导航:首页 > 装置知识 > 废水湿式氧化小实验装置

废水湿式氧化小实验装置

发布时间:2022-06-27 14:35:10

1. 实验室污水一般使用什么试剂处理

实验室废水含有酸、碱、有机污染物、重金属离子、病原微生物,PH 值变化幅度大内,COD 浓度高,主要分容为三大类:
1、有机废水:主要来源是实验试剂、溶剂;
2、无机废水:主要来源是酸碱试剂、重金属试剂;
3、生物致病废水:主要来源是微生物培养、血液生化实验,血站、疾控中心等。
实验室废水处理比较成熟的方法及设备
1、重金属混凝共沉工艺:去除重金属、悬浮物、色度;
2、PH自动调节工艺:酸碱废水自动调节PH值;
3、臭氧氧化消毒工艺:有机废水降解、去除COD、杀灭大肠杆菌;
4、医疗废水按要求还要投二氧化氯;
5、实验室废水处理净化装置:一体化组合工艺处理,全自动运行。
以上源自:瑞美迪官网,如有疑问,请咨询。

2. 实验室废水处理方法和装置有哪些

实验室废水有很多种下面我详细的说一下

详细的可以看水天蓝环保里面有详细的解答

3. 农药废水的农药废水处理方法

光催化法
锐钛型的TiO2 在紫外光的照射下能产生氧化性极强的羟基自由基,能够氧化降解有机物,使其转化为CO2、H2O以及无机物,降解速度快,无二次污染,为降解处理农药废水提供了新思路 。对于光催化降解有机物目前关注的问题,一方面是降解过程中的影响因素和降解过程的转化问题 ,对纳米TiO2 的固载化和反应分离一体化成为光催化领域中具有挑战性的课题之一,另一方面是提高制备催化剂催化效率的问题。
陈士夫等在玻璃纤维、玻璃珠、玻璃片上负载TiO2 薄膜光催化剂,并用于有机磷农药的降解,取得了满意的结果。梁喜珍通过研究TiO2 光催化降解有机磷农药乐果废水的影响因素,获得了适宜的工艺条件。潘健民通过对纳米TiO2 及其复合材料光催化降解有机磷农药进行的研究,分析了在不同催化剂、不同浓度AgNO3 浸渍、不同实验装置条件下的光催化降解效果,说明TiO2 表面担载微量的Ag后,不仅能提高纳米TiO2 催化活性,而且有较好的絮凝作用,使TiO2 与处理后的水易分离,后处理更方便。葛湘锋研究发现光催化降解在一定条件下符合零级动力学反应模式,而且反应速率常数和反应物起始浓度也呈线形关系,当反应物浓度增长过快达到一定值时,其反应速率常数明显下降,反应物浓度过高时,则降解反应不再符合零级反应。
目前采用的光催化体系多为高压灯、高压氙灯、黑光灯、紫外线杀菌灯等光源,能量消耗大。若能对纳米TiO2 进行有效、稳定地敏化,扩展其吸收光谱范围,能以太阳光直接作为光源, 则将大大降低成本。
超声波技术
超声波是频率大于20 kHz的声波,超声波诱导降解有机物的原理是在超声波的作用下液体产生空化作用,即在超声波负压相作用下,产生一些极端条件使有机物发生化学键断裂、水相燃烧、高温分解 或自由基反应。
钟爱国等研究表明,在甲胺磷浓度为1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、温度30 ℃、Fe2 + >50 mg·L - 1、充O2 至饱和的条件下,用低频超声波(80W·cm- 2 )连续辐照120 min,甲胺磷去除率达到99. 3% ,乙酰甲胺磷的去除率达到99. 9%。孙红杰等研究了各种因素超声波频率、功率、声强、变幅杆直径和溶液初始pH等对超声降解甲胺磷农药废水的影响。Kotronarou等得出对硫磷在超声条件下可以被完全降解为PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反应温度为20 ℃、pH为7. 4时,对硫磷无催化水解半衰期为108 d,其有毒代谢产物对氧磷水解半衰期为144 d。Cristina等对马拉磷农药在超声波辐射下, 82μmol·L - 1的马拉磷溶液30 min内pH从6下降到4, 2 h内所有的马拉磷全部降解,产物均为无机小分子。
蒋永生、傅敏等报道了用超声波降解模拟废水中低浓度乐果的试验表明,辐射时间延长,降解率增加,加入H2O2 可明显提高乐果的降解率,在溶液初始浓度较低的范围内,降解速率随浓度增大而加快,
浓度增大到一定值后,降解速率变化不明显,超声降解时溶液温度控制在15~60 ℃为宜。谢冰等对久效磷和亚磷酸三甲酯生产过程中产生的废水进行了超声气浮预处理,可降低其COD和毒性,提高其可生化性,再经以光合细菌为主的生化处理,可使其COD降至200 mg·L - 1。
王宏青等研究表明: 灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢; Fe2 +和H2O2 对降解有促进作用,且Fe2 +促进作用比H2O2 的大;采用不同气体饱和溶液时,降解率的大小顺序为Ar >O2 >Air >N2。红外光谱表明降解产物为SO42 - 、NO3- 和CO2。
目前有关超声辐射降解有机污染物的研究,大多属于实验室研究,还缺乏系统的研究,更缺少中试数据。
生物法
在国内,农药厂家大多建有生化处理装置,但目前几乎没有一家能够获得理想的处理效果。因此,对这类废水的生化处理研究是十分必要的。已有大量研究表明真菌、细菌、藻类等微生物对有农药有很好的降解作用。
程洁红从土壤中分离得到以多菌灵生产农药废水为惟一碳源生长的13株菌,经鉴定为假单胞菌属( Pseudom onas sp. ) ,研究了SBR 工艺运行的最佳条件,所筛选的菌株对多菌灵农药废水的COD去除率为52. 3%。张德咏,谭新球从生产甲胺磷农药的废水中筛选具有促生活性及可降解甲胺磷的光合细菌菌株, 培养后第7 d, 该菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,乐果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,该菌株也能够以三唑磷、辛硫磷作为惟一碳源生长。
生物膜法将微生物细胞固定在填料上,微生物附着于填料生长、繁殖,在其上形成膜状生物污泥。与常规的活性污泥法相比,生物膜具有生物体积浓度大、存活世代长、微生物种类繁多等优点,尤其适宜于特种菌在废水体系中的应用。王军、刘宝章利用半软性填料进行挂膜,处理菊酯类、杂环类综合农药废水。当进水CODCr为6 810、3 130、1 890mg·L - 1时,经过24 h的作用,细菌膜对CODCr的降解率分别达到24. 8%、43. 5%、53. 4%。
电解法
铁炭微电解法是絮凝、吸附、架桥、卷扫、共沉、电沉积、电化学还原等多种作用综合效应的结果,能有效地去除污染物提高废水的可生化性。新产生的铁表面及反应中产生的大量初生态的Fe2 +和原子H具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环;微电池电极周围的电场效应也能使溶液中的带电离子和胶体附集并沉积在电极上而除去;另外反应产生的Fe2 + 、Fe3 +及 其水合物具有强烈的吸附絮凝活性,能进一步提高处理效果。
雍文彬采用铁屑微电解法能有效去除农药生产废水中的COD、色度、As、氨氮、有机磷和总磷,去除率分别可达76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。张树艳采用铁炭微电解法对几种农药配水进行处理,试验结果表明,最佳反应条件下,废水的CODC r 去除率都可达67%以上;最佳反应条件:铁/水比为(0. 25~0. 375) ∶1,铁/炭比为( 1~3) ∶1, pH3~4,反应时间1~1. 5 h。废水经微电解处理,然后进行Fenton试剂氧化,则微电解出水中Fe2 + 可作为Fenton的铁源,且微电 解时有机污染物的初级降解也有利于后续Fenton反应的进行。吴慧芳采用微电解和Fenton试剂氧化两种物化手段对菊酯、氯苯BOD5 /CODCr = 0. 03)和对邻硝氯苯(BOD5 /CODCr = 0. 05) 3种废水按比例配制而成的综合农药废水进行预处理,结果表明:在废水pH为2~2. 5时,经微电解处理后,BOD5 /CODCr比值达0. 45以上,可生化性提高; Fenton试剂对综合农药废水CODCr去除率为60%左右,色度去除率接近100%。刘占孟以活性炭-纳米二氧化钛为电催化剂,对甲胺磷溶液的电催化氧化降解规律进行研究表明,该工艺能有效去除废水中的有机物,纳米二氧化钛催化剂的催化效果显著。电解效果随着电解时间的延长、催化剂的增加而升高,低pH有利于电催化氧化过程中H2O2 和·OH 的生成。王永广采用电解/UASB /SBR工艺处理生化性差、氯离子浓度高的氟磺胺草醚农药废水。设计电流密度取30. 0 A·m- 2 ,该工程的电费为2. 30 元·m- 3 ,药剂费为0. 30 元·m- 3 ,人工费为1. 50元·m- 3 ,运行成本为4. 10元·m- 3 , COD去除率> 97%。
氧化法
深度氧化技术(AOPs)可通过氧化剂的组合产生具有高度氧化活性的·OH,被认为是处理难降解有机污染物的最佳技术。
引入紫外线、双氧水联合作用和调控反应体系pH,可进一步提高臭氧深度氧化法的效率。陈爱因研究表明,紫外光催化臭氧化降解农药2, 4-二氯苯氧乙酸(2, 4- D)废水成效显著,臭氧/紫外(UV)深度氧化法(比较单独臭氧化、臭氧/紫外、臭氧/双氧水、臭氧/双氧水/紫外4种臭氧化过程)是最好的臭氧化处理方法。2, 4- D 200 mg·L - 1的水样,反应30min, 2, 4- D降解完全, 75 min时矿化率达75%以上。碱性反应氛围有利于臭氧化反应进行。双氧水的引入对2, 4- D降解无明显促进作用,这是因为双氧水分解消耗OH- ,没有缓冲的反应体系pH降低,限制了双氧水的分解和·OH自由基链反应。表明添加H2O2 对光解效果有一定改善作用,投加量达到75 mg·L - 1时,水样的COD去除率由零投加时的20%提高到40% ,但过量投加对处理效果没有进一步促进作用。曝气能促进光解效果,特别对UV /Fenton工艺作用更为显著,光解水样2 h后,曝气条件下的COD 去除率可从不曝气条件下的30%提高到80%。
催化湿式氧化能实现有机污染物的高效降解,同时可以大大降低反应的温度和压力,为高浓度难生物降解的有机废水的处理提供了一种高效的新型技术。催化剂是催化湿式氧化的核心,诸多学者致力于研究开发新型高效的催化剂。韩利华等以Cu和Ce为活性组分,制备了Cu /Ce复合金属氧化物,比较了均相-多相催化剂的催化性能。韩玉英在催化湿式氧化法处理吡虫啉农药废水中,分别用硝酸亚铈和硝酸铜作催化剂,反应一定时间后COD去除率分别达到80%和95. 5%。用硝酸铜作催化剂处理吡虫啉农药废水具有较高的活性,但Cu2 + 有较高的溶出量。张翼、马军在废水中加入2种自制的催化剂,结果表明,只用臭氧处理的情况下7 d后有机磷的去除率为78. 03%; 在催化剂A 存在下, 去除率可达93. 85%;在催化剂B存在下,去除率可达为88. 35%。在室温和中性介质中均属于一级反应。ClO2 是一种强氧化剂,碱性条件下氰根(CN- )先被氧化为氯酸盐,氯酸盐进一步被氧化为碳酸盐和氮气,从而彻底消除氰化物毒性。陈莉荣将含氰农药废水空气吹脱除氨后,采用ClO2 作为氰化物的氧化剂,氰化物浓度为60~80 mg·L - 1 , pH为11. 5左右时,按ClO2 ∶CN- ≥3. 5 (质量比)投药,氰化物的去除率达97%以上,氧化后废水经生物处理系统进一步处理后各项指标都能达排放标准要求。

