2.98 kW
= ×0.98=2.83×0.98=2.77kW
= ×0.98=2.75×0.98=2.70 kW
(3) 各轴输入转矩
= × × N•m
电动机轴的输出转矩 =9550 =9550×3.40/1440=22.55 N•m
所以: = × × =22.55×2.3×0.96=49.79 N•m
= × × × =49.79×3.24×0.96×0.98=151.77 N•m
= × × × =151.77×2.29×0.98×0.95=326.98N•m
= × × =326.98×0.95×0.99=307.52 N•m
输出转矩: = ×0.98=49.79×0.98=48.79 N•m
= ×0.98=151.77×0.98=148.73 N•m
= ×0.98=326.98×0.98=320.44N•m
= ×0.98=307.52×0.98=301.37 N•m
运动和动力参数结果如下表
轴名 功率P KW 转矩T Nm 转速r/min
输入 输出 输入 输出
电动机轴 3.40 22.55 1440
1轴 3.26 3.19 49.79 48.79 626.09
2轴 3.04 2.98 151.77 148.73 193.24
3轴 2.83 2.77 326.98 320.44 84.38
4轴 2.75 2.70 307.52 301.37 84.38
5.齿轮的设计
(一)高速级齿轮传动的设计计算
1. 齿轮材料,热处理及精度
考虑此减速器的功率及现场安装的限制,故大小齿轮都选用硬齿面渐开线斜齿轮
(1)齿轮材料及热处理
① 材料:高速级小齿轮选用45#钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =24
高速级大齿轮选用45#钢正火,齿面硬度为大齿轮 240HBS Z = ×Z =3.24×24=77.76 取Z =78.
② 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。

2.初步设计齿轮传动的主要尺寸
按齿面接触强度设计

确定各参数的值:
①试选 =1.6
查课本 图10-30 选取区域系数 Z =2.433
由课本 图10-26

②由课本 公式10-13计算应力值环数
N =60n j =60×626.09×1×(2×8×300×8)
=1.4425×10 h
N = =4.45×10 h #(3.25为齿数比,即3.25= )
③查课本 10-19图得:K =0.93 K =0.96
④齿轮的疲劳强度极限
取失效概率为1%,安全系数S=1,应用 公式10-12得:
[ ] = =0.93×550=511.5

[ ] = =0.96×450=432
许用接触应力

⑤查课本由 表10-6得: =189.8MP
由 表10-7得: =1
T=95.5×10 × =95.5×10 ×3.19/626.09
=4.86×10 N.m
3.设计计算
①小齿轮的分度圆直径d

=
②计算圆周速度

③计算齿宽b和模数
计算齿宽b
b= =49.53mm
计算摸数m
初选螺旋角 =14
=
④计算齿宽与高之比
齿高h=2.25 =2.25×2.00=4.50
= =11.01
⑤计算纵向重合度
=0.318 =1.903
⑥计算载荷系数K
使用系数 =1
根据 ,7级精度, 查课本由 表10-8得
动载系数K =1.07,
查课本由 表10-4得K 的计算公式:
K = +0.23×10 ×b
=1.12+0.18(1+0.6 1) ×1+0.23×10 ×49.53=1.42
查课本由 表10-13得: K =1.35
查课本由 表10-3 得: K = =1.2
故载荷系数:
K=K K K K =1×1.07×1.2×1.42=1.82
⑦按实际载荷系数校正所算得的分度圆直径
d =d =49.53× =51.73
⑧计算模数
=
4. 齿根弯曲疲劳强度设计
由弯曲强度的设计公式

⑴ 确定公式内各计算数值
① 小齿轮传递的转矩 =48.6kN•m
确定齿数z
因为是硬齿面,故取z =24,z =i z =3.24×24=77.76
传动比误差 i=u=z / z =78/24=3.25
Δi=0.032% 5%,允许
② 计算当量齿数
z =z /cos =24/ cos 14 =26.27
z =z /cos =78/ cos 14 =85.43
③ 初选齿宽系数
按对称布置,由表查得 =1
④ 初选螺旋角
初定螺旋角 =14
⑤ 载荷系数K
K=K K K K =1×1.07×1.2×1.35=1.73
⑥ 查取齿形系数Y 和应力校正系数Y
查课本由 表10-5得:
齿形系数Y =2.592 Y =2.211
应力校正系数Y =1.596 Y =1.774
⑦ 重合度系数Y
端面重合度近似为 =[1.88-3.2×( )] =[1.88-3.2×(1/24+1/78)]×cos14 =1.655
=arctg(tg /cos )=arctg(tg20 /cos14 )=20.64690
=14.07609
因为 = /cos ,则重合度系数为Y =0.25+0.75 cos / =0.673
⑧ 螺旋角系数Y
轴向重合度 = =1.825,
Y =1- =0.78
⑨ 计算大小齿轮的
安全系数由表查得S =1.25
工作寿命两班制,8年,每年工作300天
小齿轮应力循环次数N1=60nkt =60×271.47×1×8×300×2×8=6.255×10
大齿轮应力循环次数N2=N1/u=6.255×10 /3.24=1.9305×10
查课本由 表10-20c得到弯曲疲劳强度极限
小齿轮 大齿轮
查课本由 表10-18得弯曲疲劳寿命系数:
K =0.86 K =0.93
取弯曲疲劳安全系数 S=1.4
[ ] =
[ ] =