4. 湿式氧化法的概述

PACT系统已在多种废水处理中得到应用:
■ 市政污水
■ 市政与工业综合废水
■ 工业废水
■ 有害废水
■ 垃圾渗滤液
■ 受污染地下水和受污染地表水
以下是PACT®系统有代表性的应用及性能表现:
有机化合物废水 PACT®系统用于多种有机化合物、塑料、合成纤维、溶剂、染料和杀虫剂生产场地的预处理和直接排放。路易斯安那的一个专业化工厂使用两级好氧PACT®系统,其处理后的污水符合排入密西西比河的有机物和污水毒性要求。
杀虫剂生产废水 有一工厂的废水中含有19种杀虫剂,浓度超过3400 ppm, 用PACT®系统进行处理,PACT®对化学需氧量(COD)的去除率达到99%以上,杀虫剂总量减少99.8%。受污染地下水 PAC T®系统已在受污染地下水的处理中得到应用, 且效果良好。在加州洛杉矶市附近有一个PACT ®批处理系统,受当地一家移动家庭用品和油漆生产厂家污染的地下水,经该系统处理后COD和BO D含量降低99%以上。垃圾渗滤液 随着垃圾掩埋场管理规定日益严格, PACT®系统更多地用于处理市政固体废料和有害垃圾掩埋场产生的渗滤液。加州洛杉矶市附近有一个有害物和市政垃圾掩埋场, 当地对比其它处理系统评估后认为PACT®系统成本最低、土地用量最少、处理稳定性最好,于19 88年安装了该系统。
炼油厂和石化厂废水 PACT®系统正日益用于炼油废水和石化厂废水处理。美国和其它各地有多家精炼厂和石油化工厂,正日益使用PACT®系统满足多项法规要求,包括生物测定、有机物和化学需氧量(COD),或用于废水回用。中试和处理试验
为充分发挥PACT ® 系统的灵活性,我们提供整套中试和废水可处理性试验。我们可根据您的废水处理需求,设计具体的试验计划。废水处理性试验设备包括实验室规模的和中试规模的,前者在我们位于威斯康辛州的试验室进行,中试则在用户现场进行。可移动的PACT®系统中试可以包括活性炭再生也可以不包括活性炭再生。试验可包括各种生物处理模式:好氧工艺、厌氧工艺,单级或双级。
我们的分析实验室可为上述实验提供强有力的支持。我们的实验室是全美国在分析工业、市政和有害污水、给水和污泥等方面配备最好的实验室之一。另外,我们还拥有一个正式获得RCRA许可的样本处理、贮存和处置(TS D )设施,可处理和贮存各种样本。(RCRA:资源保护与修复法案)我们拥有对各种废水进行可处理性试验的多年经验。西门子水处理技术部可跟您一起检测您的污水、进行概念设计,并设计出一个性价比合算的处理方案, 确保您的废水处理能够符合环境管理规定。我们的经验保证了处理方案的设计从实验室或
中试规模到生产性规模的可靠发展。
PACT®系统目前已在世界各地广泛应用, 帮助用户满足以下要求:
■ 有机化学物品、塑料和合成纤维(OCPSF)生产排放物规定。
■ RCRA土地保护规定,该规定禁止土地用于处置污水,要求处理垃圾渗滤液和受污染地下水。
■ 针对排放水的严格的生物活体鉴定标准
■ 针对排入饮用水源地的工业废水的处理规定
■ 针对排入自然水体的各种污水的严格的COD和总氮控制标准
PA C T® 系统可用于改造和新建项目,从日处理能力为2 0~400立方米的工厂预制设备,到日处理量达4 000立方米的现场安装设备, 以及根据客户要求专门设计的日处理量高达20万立方米的大型系统,均可提供。并且可以是单级系统和双级系统、连续处理或批处理系统。PACT ®系统的客户可以享受到该技术长达3 0多年的技术经验、中试技能和工程设计等专业知识。
系统运行
PACT®系统使用的粉末活性炭是直接投加到厌氧或好氧生物处理过程中的,物理吸附和生物代谢过程同时进行,协同作用。活性炭能够“缓冲” 废水中有毒有机物的毒性从而减轻其对生物系统的不利影响。好氧PACT®系统中,进水流入一个曝气池,粉末炭也加入曝气池, 形成一定比例的混合悬浮固体。曝气反应之后,已得到处理的废水和粉末炭混合泥浆进入二次沉淀池进行固液分离。
厌氧PACT®系统中,在废水进入厌氧反应器之前就跟投加的粉末炭混合,粉末炭和生物协同作用,一部分炭粉和生物固体进入污泥处理程序。具体的处理方法要根据污泥量、处理费用和炭的用量等因素进行选择。废弃污泥可以进行脱水处理,或泵送至湿式空气氧化设备, 在该装置内炭得到再生并销毁生物污泥。湿式空气再生设备可自热运行,无需外来热源。活性炭得到回收,生物污泥得以消解,基本不用再进行污泥二次处理或处置。
PACT系统的主要功能就是将悬浮性、胶质性以及溶解性的污染物转化成町降解的粉末活性炭生物胶体,促进污泥沉降,增加溶解性有机物、色度、毒性物质、重金属的去除率。相关文献显示¨q1,其不仅保持了传统活性污泥法的优点,同时也由于活性炭吸附剂的加入而大幅度提升了有机、无机污染物的去除率。对于医药、电镀、食品、表面涂装、石化、垃圾渗滤液、印染等废水都有很好的去除效果。wao湿式氧化再生)系统主要包括高压泵、空压机、热交换器、加热锅炉、DSE(differential speed elutriation,差速分离)除灰系统。工艺可在高温高压下,使废水或污泥中的高浓度有机物质和毒性物质氧化分解。高温的目的在于使氧化反应得以加速进行,而高压状态则是为了维持液相的存在。剩余污泥经重力浓缩池送入WAO系统再生活性炭,炭所吸附的有机物在高温高压下被分解,再生炭送至储槽再回流至曝气池,一部分则送至排灰槽排灰。再生过程的控制重点是压力、温度、高压空气以及灰分的排除。本系统最佳工艺条件:温度为2300C,时间为1 h,充氧量P=0.6 MPa。进入WAR系统的炭泥浓度>7%,悬浮固体量不得低于7%,以便提供WAO系统稳定的污泥量。 2.1 什么是PACT-WAO工艺系统实际上,活性污泥法有多种不同的分类方法,如按曝气的气源分类,可分为空气曝气、纯氧曝气;按曝气方式分类,可分为鼓风曝气、机械曝气等。 活性污泥法的各种工艺在运行过程中,最关键之处在于维持活性污泥的活性和凝聚性(沉淀性能)。而活性污泥的凝聚性能极易受进水水质和外界因素的影响,从而导致二沉池出水飘泥等异常现象。此时,在曝气池中投加粉末填料、混凝剂或其它化学药剂,往往会取得很好的效果,这就是所谓的“投料式”活性污泥法。其中以投加粉末填料为多,又称粉末活性污泥法。因粉末填料对进水有机物的吸附能力远远强于活性污泥,因此会产生粉末填料对进水有机物不断吸附、活性污泥微生物不断对粉末填料所吸附的有机物降解的现象。也因此,具有耐冲击负荷、提高难生物降解有机物去除能力、具有较好的脱色效果等特点。另外,该法尚具有改善活性污泥的沉淀性能、减少或抑制污泥膨胀等性能。PACT-WAO系统使用的粉末填料是直接投加到厌氧或好氧生物处理过程中的,物理吸附和生物代谢过程同时进行,协同作用。粉末填料能够“缓冲” 废水中有毒有机物的毒性从而减轻其对生物系统的不利影响。好氧PACT-WAO系统中,进水流入一个曝气池,粉末填料也加入曝气池, 形成一定比例的混合悬浮固体。曝气反应之后,已得到处理的废水和粉末填料混合泥浆进入二次沉淀池进行固液分离。厌氧PACT-WAO系统中,在废水进入厌氧反应器之前就跟投加的粉末填料混合,粉末填料和生物协同作用,产生高效率的处理效果。跟常规厌氧系统一样,本系统可回收甲烷,用作燃料,从而进一步提高能源效率。处理后, 一部分粉末填料和生物固体进入污泥处理程序。具体的处理方法要根据污泥量、处理费用和粉末填料的用量等因素进行选择。废弃污泥可以进行脱水处理,或泵送至粉末填料氧化设备。PACT-WAO系统是它是结合了传统的粉末填料-活性污泥法的诸多优点,并在适当的温度及压力水的液相氧化程序下,将过剩的生物污泥摧毁并氧化粉末填料生物污泥中吸附的污染物质流程与粉末填料-活性污泥法的有机结合,融为一体,藉以再生此废弃污泥回收再利用,从结构上取代传统的活性废水生物处理流程,并简化了污泥处理单元,无污染物排放的新型工艺。PACT-WAO系统是将待处理的物料置于密闭的容器中,在高温高压条件下通入空气或纯度较高的氧作为氧化剂,按湿式燃烧原理使污水中有机物降解。在该系统内粉末填料得到再生并销毁生物污泥,粉末填料再生设备可自热运行,无需外来热源。粉末填料得到回收,生物污泥得以消解,出水经过滤后可直接回用,即实现了水资源的充分利用,又实现了污泥的无害化处理,对于大型的市政污水处理厂和难降解的有机废水尤为适用。简单的讲,PACT-WAO工艺系统是指粉末填料生物处理系统与粉末填料再生系统的有机结合,并集两个系统的优势和互补。是一种在一定温度(170~300℃)和压力(1.0~10MPa)下,在填充有专用固定催化剂的反应容器中,利用氧气(空气)将各种废水及污泥中的有机物,氨氮化合物不经稀释,一次处理即可将高浓度工业有机废水中的COD、TOC,氨等污染物催化氧化进行深度分解处理(接触时间0.1~2.0h),使其转变为CO化物、N氧化物和水等无害成分,并同时脱色,除臭及杀菌消毒,从而达到净化处理废水的目的.该工艺不产生污泥,只有少量的清洗废液需单独处置。当达到一定处理规模时还可以进行能量回收。根据需要可以作为一个独立的废水处理系统,也可与常规活性污泥法和厌氧消化法组合使用达到所需排放标准,经处理达标的废水可以直接排放,也可以经过滤等处理后循环使用。该工艺有针对性的解决了污水处理厂剩余污泥处理的问题,完全实现了污泥无害化处理,并且能够处理各种难降解污染物,出水经过滤后可直接回用,最关键的是它在工艺过程中将有毒有害物质分解转化为无毒无害的二氧化碳和水,整个工艺系统只有少量的无机灰分排出,彻底的解决了污泥的二次污染问题。典型的PACT-WAO工艺系统流程2.2 pact-wao工艺系统进程在生化进水中(或在曝气池内)投加粉末填料与回流的污泥一起在曝气池内混合,从污泥浓缩池中排出的剩余污泥进污泥脱水装置。在曝气池内,活性污泥附着于粉末填料的表面,由于粉末填料巨大的比表面积及其很强的吸附能力,提高了污泥的吸附能力,特别在活性污泥与粉末填料界面之间的溶解氧和降解基质浓度有了很大幅度的提高,从而也提高了COD的降解去除率。一般来说在粉末填料系统内,吸附处理COD的动态吸附容量在100-350%(重量百分比),即一公斤粉末填料可吸附去除1.0-3.5公斤COD。而且,粉末填料法能处理生物难以降解的有毒有害的有机污染物质。根据经验,直接在SBR好氧生化池内定期(每15-30天)定量投加粉末填料可以获得很好的处理效果。其实粉末填料和颗粒填料的吸附处理机理是一样的,不过在在SBR生化池内投加粉末填料更具有以下几个优点:1、 节约投资成本2、 操作灵活方便3、 粉末填料利用率高4、 可避免填料滋长生物膜导致堵塞,影响出水速率的缺点:在PACT-WAO系统中,活性污泥附着于粉末填料的表面,由于粉末填料巨大的比表面积及其较强的吸附能力,在活性污泥与粉末填料界面间的溶解氧和降解基质浓度有了很大幅度的提高,从而也提高了COD的降解去除率。一般来说,COD的去除(视废水的种类)可以提高10-40%; 5、 由于废水中的有毒有害有机物质被粉末填料所吸附,因此废水中有毒 有害物质的浓度可以稳定在一个较低的水平,从而保证了生化处理系统的正常运行;6、 对于防止氨氮指标反弹,保证出水氨氮指标达标具有很好的效果。7、 粉末填料氧化是在高温、高压下,利用氧化剂将废水中的有机物氧化成二氧化碳和水,从而达到去除污染物的目的。与常规方法相比,具有适用范围广,处理效率高,极少有二次污染,氧化速率快,可回收能量及有用物科等特点。从PACT-WAO系统引出的经使用过的含有粉末填料的污泥经重力浓缩,以粉末填料浆形式被泵送通过PACT-WAO系统的热交换器,然后进入反应器中。其间有压缩空气被通入填料浆之中。在反应器内发生放热反应,当有机物被氧化时释放出热量。有机物被氧化,粉末填料的表面则得到更新和再生。经过氧化反应之后的填料料浆从反应器排出的时候要通过热交换器回收热量,用于预热进料填料浆。随后,得到再生的粉末填料浆返回PACT-WAO系统。在整个过程中,有机物被消解,最终产物为二氧化碳、水和少量低分子量的有机物(主要是乙酸)。累积的灰分被排出系统之外,然后可以很方便地予以处置。在进料固体含量为6%-7%的情况下,PACT-WAO工艺通常为自持过程,不需要额外的辅助燃料。其操作优点有:● 较低的操作温度● 节能自热运行(热量自给自足)● 适用于各种处理规模● 全封闭,无有害气体外排● 低能耗、 低运行成本● 无需事先脱水● 不排放硫氧化物、氮氧化物和烟尘颗粒● 没有剩余污泥● 粉末填料回收率90%以上● 占地面积小● 产生的灰性质稳定,无浸出污染物●出水经过滤后可直接回用氧化处理单元示意图粉末填料氧化示意图具体过程简述如下:废水通过贮存罐由高压泵打入热交换器,与反应后的高温氧化液体换热,使温度上升到接近反应温度后进入反应器。反应所需的氧由压缩机打入反应器。在反应器内,废水中的有机物与氧发生放热反应,在较高温度下将废水中的有机物氧化成二氧化碳和水,或低级有机酸等中间产物。