大齿轮的数值大.选用.
⑵ 设计计算
① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =2mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =51.73 来计算应有的齿数.于是由:
z = =25.097 取z =25
那么z =3.24×25=81
② 几何尺寸计算
计算中心距 a= = =109.25
将中心距圆整为110
按圆整后的中心距修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正.
计算大.小齿轮的分度圆直径
d = =51.53
d = =166.97
计算齿轮宽度
B=
圆整的

(二) 低速级齿轮传动的设计计算
⑴ 材料:低速级小齿轮选用45钢调质,齿面硬度为小齿轮 280HBS 取小齿齿数 =30
速级大齿轮选用45钢正火,齿面硬度为大齿轮 240HBS z =2.33×30=69.9 圆整取z =70.
⑵ 齿轮精度
按GB/T10095-1998,选择7级,齿根喷丸强化。
⑶ 按齿面接触强度设计
1. 确定公式内的各计算数值
①试选K =1.6
②查课本由 图10-30选取区域系数Z =2.45
③试选 ,查课本由 图10-26查得
=0.83 =0.88 =0.83+0.88=1.71
应力循环次数
N =60×n ×j×L =60×193.24×1×(2×8×300×8)
=4.45×10
N = 1.91×10
由课本 图10-19查得接触疲劳寿命系数
K =0.94 K = 0.97
查课本由 图10-21d
按齿面硬度查得小齿轮的接触疲劳强度极限 ,
大齿轮的接触疲劳强度极限
取失效概率为1%,安全系数S=1,则接触疲劳许用应力
[ ] = =
[ ] = =0.98×550/1=517
[ 540.5
查课本由 表10-6查材料的弹性影响系数Z =189.8MP
选取齿宽系数
T=95.5×10 × =95.5×10 ×2.90/193.24
=14.33×10 N.m
=65.71
2. 计算圆周速度
0.665
3. 计算齿宽
b= d =1×65.71=65.71
4. 计算齿宽与齿高之比
模数 m =
齿高 h=2.25×m =2.25×2.142=5.4621
=65.71/5.4621=12.03
5. 计算纵向重合度

6. 计算载荷系数K
K =1.12+0.18(1+0.6 +0.23×10 ×b
=1.12+0.18(1+0.6)+ 0.23×10 ×65.71=1.4231
使用系数K =1
同高速齿轮的设计,查表选取各数值
=1.04 K =1.35 K =K =1.2
故载荷系数
K= =1×1.04×1.2×1.4231=1.776
7. 按实际载荷系数校正所算的分度圆直径
d =d =65.71×
计算模数
3. 按齿根弯曲强度设计
m≥
一确定公式内各计算数值
(1) 计算小齿轮传递的转矩 =143.3kN•m
(2) 确定齿数z
因为是硬齿面,故取z =30,z =i ×z =2.33×30=69.9
传动比误差 i=u=z / z =69.9/30=2.33
Δi=0.032% 5%,允许
(3) 初选齿宽系数
按对称布置,由表查得 =1
(4) 初选螺旋角
初定螺旋角 =12
(5) 载荷系数K
K=K K K K =1×1.04×1.2×1.35=1.6848
(6) 当量齿数
z =z /cos =30/ cos 12 =32.056
z =z /cos =70/ cos 12 =74.797
由课本 表10-5查得齿形系数Y 和应力修正系数Y

(7) 螺旋角系数Y
轴向重合度 = =2.03
Y =1- =0.797
(8) 计算大小齿轮的

查课本由 图10-20c得齿轮弯曲疲劳强度极限

查课本由 图10-18得弯曲疲劳寿命系数
K =0.90 K =0.93 S=1.4
[ ] =
[ ] =
计算大小齿轮的 ,并加以比较

大齿轮的数值大,选用大齿轮的尺寸设计计算.
① 计算模数

对比计算结果,由齿面接触疲劳强度计算的法面模数m 大于由齿根弯曲疲劳强度计算的法面模数,按GB/T1357-1987圆整为标准模数,取m =3mm但为了同时满足接触疲劳强度,需要按接触疲劳强度算得的分度圆直径d =72.91 来计算应有的齿数.
z = =27.77 取z =30
z =2.33×30=69.9 取z =70
② 初算主要尺寸
计算中心距 a= = =102.234
将中心距圆整为103
修正螺旋角
=arccos
因 值改变不多,故参数 , , 等不必修正
分度圆直径
d = =61.34
d = =143.12
计算齿轮宽度

圆整后取

低速级大齿轮如上图:

齿轮各设计参数附表
1. 各轴转速n
(r/min)
(r/min)
(r/min)
(r/min)

626.09 193.24 84.38 84.38

2. 各轴输入功率 P
(kw)
(kw)
(kw)
(kw)

3.26 3.04 2.83 2.75

3. 各轴输入转矩 T
(kN•m)
(kN•m)
(kN•m)
(kN•m)

49.79 151.77 326.98 307.52

6.传动轴承和传动轴的设计
1. 传动轴承的设计
⑴. 求输出轴上的功率P ,转速 ,转矩
P =2.83KW =84.38r/min
=326.98N.m
⑵. 求作用在齿轮上的力
已知低速级大齿轮的分度圆直径为
=143.21
而 F =
F = F
F = F tan =4348.16×0.246734=1072.84N
圆周力F ,径向力F 及轴向力F 的方向如图示:
⑶. 初步确定轴的最小直径
先按课本15-2初步估算轴的最小直径,选取轴的材料为45钢,调质处理,根据课本 取