反应后气液混合物经分离器分离,液相经热交换器预热进料,回收热能。高温高压的尾气首先通过再沸器(如废热锅炉)产生蒸汽或经热交换器 预热锅炉进水,其冷凝水由第二分离器分离后通过循环泵再打入反应器,分离后的高压尾气送入透平机产生机械能或电能。因此,这一典型的工业化系统不但处理了废水,而且对能量进行逐级利用,减少了有效能量的损失,维持并补充氧化系统本身所需的能量。 一. pact-wao工艺系统应用目前,PACT-WAO系统的应用主要为以下几个方面:3.1 应用于各种规模市政污水处理厂PACT-WAO工艺可以大规模应用于城市污水处理,不仅技术先进,经济上亦可以接受,城市具有广泛的推广应用前景,对城市污水再生利用更具成本优势。pact-wao工艺系统的出水水质较好,经过滤或超滤系统后可直接回用,具有相当的优势,满足从各种规模市政污水处理厂的广泛需要。具体体现在如下几个方面:a) PACT-WAO工艺受进水水质的影响小PACT-WAO工艺针对市政污水的水质特性进行系统设计,其严谨的过程机理和可靠的控制手段可提供安全、卫生、稳定的出水保障。b) PACT-WAO工艺抗冲击负荷能力较传统处理工艺有较大的优势因其在厌氧或好氧生物处理过程中直接投加粉末填料,而粉末填料的强大比表面积具有极强的吸附性,与活性污泥的生化作用协同,可以大大的提高抗冲击负荷的能力,而市政污水的水量和水质具有极大地不稳定性,使用PACT-WAO工艺系统后,不但可以提高抗冲击负荷的能力,而且可以很大程度的缩小预处理中的调节池容量,从建厂投资阶段节省投资成本;c) 无剩余污泥外排活性污泥是二级污水处理厂处理过程的必然产物,它的数量一般占总处理污水量的0.5%~1% 。而它的处理费用却占污水处理厂总运行费用40%--50% 。随着现代化城市的日益发展,各种废水的排放量迅速递增,使城市污水厂的污水处理趋向中型和大型化的集中处理,而如何使伴随污水处理而产生的大量活性污泥得到合理有效的处理,对于水处理工作者而言,具有重要的现实意义。与传统再生水生产工艺相比,PACT-WAO工艺系统无剩余污泥外排,仅有少量的无机灰分排出,完全解决了污泥二次污染带来的负面作用和减少了污泥处置的大部分成本;对于改善环境,提升污水处理厂的形象和周边环境具有深远的意义;PACT-WAO工艺法在处理高浓度有机废水方面已受到了广泛重视并有了长足的发展,考虑到活性污泥从物质结构方面与高浓度有机废水十分相似,因此,若将该技术成功运用于城市污水厂活性污泥的处理,将会具有广泛的应用前景。针对PACT-WAO工艺系统处理剩余污泥,可以在新建的污水处理厂设计之初就将PACT-WAO工艺系统的设计理念考虑进去,可以大大的缩短工艺流程,并成功解决污泥二次污染的问题,对于非新建的污水处理厂,也可以在原有系统上适当改造,转变为PACT-WAO工艺系统。d) 无有毒有害气体排放整个PACT-WAO工艺系统无毒害气体外排,对市政污水厂的员工及周边居民的生态环境改善起到积极地作用,同时减少对对环境的影响;e) 具有操作灵活、占地面积小、运行成本低等优点PACT-WAO系统从设计之初就充分考虑到市政污水处理的特性,在操作运行、占地面积等方面进行集中优化,在操作运行方面调度灵活,易于根据市场需求优化配置和扩展工程规模。由于PACT-WAO工艺系统采用自热式再生,正常情况下无需外加能源,燃料是废填料泥中的生物和被吸附的有机物,只需要启动蒸汽,通过使用热交换器提高能量效率。同时,该系统无需污泥处理装置和除嗅装置,在运行成本上大大优于传统处理工艺。3.2 应用于石化行业废水当温度在204~316℃范围内,废水中烃类有机物及其卤化物的分解率达到或超过99%,甚至连一般化学氧化难以处理的氯代物如多氯联苯(PCB)、DDT等通过PACT-WAO工艺,毒性也降低了99%,大大提高了处理出水的可生化性,使得后续的生化处理能得以顺利进行。在温度为225~240℃,压力为6.5~7.5Mpa,停留时间为1~1.2h的条件下,有机磷去除率为93~95%,有机硫去除率为80~88%,未经回收甲醇,COD去除率为40~45% 。采用PACT-WAO工艺处理含酚废水具有较好的应用前景:出水处理效果稳定,可生化性好,不太高的进水浓度可以处理后直接排放;若进水浓度极高可以辅以生化法。 二. pact-wao工艺系统优势相比其他污水处理工艺及污泥处理流程,PACT-WAO工艺系统具有其独特的优势:4.1 无剩余污泥排放l 消除需处置的生物污泥;l 无剩余污泥排放,可同时去除生物污泥及污染物质;l 无污泥二次污染问题;l 污泥中的重金属被氧化为最高氧化态,成为稳定的无机灰份;4.2 无污染气体外排l 有机物被转化为CO2、NOX和H2O;l 无粉尘、氮氧化物及硫氧化物排放;l 与传统污水处理工艺比较,无有害气体外排;l 由于粉末填料的吸附特征,高度挥发性的混合物被留在系统里,并最后被生物处理;l 臭气不会在曝气过程中逸散出来,无需增设除嗅单元;4.3 出水水质好l 可处理各种高浓度有机废水和有毒有害废水l PACT-WAO 系统可有效控制出水的色度和嗅味,l 出水水质经过滤后直接达到回用水水质要求;l 与膜生物反应器不同的是,pact-wao系统还能够有效去除不可生物降解的可溶性有机物;l 有效的去除污水中的氨氮;4.4 工艺流程简洁,管理运行方便,运行费用低l 取代传统的生物处理+活性炭吸附+污泥处理+除臭;l 粉末填料属液相再生,固体物不需要脱水;l 无污染气体外排,不需增设除嗅单元;l PACT-WAO 系统所用粉末填料使生物系统更加稳定,更抗干扰和冲击;l 不会遇到颗粒填料滤池通常所要求的预处理(粗滤)和常见的板结等问题;l 高度的系统灵活性:通过对粉末的投加量、粉末的种类、活性污泥的浓度和粉末的投加点的选择来保障工艺的最优化和灵活性,针对性的处理各种不同特性的废水;l 操作的灵活性:PACT-WAO系统可提供最大的操作灵活性,仅仅是粉末的使用量取决于废水水质的变化和排放或回用的要求;l 污泥无需脱水可直接进行再生,减少新鲜填料的投加量,降低运行费用;l 无剩余污泥的处理费用,粉末填料再生可大幅降低系统的投加量加及污泥处置成本;l 无除嗅单元,降低投资和运行成本;l PACT-WAO 系统与颗粒填料系统相比,填料用量要少得多;l 粉末填料比颗粒填料的价格低;l 自热式的再生,减少能耗:燃料是废活性填料中的生物和被吸附的有机物,只需要启动蒸汽,通过使用热交换器提高能量效率。

5. 废水处理的高级氧化技术怎么样

化学氧化法
化学氧化法是利用化学氧化剂的强氧化性,将废水中的无机物和有机物彻底氧化成无毒的小分子物质或气体,从而达到处理的目的。化学氧化法可以去除废水中的绝大多数有机污染物和某些无机物。常见的化学氧化剂为O3、H2O2、ClO2、KMnO4和K2FeO4等。这些氧化剂通常情况下都是强氧化剂,在酸性和碱性溶液中可以氧化多种有机污染物。特别是可溶性Fe2+和H2O2按一定的比例混合所组成的芬顿(Fenton)试剂,能氧化许多有机物,且操作不需要高温高压,处理效果好,但存在一些难以克服的弱点。目前,化学氧化法所需的费用还较高,仅用于饮用水处理、特种工业用水处理、有毒有害高浓度有机废水的处理以及以回用为目的的废水深度处理等。
化学催化氧化法是在传统的湿式氧化处理工艺中,加入适宜的催化剂以降低反应所需的温度与压力,提高氧化分解能力,缩短反应时间,防止设备腐蚀和降低成本。
化学催化氧化法主要应用于石油炼制和化学工业废水的处理,它对于气态污染物、液态污染物、固态污染物的处理都有成功的实例。在气态污染物的治理中,SO2和NOx的催化转化及有机废水的治理都用过这种方法。
湿式氧化技术是从20世纪50年代发展起来的一种处理有毒有害、高浓度有机废水的有效水处理方法。
超临界水氧化法的主要原理是利用超临界水作为介质来氧化分解有机物[6]。有机污染物在超临界水中进行的氧化过程,速度很快且比较完全彻底。有机碳转化成CO2,氢转化成H2O,卤素原子转化为卤离子,硫和磷分别转化为SO42-和PO43-,氮转化为N2或NO3-和NO2-。同时,超临界水的氧化过程中释放出大量的热,反应一旦开始,可以自己维持,无需外界能量的提供[7]。为了加快反应速率、减少反应时间,降低反应温度,优化反应程序,使超临界水氧化法能充分发挥出自身的优势,许多学者将催化剂引入超临界水氧化技术,开发了超临界湿式氧化技术,它已成为一个重要的研究方向。
光催化氧化降解水中有机污染物具有能耗低、操作简便、反应条件温和、可减少二次污染等突出优点,同时它对于高浓度的有机工业废水具有很强的净化能力,另外它的重要意义还在于它可以充分利用太阳能,对于节约能源、保护环境、维持生态平衡、实现可持续发展具有重大意义。在染料废水、表面活性剂、农药废水、含油废水、氰化物制药废水、有机磷化合物、多环芳烃等废水处理中,都能有效地进行光催化反应使其转化为无机小分子,达到完全无机化的目的。同样,光催化反应对许多无机物,如CN-、Au(CN)4-、I-、SCN-、Cr2O72-、Hg(CH3)2、Hg2+等的去除也有广泛的应用前景[10]。许多国外学者开展了使用光助Fenton试剂降解典型有机污染物的研究,如4-CP、硝基酚、苯酚和苯甲醚、甲基对硫磷,也有开展于对垃圾渗滤液的降解处理研究等。国内学者王怡中等利用悬浮式反应器研究了活性艳红、活性黄、阳离子桃红等8种染料废水的光降解实验。结果表明:在TiO2投量为1 g/L,光照4 h后,各种染料废水的降解率均达到90%以上。周祖飞等研究了萘乙酸的光降解,在TiO2投量为0.10 g/L,254 nm紫外光照及曝气条件下,初始质量浓度50 mg /L的萘乙酸经3 h光照后,降至6 mg / L以下。雷乐成等利用光助Fenton试剂对PVA退浆废水进行了研究,表明光助Fenton试剂氧化PVA废水中的DOC去除率大于90%。
电化学氧化法是使污染物在电极上发生直接的电化学反应,或者利用电极表面产生的强氧化性活性物种使污染物发生氧化还原反应,生成无害物的过程。前者叫直接电化学反应,后者叫间接电化学反应。直接电化学反应通过阳极氧化可使有机污染物和部分无机污染物转化为无害物质,阴极还原则可从水中去除重金属离子。这两个过程同时伴生放出H2与O2,使电流效率降低,但通过电极材料的选择和电位控制可加以防止。间接电化学反应可利用电化学反应产生的氧化还原剂使污染物转化为无害物,这时产生的氧化还原剂是污染物与电极交换电子的中介体。这种中介体可以是催化剂,也可以是电化学产生的短寿命中间体。此外,近年来也有人利用O2在阴极还原为H2O2,而后生成(·OH),进而氧化有机物的新方法出现,可用于处理苯酚、苯胺、醛类及氰化物。

6. 实验室废水设备,废水15吨,一般价格多少钱一套

中环清源设计的:
实验室废水处理流程由废水收集、自动调pH、自动加药装置版、混凝气浮装置、重权金属去除装置、新型微电解装置、电化学催化氧化处理装置、臭氧催化氧化处理装置、光催化氧化处理装置、新型生物处理装置、吸附过滤装置、新型膜过滤装置和复合消毒处理装置等单元组成,形成一个完整的综合废水处理系统。