输出轴的最小直径显然是安装联轴器处的直径 ,为了使所选的轴与联轴器吻合,故需同时选取联轴器的型号
查课本 ,选取

因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm,半联轴器的孔径
⑷. 根据轴向定位的要求确定轴的各段直径和长度
① 为了满足半联轴器的要求的轴向定位要求,Ⅰ-Ⅱ轴段右端需要制出一轴肩,故取Ⅱ-Ⅲ的直径 ;左端用轴端挡圈定位,按轴端直径取挡圈直径 半联轴器与 为了保证轴端挡圈只压在半联轴器上而不压在轴端上, 故Ⅰ-Ⅱ的长度应比 略短一些,现取
② 初步选择滚动轴承.因轴承同时受有径向力和轴向力的作用,故选用单列角接触球轴承.参照工作要求并根据 ,由轴承产品目录中初步选取0基本游隙组 标准精度级的单列角接触球轴承7010C型.

D B

轴承代号
45 85 19 58.8 73.2 7209AC
45 85 19 60.5 70.2 7209B
45 100 25 66.0 80.0 7309B
50 80 16 59.2 70.9 7010C
50 80 16 59.2 70.9 7010AC
50 90 20 62.4 77.7 7210C
2. 从动轴的设计
对于选取的单向角接触球轴承其尺寸为的 ,故 ;而 .
右端滚动轴承采用轴肩进行轴向定位.由手册上查得7010C型轴承定位轴肩高度 mm,
③ 取安装齿轮处的轴段 ;齿轮的右端与左轴承之间采用套筒定位.已知齿轮 的宽度为75mm,为了使套筒端面可靠地压紧齿轮,此轴段应略短于轮毂宽度,故取 . 齿轮的左端采用轴肩定位,轴肩高3.5,取 .轴环宽度 ,取b=8mm.
④ 轴承端盖的总宽度为20mm(由减速器及轴承端盖的结构设计而定) .根据轴承端盖的装拆及便于对轴承添加润滑脂的要求,取端盖的外端面与半联轴器右端面间的距离 ,故取 .
⑤ 取齿轮距箱体内壁之距离a=16 ,两圆柱齿轮间的距离c=20 .考虑到箱体的铸造误差,在确定滚动轴承位置时,应距箱体内壁一段距离 s,取s=8 ,已知滚动轴承宽度T=16 ,
高速齿轮轮毂长L=50 ,则

至此,已初步确定了轴的各端直径和长度.
5. 求轴上的载荷
首先根据结构图作出轴的计算简图, 确定顶轴承的支点位置时,
查《机械设计手册》20-149表20.6-7.
对于7010C型的角接触球轴承,a=16.7mm,因此,做为简支梁的轴的支承跨距.

传动轴总体设计结构图:

(从动轴)

(中间轴)

(主动轴)
从动轴的载荷分析图:

6. 按弯曲扭转合成应力校核轴的强度
根据
= =
前已选轴材料为45钢,调质处理。
查表15-1得[ ]=60MP
〈 [ ] 此轴合理安全
7. 精确校核轴的疲劳强度.
⑴. 判断危险截面
截面A,Ⅱ,Ⅲ,B只受扭矩作用。所以A Ⅱ Ⅲ B无需校核.从应力集中对轴的疲劳强度的影响来看,截面Ⅵ和Ⅶ处过盈配合引起的应力集中最严重,从受载来看,截面C上的应力最大.截面Ⅵ的应力集中的影响和截面Ⅶ的相近,但是截面Ⅵ不受扭矩作用,同时轴径也较大,故不必做强度校核.截面C上虽然应力最大,但是应力集中不大,而且这里的直径最大,故C截面也不必做强度校核,截面Ⅳ和Ⅴ显然更加不必要做强度校核.由第3章的附录可知,键槽的应力集中较系数比过盈配合的小,因而,该轴只需胶合截面Ⅶ左右两侧需验证即可.
⑵. 截面Ⅶ左侧。
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅶ的右侧的弯矩M为
截面Ⅳ上的扭矩 为 =311.35
截面上的弯曲应力

截面上的扭转应力
= =
轴的材料为45钢。调质处理。
由课本 表15-1查得:


经插入后得
2.0 =1.31
轴性系数为
=0.85
K =1+ =1.82
K =1+ ( -1)=1.26
所以

综合系数为: K =2.8
K =1.62
碳钢的特性系数 取0.1
取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
截面Ⅳ右侧
抗弯系数 W=0.1 = 0.1 =12500
抗扭系数 =0.2 =0.2 =25000
截面Ⅳ左侧的弯矩M为 M=133560
截面Ⅳ上的扭矩 为 =295
截面上的弯曲应力
截面上的扭转应力
= = K =
K =
所以
综合系数为:
K =2.8 K =1.62
碳钢的特性系数
取0.1 取0.05
安全系数
S = 25.13
S 13.71
≥S=1.5 所以它是安全的
8.键的设计和计算
①选择键联接的类型和尺寸
一般8级以上精度的尺寸的齿轮有定心精度要求,应用平键.
根据 d =55 d =65
查表6-1取: 键宽 b =16 h =10 =36
b =20 h =12 =50
②校和键联接的强度
查表6-2得 [ ]=110MP
工作长度 36-16=20
50-20=30
③键与轮毂键槽的接触高度
K =0.5 h =5
K =0.5 h =6
由式(6-1)得:
<[ ]
<[ ]
两者都合适
取键标记为:
键2:16×36 A GB/T1096-1979
键3:20×50 A GB/T1096-1979
9.箱体结构的设计
减速器的箱体采用铸造(HT200)制成,采用剖分式结构为了保证齿轮佳合质量,
大端盖分机体采用 配合.
1. 机体有足够的刚度
在机体为加肋,外轮廓为长方形,增强了轴承座刚度
2. 考虑到机体内零件的润滑,密封散热。
因其传动件速度小于12m/s,故采用侵油润油,同时为了避免油搅得沉渣溅起,齿顶到油池底面的距离H为40mm
为保证机盖与机座连接处密封,联接凸缘应有足够的宽度,联接表面应精创,其表面粗糙度为
3. 机体结构有良好的工艺性.
铸件壁厚为10,圆角半径为R=3。机体外型简单,拔模方便.
4. 对附件设计
A 视孔盖和窥视孔
在机盖顶部开有窥视孔,能看到 传动零件齿合区的位置,并有足够的空间,以便于能伸入进行操作,窥视孔有盖板,机体上开窥视孔与凸缘一块,有便于机械加工出支承盖板的表面并用垫片加强密封,盖板用铸铁制成,用M6紧固
B 油螺塞:
放油孔位于油池最底处,并安排在减速器不与其他部件靠近的一侧,以便放油,放油孔用螺塞堵住,因此油孔处的机体外壁应凸起一块,由机械加工成螺塞头部的支承面,并加封油圈加以密封。
C 油标:
油标位在便于观察减速器油面及油面稳定之处。
油尺安置的部位不能太低,以防油进入油尺座孔而溢出.
D 通气孔:
由于减速器运转时,机体内温度升高,气压增大,为便于排气,在机盖顶部的窥视孔改上安装通气器,以便达到体内为压力平衡.
E 盖螺钉:
启盖螺钉上的螺纹长度要大于机盖联结凸缘的厚度。
钉杆端部要做成圆柱形,以免破坏螺纹.
F 位销:
为保证剖分式机体的轴承座孔的加工及装配精度,在机体联结凸缘的长度方向各安装一圆锥定位销,以提高定位精度.
G 吊钩:
在机盖上直接铸出吊钩和吊环,用以起吊或搬运较重的物体.
减速器机体结构尺寸如下:

名称 符号 计算公式 结果
箱座壁厚

10
箱盖壁厚

9
箱盖凸缘厚度

12
箱座凸缘厚度

15
箱座底凸缘厚度

25
地脚螺钉直径

M24
地脚螺钉数目
查手册 6
轴承旁联接螺栓直径

M12
机盖与机座联接螺栓直径
=(0.5~0.6)
M10
轴承端盖螺钉直径
=(0.4~0.5)
10
视孔盖螺钉直径
=(0.3~0.4)
8
定位销直径
=(0.7~0.8)
8
, , 至外机壁距离
查机械课程设计指导书表4 34
22
18
, 至凸缘边缘距离
查机械课程设计指导书表4 28
16
外机壁至轴承座端面距离
= + +(8~12)
50
大齿轮顶圆与内机壁距离
>1.2
15
齿轮端面与内机壁距离
>
10
机盖,机座肋厚

9 8.5

轴承端盖外径
+(5~5.5)
120(1轴)125(2轴)
150(3轴)
轴承旁联结螺栓距离

120(1轴)125(2轴)
150(3轴)
10. 润滑密封设计
对于二级圆柱齿轮减速器,因为传动装置属于轻型的,且传速较低,所以其速度远远小于 ,所以采用脂润滑,箱体内选用SH0357-92中的50号润滑,装至规定高度.
油的深度为H+
H=30 =34
所以H+ =30+34=64
其中油的粘度大,化学合成油,润滑效果好。
密封性来讲为了保证机盖与机座联接处密封,联接
凸缘应有足够的宽度,联接表面应精创,其表面粗度应为
密封的表面要经过刮研。而且,凸缘联接螺柱之间的距离不宜太
大,国150mm。并匀均布置,保证部分面处的密封性。
11.联轴器设计
1.类型选择.
为了隔离振动和冲击,选用弹性套柱销联轴器.
2.载荷计算.
公称转矩:T=9550 9550 333.5
查课本 ,选取
所以转矩
因为计算转矩小于联轴器公称转矩,所以
查《机械设计手册》
选取LT7型弹性套柱销联轴器其公称转矩为500Nm

『叁』 机械设计课程设计的目录

第一篇机械设计课程设计指导
第1章概述
1.1机械设计课程设计的目的
1.2机械设计课程设计的内容
1.3机械设计课程设计的步骤
1.4机械设计课程设计中应注意的问题
第2章机械传动装置的总体设计
2.1拟定传动方案
2.2选择电动机
2.3传动装置总传动比及其分配
2.4传动装置的运动和动力参数的计算
2.5设计计算示例
思考题
第3章传动零件的设计计算和联轴器的选择
3.1传动零件设计计算
3.2联轴器的选择
思考题
第4章减速器的构造、润滑及装配图设计
4.1减速器的构造
4.2减速器的润滑
4.3减速器装配图设计概述
4.4初步绘制减速器装配草图(第一阶段)
4.5轴系部件的结构设计(第二阶段)
4.6减速器箱体和附件设计(第三阶段)
4.7完成减速器装配工作图(第四阶段)
4.8圆锥齿轮减速器装配图设计的特点
4.9蜗杆减速器装配图设计的特点
思考题
第5章零件工作图设计
5.1轴类零件工作图
5.2齿轮类零件工作图
5.3箱体零件工作图
思考题
第6章编写设计计算说明书及答辩准备
6.1编写设计计算说明书
6.2设计计算说明书编写示例
6.3答辩准备
第7章减速器装配图常见错误示例
7.1减速器轴系结构设计中的错误示例
7.2减速器箱体和附件设计中的错误示例
第二篇简化画法、减速器零部件结构及参考图例
第8章常用规定画法、标注法和简化画法
8.1常用机构运动简图符号
8.2有关规定画法和标注法
8.3简化画法
第9章减速器零部件结构及尺寸
9.1传动零件的结构及其尺寸
9.2减速器箱体结构图例
9.3减速器附件
第10章参考图例
10.1减速器装配图示例
10.2零件工作图示例
第三篇课程设计常用标准及规范
第11章一般标准
第12章常用工程材料
第13章螺纹及紧固件
13.1螺纹
13.2螺纹零件的结构要素
13.3紧固件
第14章键连接和销连接
14.1键连接
14.2销连接
第15章滚动轴承
15.1常用滚动轴承
15.2滚动轴承的配合和游隙
第16章润滑与密封
16.1常用润滑油及选择
16.2常用润滑脂及选择
16.3润滑装置
16.4密封形式和密封件
第17章联轴器
第18章极限与配合、几何公差和表面粗糙度
18.1极限与配合
18.2几何公差
18.3表面粗糙度
第19章齿轮及蜗杆、蜗轮的精度
19.1渐开线圆柱齿轮的精度
19.2圆锥齿轮的精度
19.3圆柱蜗杆和蜗轮的精度
第20章电动机
第四篇设 计 作 业
第21章螺纹连接和螺旋传动设计作业
21.1螺纹连接结构设计
21.2滑动轴承座螺栓连接设计
21.3螺旋千斤顶设计
第22章机械传动和轴系部件设计作业
22.1V带传动设计
22.2轴系部件结构改错
22.3圆柱齿轮传动的轴系部件设计
参考文献

『肆』 机械运动方案设计主要包括哪些内容

齿轮传动,带传动,链传动,涡轮蜗杆传动,滚珠丝杠传动,气缸滑专轨滑动等等属

机械(英文名称:machinery)是指机器与机构的总称。机械就是能帮人们降低工作难度或省力的工具装置,像筷子、扫帚以及镊子一类的物品都可以被称为机械,他们是简单机械。而复杂机械就是由两种或两种以上的简单机械构成。通常把这些比较复杂的机械叫做机器。从结构和运动的观点来看,机构和机器并无区别,泛称为机械。
机械,源自于希腊语之Mechine及拉丁文Machina,原指"巧妙的设计",作为一般性的机械概念,可以追溯到古罗马时期,主要是为了区别与手工工具。现代中文之"机械"一词为机构为英语之(Mechanism)和机器(Machine)的总称。机械的特征有:机械是一种人为的实物构件的组合。机械各部分之间具有确定的相对运动。故机器能转换机械能或完成有用的机械功,是现代机械原理中的最基本的概念,中文机械的现代概念多源自日语之"机械"一词,日本的机械应用品对机械概念做如下定义(即符合下面三个特征称为机械Machine)。

『伍』 机械设计课程设计的内容简介

本书是按照应用型高等工科院校机械设计及机械设计基础课程的教学要求编写的,可供学习这两门课程及其课程设计时使用。
全书分为三篇及附录:第一篇,机械设计课程设计指导书,以常见的减速器为例,系统地介绍了机械传动装置的设计内容、步骤和方法;第二篇,机械设计常用标准和规范,介绍了课程设计常用标准、规范和资料;第三篇,参考图例;附录,给出了课程设计题目、设计思考题及设计计算示例,供教师和学生参考。
本书可作为应用型高等工科院校机械类、近机类和机电类等专业的教材,并可供有关工程技术人员参考。

『陆』 机械传动装置设计

如果转速很低,扭矩很大,即使只有8千瓦,模数3也并不算大。你再按照公式核算一遍,就可以确认自己的计算结果了。注意,如果输出的转速高,那扭矩就一定不大,模数就会小一些。