这一套下来10万以内,根据客户需求定做 价格略有不同

希望我的回答能帮助到你

7. 污水处理中微电解的原理

微电解技术是处理高浓度有机废水的一种理想的工艺,同时又被称为内电解法。在不同点的情况之下,利用填充在废水中的微电解材料自身生产的一点二伏的电位差对废水进行点解处理,从而达到降解有机污染物的目的,当系统桶水之后设备中会形成无数的微电池系统,在作用空间中构成一个电场。

微电解的工作原理基于电化学,氧化还原,物理吸附以及絮凝沉淀的共同作用对于废水进行处理。该方法适用范围广、处理的效果好、成本低廉、操作维护方便、不需要消耗电力资源等优点。本工艺用于难降解高浓度废水的处理可以大幅度的降低cod和色度,提高废水的可生化性,同时可以对氨氮的脱除具有很好的效果。传统上的微电解工艺所采用的微电解材料一般为铁屑和木炭,使用之前要加酸碱活化,使用的过程中很容易钝化板结,同时又因为铁与碳是物理接触,所以他们之间很容易形成隔离层使微电解不能继续进行而失去作用,这就导致了频繁的更换为电解材料,不但工作量大,成本高同时还影响了废水的处理效果和效率。
二、铁碳微电解原理铁炭填料反应原理(即铁炭填料处理高难度工业有机废水原理):
(1)电子流动:利用铁元素和碳元素之间的电位差,铁元素与碳元素之间存在一个自然地1.4V的电位差。当铁碳填料浸泡在废水溶液中的时候,废水溶液充当导电溶液,废微电解填料价格多少水中的污染物质充当电解质。在铁碳之间自然电位差形成的微弱电场之下,铁会释放出电子,电子在电场的作用之下由阳极向阴极移动。电子在移动的过程中会有穿过污染物质的概率,特别是长链物质或者是含有苯环的物质被电子穿过的概率更高。长链物质或者是含有苯环物质的碳链是通过成对电子相互连接的,当溶液中的单个电子穿插的时候,单个电子就会被碳链中的成对电子吸引住,从而微电解填料价格多少形成3电子结构,而这种3电子结构是一种非常不稳定的结构,存在一定的时间之后这种3电子结构就会自动爆炸,从而长链物质被分成2段。电子继续穿插,锻炼之后的碳链又会被分割,这样碳链就会越来越短。这样难降解物质就会转化为容易降解的物质。同时能够降低COD。
(2)还原性:当铁碳填料浸泡在废水溶液中的时候,作为阳极的铁会失去电子从而变成铁离子,新生成的铁离子具有非常强的还原性,可以将废水中的难降解物质进行还原反应。
(3)氧化性:电子在废水中穿插的时候,也会穿过水分子,水分子被分解的时候就会产生大量的氢自由基、氧自由基、和氢氧自由基,这些新生态的自由基具有非常强的氧化性,可以将废水中的有机物彻底氧化为二氧化碳和水。从而彻底降低COD。
(4)电泳:电子在废水中运动的时候会吸附带微电解填料价格多少正电的污染颗粒,吸附在电子上面的污染物质运动到阴极之后会被中和然后就会沉到底部被除去。
(5)絮凝作用:铁失电子之后会形成铁离子,新生态的铁离子再加入碱液之后会形成氢氧化亚铁,氢氧化亚铁是良好的絮凝剂,可以吸附废水中的大量有机物絮凝沉淀。

8. 学校实验室废水综合处理装置哪个厂家的好用

实验室废水含有酸、碱、有机污染物、重金属离子、病原微生物,PH 值变化幅度大,回COD 浓度高,主要分为答三大类: 1、有机废水:主要来源是实验试剂、溶剂; 2、无机废水:主要来源是酸碱试剂、重金属试剂; 3、生物致病废水:主要来源是微生物培养、血液生化实验,血站、疾控中心等; 实验室废水排放标准:【GB8978-1996】《污水综合排放标准》; 主要检测指标是:重金属、PH值、悬浮物、色度、COD、大肠杆菌等。 实验室废水处理比较成熟的方法及设备: 1、重金属混凝共沉工艺:去除重金属、悬浮物、色度; 2、PH自动调节工艺:酸碱废水自动调节PH值; 3、臭氧氧化消毒工艺:有机废水降解、去除COD、杀灭大肠杆菌; 4、医疗废水按要求还要投二氧化氯; 5、实验室废水处理净化装置:一体化组合工艺处理,全自动运行

9. “紫外催化湿式氧化技术”已经被哪家公司申请了专利 专利号是多少

【相关发明专利】:紫外催化湿式氧化降解污染物的方法及装置(已失效)
【专利基本信息】
发明专利申请号:CN201010216558.5
发明专利申请日:2010-07-05
发明专利公开/公告号:CN101863526A
发明专利公开/公告日:2010-10-20
发明专利申请/专利权人:李朝林
发明/设计人:李朝林 ;陆钢 ;刘鹏 ;崔海波
发明专利摘要:
本发明公开了一种常温常压条件下,快速、高效降解污染物的紫外催化湿式氧化降解污染物的方法,并为实现该方法设计了一种典型装置。该方法在反应体系中引入紫外光、氧化剂和催化剂,利用它们的协同催化氧化作用,使湿式氧化反应可以在常温常压的温和条件下进行。与传统催化湿式氧化法需在高温和高压的反应条件相比,本发明方法可以在温度25-80℃和常压条件下,利用其强氧化性将高浓度有毒有害废水中有机污染物分解成CO2和水等无害成份,多种代表性高浓度有机废水处理后CODCr去除率均可达到95%以上,可生化性也有明显提高。本方法反应温和、处理效率高、降解彻底、工艺清洁绿色和节省能源,应用前景广阔。

【相关实用新型专利】:紫外催化湿式氧化降解污染物的装置
【专利基本信息如下】
实用新型专利申请号:CN201020246617.9
实用新型专利申请日:2010-07-05
实用新型专利公开/公告号:CN201770512U
实用新型专利公开/公告日:2011-03-23
实用新型专利申请/专利权人:李朝林
实用新型专利发明/设计人:李朝林;陆钢;刘鹏;崔海波
实用新型专利摘要:
一种紫外催化湿式氧化降解污染物的装置,该装置包括盛装废水用的反应池,反应池内设有紫外光源,反应池底部设有曝气装置,反应池上方设有用于存储催化剂用的药品贮槽,反应池内还设有与药品贮槽连通的加药装置,反应池内设有控制装置,反应池内设有测量池,反应池外侧安装有液位仪。本实用新型在反应体系中引入紫外光、氧化剂和催化剂,利用它们的协同催化氧化作用,使湿式氧化反应可以在常温常压的温和条件下进行。与传统催化湿式氧化法相比,本实用新型可以在温度25-80℃和常压条件下,利用其强氧化性将高浓度有毒有害废水中有机污染物分解成CO2和水等无害成份,多种代表性高浓度有机废水处理后CODcr去除率均可达到95%以上。

10. 如何降低废水的cod

农药企业在生产过程中排放的废水通常含有机氮、有机磷、硫化物、苯环、酚盐等多种无机物和有机物, 其特征是污染物成分复杂、浓度高、毒性大、可生化性差, 属难处理工业废水, 单纯用传统的物化、生化法处理手段难以使废水处理后达标排放. 农药污染面广,持续时间长,残留农药对人体健康影响大。研究表明,通过大气和饮用水进入人体的农药仅占10% ,有90%是通过食物链进入人体。残留在蔬菜、水果等食品上的低剂量农药对人可产生慢性毒性,并诱导多种神经性疾病。农药污染水的排放已严重破坏了生态环境,农药的残留毒性问题越来越受到人们的关注。