『柒』 机械设计基础课程设计指导书——设计输送机传动装置课程设计

给你做个参考
一、前言
(一)
设计目的:
通过本课程设计将学过的基础理论知识进行综合应用,培养结构设计,计算能力,熟悉一般的机械装置设计过程。
(二)
传动方案的分析
机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。
本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。
带传动承载能力较低,在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。
齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之一。本设计采用的是单级直齿轮传动。
减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成。
二、传动系统的参数设计
原始数据:运输带的工作拉力F=0.2 KN;带速V=2.0m/s;滚筒直径D=400mm(滚筒效率为0.96)。
工作条件:预定使用寿命8年,工作为二班工作制,载荷轻。
工作环境:室内灰尘较大,环境最高温度35°。
动力来源:电力,三相交流380/220伏。
1
、电动机选择
(1)、电动机类型的选择: Y系列三相异步电动机
(2)、电动机功率选择:
①传动装置的总效率:
=0.98×0.99 ×0.96×0.99×0.96
②工作机所需的输入功率:
因为 F=0.2 KN=0.2 KN= 1908N
=FV/1000η
=1908×2/1000×0.96
=3.975KW
③电动机的输出功率:
=3.975/0.87=4.488KW
使电动机的额定功率P =(1~1.3)P ,由查表得电动机的额定功率P = 5.5KW 。
⑶、确定电动机转速:
计算滚筒工作转速:
=(60×v)/(2π×D/2)
=(60×2)/(2π×0.2)
=96r/min
由推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’ =3~6。取V带传动比I’ =2~4,则总传动比理时范围为I’ =6~24。故电动机转速的可选范围为n’ =(6~24)×96=576~2304r/min
⑷、确定电动机型号
根据以上计算在这个范围内电动机的同步转速有1000r/min和1500r/min,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1500r/min ,根据所需的额定功率及同步转速确定电动机的型号为Y132S-4 ,满载转速 1440r/min 。
其主要性能:额定功率:5.5KW,满载转速1440r/min,额定转矩2.2,质量68kg。
2
、计算总传动比及分配各级的传动比
(1)、总传动比:i =1440/96=15
(2)、分配各级传动比:
根据指导书,取齿轮i =5(单级减速器i=3~6合理)
=15/5=3
3
、运动参数及动力参数计算
⑴、计算各轴转速(r/min)
=960r/min
=1440/3=480(r/min)
=480/5=96(r/min)
⑵计算各轴的功率(KW)
电动机的额定功率Pm=5.5KW
所以
P =5.5×0.98×0.99=4.354KW
=4.354×0.99×0.96 =4.138KW
=4.138×0.99×0.99=4.056KW
⑶计算各轴扭矩(N•mm)
TI=9550×PI/nI=9550×4.354/480=86.63N•m
=9550×4.138/96 =411.645N•m
=9550×4.056/96 =403.486N•m
三、传动零件的设计计算
(一)齿轮传动的设计计算
(1)选择齿轮材料及精度等级
考虑减速器传递功率不大,所以齿轮采用软齿面。小齿轮选用40Cr调质,齿面硬度为240~260HBS。大齿轮选用45#钢,调质,齿面硬度220HBS;根据指导书选7级精度。齿面精糙度R ≤1.6~3.2μm
(2)确定有关参数和系数如下:
传动比i
取小齿轮齿数Z =20。则大齿轮齿数:
=5×20=100
,所以取Z
实际传动比
i =101/20=5.05
传动比误差:(i -i)/I=(5.05-5)/5=1%<2.5% 可用
齿数比:
u=i
取模数:m=3 ;齿顶高系数h =1;径向间隙系数c =0.25;压力角 =20°;

h *m=3,h )m=3.75
h=(2 h )m=6.75,c= c
分度圆直径:d =×20mm=60mm
d =3×101mm=303mm
由指导书取
φ
齿宽:
b=φ =0.9×60mm=54mm
=60mm ,
b
齿顶圆直径:d )=66,
d
齿根圆直径:d )=52.5,
d )=295.5
基圆直径:
d cos =56.38,
d cos =284.73
(3)计算齿轮传动的中心矩a:
a=m/2(Z )=3/2(20+101)=181.5mm 液压绞车≈182mm
(二)轴的设计计算
1
、输入轴的设计计算
⑴、按扭矩初算轴径
选用45#调质,硬度217~255HBS
根据指导书并查表,取c=110
所以 d≥110 (4.354/480) 1/3mm=22.941mm
d=22.941×(1+5%)mm=24.08mm
∴选d=25mm
⑵、轴的结构设计
①轴上零件的定位,固定和装配
单级减速器中可将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,联接以平键作过渡配合固定,两轴承分别以轴肩和大筒定位,则采用过渡配合固定
②确定轴各段直径和长度
Ⅰ段:d =25mm
, L =(1.5~3)d ,所以长度取L
∵h=2c
c=1.5mm
+2h=25+2×2×1.5=31mm
考虑齿轮端面和箱体内壁,轴承端面和箱体内壁应有一定距离。取套筒长为20mm,通过密封盖轴段长应根据密封盖的宽度,并考虑联轴器和箱体外壁应有一定矩离而定,为此,取该段长为55mm,安装齿轮段长度应比轮毂宽度小2mm,故II段长:
L =(2+20+55)=77mm
III段直径:
初选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
=d=35mm,L =T=18.25mm,取L
Ⅳ段直径:
由手册得:c=1.5
h=2c=2×1.5=3mm
此段左面的滚动轴承的定位轴肩考虑,应便于轴承的拆卸,应按标准查取由手册得安装尺寸h=3.该段直径应取:d =(35+3×2)=41mm
因此将Ⅳ段设计成阶梯形,左段直径为41mm
+2h=35+2×3=41mm
长度与右面的套筒相同,即L
Ⅴ段直径:d =50mm. ,长度L =60mm
取L
由上述轴各段长度可算得轴支承跨距L=80mm
Ⅵ段直径:d =41mm, L
Ⅶ段直径:d =35mm, L <L3,取L
2
、输出轴的设计计算
⑴、按扭矩初算轴径
选用45#调质钢,硬度(217~255HBS)
根据课本P235页式(10-2),表(10-2)取c=110
=110× (2.168/76.4) =38.57mm
考虑有键槽,将直径增大5%,则
d=38.57×(1+5%)mm=40.4985mm
∴取d=42mm
⑵、轴的结构设计
①轴的零件定位,固定和装配
单级减速器中,可以将齿轮安排在箱体中央,相对两轴承对称分布,齿轮左面用轴肩定位,右面用套筒轴向定位,周向定位采用键和过渡配合,两轴承分别以轴承肩和套筒定位,周向定位则用过渡配合或过盈配合,轴呈阶状,左轴承从左面装入,齿轮套筒,右轴承和皮带轮依次从右面装入。
②确定轴的各段直径和长度
初选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm。考虑齿轮端面和箱体内壁,轴承端面与箱体内壁应有一定矩离,则取套筒长为20mm,则该段长42.755mm,安装齿轮段长度为轮毂宽度为2mm。

d =42mm
L
= 50mm
L
= 55mm
L
= 60mm
L
= 68mm
L
=55mm
L
四、滚动轴承的选择
1
、计算输入轴承
选用30207型角接触球轴承,其内径d为35mm,外径D为72mm,宽度T为18.25mm.
2
、计算输出轴承
选30211型角接球轴承,其内径d为55mm,外径D=100mm,宽度T为22.755mm
五、键联接的选择
1
、输出轴与带轮联接采用平键联接
键的类型及其尺寸选择:
带轮传动要求带轮与轴的对中性好,故选择C型平键联接。
根据轴径d =42mm ,L =65mm
查手册得,选用C型平键,得: 卷扬机
装配图中22号零件选用GB1096-79系列的键12×56
则查得:键宽b=12,键高h=8,因轴长L =65,故取键长L=56
2
、输出轴与齿轮联接用平键联接
=60mm,L
查手册得,选用C型平键,得:
装配图中 赫格隆36号零件选用GB1096-79系列的键18×45
则查得:键宽b=18,键高h=11,因轴长L =53,故取键长L=45
3
、输入轴与带轮联接采用平键联接
=25mm
L
查手册
选A型平键,得:
装配图中29号零件选用GB1096-79系列的键8×50
则查得:键宽b=8,键高h=7,因轴长L =62,故取键长L=50
4
、输出轴与齿轮联接用平键联接
=50mm
L
查手册
选A型平键,得:
装配图中26号零件选用GB1096-79系列的键14×49
则查得:键宽b=14,键高h=9,因轴长L =60,故取键长L=49
六、箱体、箱盖主要尺寸计算
箱体采用水平剖分式结构,采用HT200灰铸铁铸造而成。箱体主要尺寸计算如下:
七、轴承端盖
主要尺寸计算
轴承端盖:HT150 d3=8
n=6 b=10
八、减速器的
减速器的附件的设计
1
、挡圈 :GB886-86
查得:内径d=55,外径D=65,挡圈厚H=5,右肩轴直径D1≥58
2
、油标 :M12:d =6,h=28,a=10,b=6,c=4,D=20,D
3
、角螺塞
M18
×
1.5 :JB/ZQ4450-86
九、
设计参考资料目录
1、吴宗泽、罗圣国主编.机械设计课程设计手册.北京:高等教育出版社,1999.6
2、解兰昌等编著.紧密仪器仪表机构设计.杭州:浙江大学出版社,1997.11

『捌』 带式输送机传动装置(机械设计课程设计)

一)选择电抄动机袭1。选择电动机容量 P=FV/η P=4000*2/η η是带式输送机的效率,你没写出来。2。选取电动机额定功率 查表3。确定电动机转速 n=60V/πD n=60*2*1000/π*450 毫米转化米/1000 然后查表。二)计算传动装置的总传动比并分配各级传动比。总传动比等于电动机转速除以n。 分配有:动机道减速箱,动力轴道中间轴,间轴道输出轴 。 开始的就这么多了。我打字好慢的,累的不行了 呵呵

『玖』 机械设计基础课程设计的内容简介

《机械设计基础课程设计》是与《机械设计基础》(曾宗福主编)配套使用的课程设计教材,根据《机械设计基础》课程的教学基本要求编写,并充分考虑了我国高等职业教育发展的实际情况,重在讲清设计的思路和方法,并把相关的知识点联系起来,加强了机械传动装置设计方案的基本训练和设计方法的基本训练。《机械设计基础课程设计》适用于高等职业技术学院、高等专科学校和普通本科院校举办的二级职业技术学院机械类、机电类和近机械类各专业。

『拾』 机械设计课程设计---设计带式输送机传动装置

参考:

可伸缩胶带输送机与普通胶带输送机的工作原理一样,是以胶带作为牵引承载机的连续运输设备,它与普通胶带输送机相比增加了储带装置和收放胶带装置等,当游动小车向机尾一端移动时,胶带进入储带装置内,机尾回缩;反之则机尾延伸,因而使输送机具有可伸缩的性能。

结构概述

伸缩胶带输送机分为固定部分和非固定部分两大部分。固定部分由机头传动装置、储带装置、收放胶带装置等组成;非固定部分由无螺栓连接的快速可拆支架、机尾等组成。

1、 机头传动装置由传动卷筒、减速器、液力联轴器、机架、卸载滚筒、清扫器组成。

n 机头传动装置是整个输送机的驱动部分,两台电机通过液力联轴器、减速器分别传递转距给两个传动滚筒(也可以用两个齿轮串联起来传动)。用齿轮传动时,应卸下一组电机、液力联轴器和减速器。

n 液力联轴器为YL-400型,它由泵轮、透平轮、外壳、从动轴等构成,其特点是泵轮侧有一辅助室,电机启动后,液流透过小孔进入工作室,因而能使负载比较平衡地启动而电机则按近于坚载启动,工作时壳体内加20号机械油,充油量为14m3,减速器采用上级齿轮减速,第一级为圆弧锥齿轮,第二、第三级为斜齿和直齿圆柱齿轮,总传动比为25.564,与SGW-620/40T型刮板输送机可通用互换,减速器用螺栓直接与机架连接。