农业环境科学学报2007, 26 (增刊) : 256- 260
Journal of Agro- Environm ent Science
农药废水处理方法研究进展
肖维林, 董瑞斌
(南昌大学环境科学与工程学院, 鄱阳湖湖泊生态与生物资源利用教育部重点实验室, 江西南昌330029)
摘要:农药废水因毒性大、浓度高、组分复杂,成为工业废水治理难题之一。根据当前国内外学者在农药废水处理方面的研究报道,分别对农药废水的主要处理方法(光催化法、超声波技术、生物法、电解法、氧化法)的研究进展进行了综述,并在此基础上介绍了适宜的工艺方法组合。

1 几种主要的农药废水处理方法
1. 1 光催化法
锐钛型的TiO2 在紫外光的照射下能产生氧化性极强的羟基自由基,能够氧化降解有机物,使其转化为CO2、H2O以及无机物,降解速度快,无二次污染,为降解处理农药废水提供了新思路[ 2 ] 。对于光催化降解有机物目前关注的问题,一方面是降解过程中的影响因素和降解过程的转化问题[ 3~5 ] ,对纳米TiO2 的固载化和反应分离一体化成为光催化领域中具有挑战性的课题之一,另一方面是提高制备催化剂催化效率的问题[ 6 ] 。
陈士夫等[ 5 ]在玻璃纤维、玻璃珠、玻璃片上负载TiO2 薄膜光催化剂,并用于有机磷农药的降解,取得了满意的结果。梁喜珍[ 7 ]通过研究TiO2 光催化降解有机磷农药乐果废水的影响因素,获得了适宜的工艺
条件。潘健民[ 8 ]通过对纳米TiO2 及其复合材料光催化降解有机磷农药进行的研究,分析了在不同催化剂、不同浓度AgNO3 浸渍、不同实验装置条件下的光催化降解效果,说明TiO2 表面担载微量的Ag后,不仅能提高纳米TiO2 催化活性,而且有较好的絮凝作用,使TiO2 与处理后的水易分离,后处理更方便。葛湘锋[ 2 ]研究发现光催化降解在一定条件下符合零级动力学反应模式,而且反应速率常数和反应物起始浓度也呈线形关系,当反应物浓度增长过快达到一定值时,其反应速率常数明显下降,反应物浓度过高时,则降解反应不再符合零级反应。
目前采用的光催化体系多为高压灯、高压氙灯、黑光灯、紫外线杀菌灯等光源,能量消耗大。若能对纳米TiO2 进行有效、稳定地敏化,扩展其吸收光谱范围,能以太阳光直接作为光源, 则将大大降低成本[ 9、10 ] 。
1. 2 超声波技术
超声波是频率大于20 kHz的声波,超声波诱导降解有机物的原理是在超声波的作用下液体产生空化作用[ 11 ] ,即在超声波负压相作用下,产生一些极端条件使有机物发生化学键断裂、水相燃烧、高温分解
或自由基反应。
钟爱国等[ 12、13 ]研究表明,在甲胺磷浓度为1. 0 ×10- 4 mol ·L - 1、起始pH2. 5、温度30 ℃、Fe2 + >50 mg·L - 1、充O2 至饱和的条件下,用低频超声波(80W·cm- 2 )连续辐照120 min,甲胺磷去除率达到99. 3% ,乙酰甲胺磷的去除率达到99. 9%。孙红杰等[ 14 ]研究了各种因素超声波频率、功率、声强、变幅杆直径和溶液初始pH等对超声降解甲胺磷农药废水的影响。Kotronarou等[ 15 ]得出对硫磷在超声条件下可以被完全降解为PO43 - 、SO42 - 、NO3- 、CO2 和H+ ,而在反应温度为20 ℃、pH为7. 4时,对硫磷无催化水解半衰期为108 d,其有毒代谢产物对氧磷水解半衰期为144 d。Cristina等[ 16 ]对马拉磷农药在超声波辐射下, 82μmol·L - 1的马拉磷溶液30 min内pH从6下降到4, 2 h内所有的马拉磷全部降解,产物均为无机小分子。
蒋永生、傅敏等[ 17、18 ]报道了用超声波降解模拟废水中低浓度乐果的试验表明,辐射时间延长,降解率增加,加入H2O2 可明显提高乐果的降解率,在溶液初始浓度较低的范围内,降解速率随浓度增大而加快,
浓度增大到一定值后,降解速率变化不明显,超声降解时溶液温度控制在15~60 ℃为宜。谢冰等[ 19 ]对久效磷和亚磷酸三甲酯生产过程中产生的废水进行了超声气浮预处理,可降低其COD和毒性,提高其可生化性,再经以光合细菌为主的生化处理,可使其COD降至200 mg·L - 1。
王宏青等[ 20 ] 研究表明: 灭多威经超声作用35min,可被完全转换为无机物,其降解过程为假一级反应;浓度增加时,降解减慢; Fe2 +和H2O2 对降解有促进作用,且Fe2 +促进作用比H2O2 的大;采用不同气体饱和溶液时,降解率的大小顺序为Ar >O2 >Air >N2。红外光谱表明降解产物为SO4
2 - 、NO3- 和CO2。
目前有关超声辐射降解有机污染物的研究,大多属于实验室研究,还缺乏系统的研究,更缺少中试数据[ 21 ] 。
1. 3 生物法
在国内,农药厂家大多建有生化处理装置,但目前几乎没有一家能够获得理想的处理效果。因此,对这类废水的生化处理研究是十分必要的。已有大量研究表明真菌、细菌、藻类等微生物对有农药有很好的降解作用。
程洁红[ 22 ]从土壤中分离得到以多菌灵生产农药废水为惟一碳源生长的13株菌,经鉴定为假单胞菌属( Pseudom onas sp. ) ,研究了SBR 工艺运行的最佳条件,所筛选的菌株对多菌灵农药废水的COD去除率为52. 3%。张德咏,谭新球[ 23 ]从生产甲胺磷农药的废水中筛选具有促生活性及可降解甲胺磷的光合细菌菌株, 培养后第7 d, 该菌株可降解甲胺磷(65. 2% , 500 mg·L - 1和49. 6% , 1 000 mg·L - 1 ) ,乐果(45. 4% , 400 mg·L - 1 ) ,毒死蜱(51. 5% , 400 mg·L - 1 ) ,该菌株也能够以三唑磷、辛硫磷作为惟一碳源生长。
生物膜法将微生物细胞固定在填料上,微生物附着于填料生长、繁殖,在其上形成膜状生物污泥。与常规的活性污泥法相比,生物膜具有生物体积浓度大、存活世代长、微生物种类繁多等优点,尤其适宜于特种菌在废水体系中的应用[ 24~26 ] 。王军、刘宝章[ 27 ]利用半软性填料进行挂膜,处理菊酯类、杂环类综合农药废水。当进水CODCr为6 810、3 130、1 890mg·L - 1时,经过24 h的作用,细菌膜对CODCr的降解率分别达到24. 8%、43. 5%、53. 4%。
1. 4 电解法
铁炭微电解法是絮凝、吸附、架桥、卷扫、共沉、电沉积、电化学还原等多种作用综合效应的结果[ 28 ] ,能有效地去除污染物提高废水的可生化性。新产生的铁表面及反应中产生的大量初生态的Fe2 +和原子H具有高化学活性,能改变废水中许多有机物的结构和特性,使有机物发生断链、开环[ 29 ] ;微电池电极周围的电场效应也能使溶液中的带电离子和胶体附集并沉积在电极上而除去;另外反应产生的Fe2 + 、Fe3 +及
其水合物具有强烈的吸附絮凝活性,能进一步提高处理效果。