n 传动卷筒为焊接结构,外径为Φ500毫米,卷筒表面有特制的硫化胶层,因此对提高胶带与滚筒的eua值,防止打滑、减少初张力,具有较好的效果。

n 卸载端和头部清扫器,带式逆止器,便于卸载,机头最前部有外伸的卸载臂,由卸载滚筒和伸出架组成,滚筒安装在伸出架上,其轴线位置可通过轴承两侧的螺栓进行调节,以调整胶带在机头部的跑偏,在卸载滚筒的下部装有两道清扫器,由于清扫器刮板紧压在胶带上,故可除去粘附着的碎煤,带式逆止器以防止停车时胶带倒转。

n 机架为焊接结构,用螺栓组装,机头传动装置所有的零部件均安装在机架上。电动机和减速器可根据具体情况安装在机架的左侧或右侧。

2、 储带装置包括储带转向架、储带仓架、换向滚筒、托辊小车、游动小车、张紧装置、张紧绞车等。

n 储带装置的骨架由框架和支架用螺栓连接而成,在机头传动装置两具转框架上装有三个固定换向滚筒与游动小车上的两个换向滚筒一起供胶带在储带装置中往复导向,架子上面安装固定槽形托辊和平托辊,以支撑胶带,架子内侧有轨道,供托辊不画和游动小车行走。

n 固定换向滚筒为定轴式,用于储带装置进行储带时,用以主承胶带,使其悬垂度不致过大,托辊小车随游动小车位置的变动,需要用人力拉出或退回。

n 游动小车由车架、换向滚筒、滑轮组、车轮等组成,滑轮组装在车身后都与另一滑轮组相适应,其位置可保证受力时车身不被抬起,这样,对保持车身稳定,防止换向滚筒上的胶带跑偏效果较好,车身下部还装着止爬钩,用以防止车轮脱轨掉道。

n 游动小车向左侧移动时,胶带放出,机身伸长,游动小车向右侧移动时,胶带储存,机身缩短,通过钢丝绳拉紧游动小车可使胶带得到适当的张紧度。

n 在储带装置的后部,设有张紧绞车,胶带张力指示器和张力缓冲器,张力缓冲器的作用是使输送机(在起动时让胶带始终保持一定的张力,以减少空载胶带的不适度和胶带层间的拍打)。

3、 收放胶带装置位于张紧绞车的后部,它由机架、调心托辊、减速器、电动机、旋杆等组成,其作用是将胶带增补到输送机机身上或从输送机机身取下,机架的两端和后端,各装一旋杆,当增加或减少胶带时用以夹紧主胶带,调心托辊组供卷筒收放胶带时导向,工作时将卷筒推进机架的一端用尾架顶起,另一端顶在减速器出轴的顶尖上,开动电动机通过减速器出轴的拨盘带动卷筒,收卷胶带,放出胶带,放出胶带时不开电机由外拖动卷筒反转,在不工作时活动轨可用插销挂在机架上,以缩小宽度,在活动轨上方应设置起重装置悬吊卷筒,巷道宽度可视具体情况适当拓宽,以利胶带收入时操作。

4、 中间架由无螺栓连接的快速可拆支架,由H型支架、钢管、平托辊和挂钩式槽形托辊、“V”型托辊等组成,是机器的非固定部分,钢管可作为拆卸的机身,用柱销固装在钢管上,用小锤可以打动,挂钩式槽形托辊胶接式,槽形角30°,用挂钩挂在钢管的柱销上,挂钩上制动的圆弧齿槽,托辊就是通过齿槽挂在柱销上的,可向前向后移动,以调节托辊位置控制胶带跑偏。

5、 上料装置、下料装置;上料装置安装在收放装置后边,由转向转导向接上料段,运送的物料从此段装上运至下料段,下料装置由下料段一组斜托辊将物料卸下,下料段直接极为,机尾由导轨(Ⅰ、Ⅱ、Ⅲ)和机尾滚筒座组成,导轨一端用螺栓固定在中支座上,并与另一导轨的前端用柱销胶接,藉以适应底板的不平,机尾滚筒与储带装置中的滚筒结构相同,能互换,其轴线位置可用螺栓调节,以调整胶带中在机尾的跑偏,机尾滚筒前端设有刮煤板,可使滚筒表面的碎煤或粉煤刮下,并收集泥槽中,用特制的拉泥板取出,机尾加上装有缓冲托辊组,受料时,可降低块煤对胶带的冲击,有利于提高胶带寿命

阅读全文

与机械传动装置设计的内容相关的资料

热点内容
橡胶套制作传动装置 浏览:545
泰安轴承多少钱 浏览:793
上海得淋电动工具配件 浏览:714
仪表盘出来蓝色油箱是什么意思 浏览:129
外径75的轴承有什么型号 浏览:146
省力搬运设备哪个好 浏览:731
江苏轴承油多少钱 浏览:757
做什么仪器能查出脂肪瘤 浏览:885
阀门上的s和o代表什么 浏览:86
商场消防器材放哪里 浏览:872
枪管为什么不能铸造 浏览:754
建材公司设备有哪些 浏览:774
管道防护密闭阀门图片 浏览:225
准速器材是什么意思 浏览:52
泡脚仪器泡出黄褐色水是什么原因 浏览:195
进口德国电动工具代理 浏览:321
机械图上的尺寸代表什么 浏览:624
江西电动工具铝压铸件 浏览:378
制乙烯的实验装置图常见错误 浏览:827
四轴机械手指的是什么样的 浏览:687