雍文彬[ 30 ]采用铁屑微电解法能有效去除农药生产废水中的COD、色度、As、氨氮、有机磷和总磷,去除率分别可达76. 2%、80%、69. 2%、55. 7%、82. 7%和62. 8%。张树艳[ 31 ]采用铁炭微电解法对几种农药配水进行处理,试验结果表明,最佳反应条件下,废水的CODC r 去除率都可达67%以上;最佳反应条件:铁/水比为(0. 25~0. 375) ∶1,铁/炭比为( 1~3) ∶1, pH3~4,反应时间1~1. 5 h。废水经微电解处理,然后进行Fenton试剂氧化,则微电解出水中Fe2 + 可作为Fenton的铁源,且微电
解时有机污染物的初级降解也有利于后续Fenton反应的进行。吴慧芳[ 32 ]采用微电解和Fenton试剂氧化两种物化手段对菊酯、氯苯BOD5 /CODCr = 0. 03)和对邻硝氯苯(BOD5 /CODCr = 0. 05) 3种废水按比例配制而成的综合农药废水进行预处理,结果表明:在废水pH为2~2. 5时,经微电解处理后,BOD5 /CODCr比值达0. 45以上,可生化性提高; Fenton试剂对综合农药废水CODCr去除率为60%左右,色度去除率接近
100%。刘占孟[ 33 ]以活性炭-纳米二氧化钛为电催化剂,对甲胺磷溶液的电催化氧化降解规律进行研究表明,该工艺能有效去除废水中的有机物,纳米二氧化钛催化剂的催化效果显著。电解效果随着电解时间的延
长、催化剂的增加而升高,低pH有利于电催化氧化过程中H2O2 和·OH 的生成。王永广[ 34 ] 采用电解/UASB /SBR工艺处理生化性差、氯离子浓度高的氟磺胺草醚农药废水。设计电流密度取30. 0 A·m- 2 ,该工程的电费为2. 30 元·m- 3 ,药剂费为0. 30 元·m- 3 ,人工费为1. 50元·m- 3 ,运行成本为4. 10元·m- 3 , COD去除率> 97%。
1. 5 氧化法
深度氧化技术(AOPs)可通过氧化剂的组合产生具有高度氧化活性的·OH,被认为是处理难降解有机污染物的最佳技术。
引入紫外线、双氧水联合作用和调控反应体系pH,可进一步提高臭氧深度氧化法的效率。陈爱因[ 35 ]研究表明,紫外光催化臭氧化降解农药2, 4-二氯苯氧乙酸(2, 4- D)废水成效显著,臭氧/紫外(UV)深度氧化法(比较单独臭氧化、臭氧/紫外、臭氧/双氧水、臭氧/双氧水/紫外4种臭氧化过程)是最好的臭氧化处理方法。2, 4- D 200 mg·L - 1的水样,反应30min, 2, 4- D降解完全, 75 min时矿化率达75%以上。碱性反应氛围有利于臭氧化反应进行。双氧水的引入对2, 4- D降解无明显促进作用,这是因为双氧水分解消耗OH- ,没有缓冲的反应体系pH降低,限制了双氧水的分解和·OH自由基链反应。文献[ 36 ]表明添加H2O2 对光解效果有一定改善作用,投加量达到75 mg·L - 1时,水样的COD去除率由零投加时
的20%提高到40% ,但过量投加对处理效果没有进一步促进作用。曝气能促进光解效果,特别对UV /Fenton工艺作用更为显著,光解水样2 h后,曝气条件下的COD 去除率可从不曝气条件下的30%提高到80%。
催化湿式氧化能实现有机污染物的高效降解,同时可以大大降低反应的温度和压力,为高浓度难生物降解的有机废水的处理提供了一种高效的新型技术。催化剂是催化湿式氧化的核心,诸多学者致力于研究开发新型高效的催化剂。韩利华等[ 37 ]以Cu和Ce为活性组分,制备了Cu /Ce复合金属氧化物,比较了均相-多相催化剂的催化性能。韩玉英[ 38 ]在催化湿式氧化法处理吡虫啉农药废水中,分别用硝酸亚铈和硝酸铜作催化剂,反应一定时间后COD去除率分别达到80%和95. 5%。用硝酸铜作催化剂处理吡虫啉农药废水具有较高的活性,但Cu2 + 有较高的溶出量。张翼、马军[ 39 ]在废水中加入2种自制的催化剂,结果表明,只用臭氧处理的情况下7 d后有机磷的去除率为78. 03%; 在催化剂A 存在下, 去除率可达93. 85%;在催化剂B存在下,去除率可达为88. 35%。在室温和中性介质中均属于一级反应。
ClO2 是一种强氧化剂,碱性条件下氰根(CN- )先被氧化为氯酸盐,氯酸盐进一步被氧化为碳酸盐和氮气,从而彻底消除氰化物毒性。陈莉荣[ 4 0 ]将含氰农药废水空气吹脱除氨后,采用ClO2 作为氰化物的氧化剂,氰化物浓度为60~80 mg·L - 1 , pH为11. 5左右时,按ClO2 ∶CN- ≥3. 5 (质量比)投药,氰化物的去除率达97%以上,氧化后废水经生物处理系统进一步处理后各项指标都能达排放标准要求。
2 农药废水处理工艺方法组合
在处理实际废水时,由于水中的有机污染物呈现出复杂多样的特点,仅采用单一的处理工艺往往达不到预期目的。在处理实际废水时,可以综合考虑技术特点与具体废水水质情况来选择适宜的工艺组合形式。
文献[ 41 ]研究表明,难降解有机磷农药废水经80 min光催化氧化后,在生物段的COD去除率可达85%以上。李耀中[ 4 2 ]设计了一种流化床光催化反应器与过滤预处理相组合的中试系统,制备了一种以30~40目耐火砖颗粒为载体的负载型TiO2 光催化剂,以高压汞灯为光源,结果表明,光照150 min后该系统对配制的农药废水的COD 去除率≥70%, BOD5 /
COD值可提高至0. 4以上。张仲燕[ 4 3 ]以一个生产多种染料和农药中间体的化工厂为研究对象,采用中和- 混凝- 催化氧化的组合工艺并严格控制良好的处理条件, 对CODCr含量为7 000~14 000 mg·L - 1的高
浓度废水可以降至CODCr为300~500 mg·L - 1 , pH、SS和色度均达到排放标准。文献[ 44 ]研究发现,光电结合工艺存在一定的协同效应,远大于光催化和电催化单独处理效率的简单加和。加入少量Na2 SO4 或
NaCl提高电解质质量浓度后, COD去除率迅速提高到80%以上,且加入NaCl电解质比加入Na2 SO4 能更好地降低废水的COD,电流越高, COD 去除速率越大。文献[ 45 ]研究发现将臭氧氧化与生物处理联用治理含4种农药的有机废水,可将其中的阿特拉津、氨基吡啶、米吐尔和对草快分别去除96%、99%、98%和80%。

阅读全文

与废水湿式氧化小实验装置相关的资料

热点内容
什么都是一些简单的机械装置 浏览:349
南京兰江水处理设备有限公司怎么样 浏览:108
刀具交换装置课程设计 浏览:362
hinge在阀门里是什么意思 浏览:881
楼梯是什么简单机械 浏览:794
三脚架支着的勘测仪器叫什么 浏览:560
暖气开关阀门有点漏水 浏览:439
excel工具箱自己编写 浏览:570
防雷装置设计审核和竣工验收审批 浏览:217
汽车仪表盘掉了一块皮怎么办 浏览:192
如何做好电动工具零售 浏览:614
胰腺炎用什么仪器查最准 浏览:58
为什么要装室外健身器材 浏览:714
冲床自动送料装置如何延迟送料 浏览:20
车辆仪表都表示什么 浏览:68
茂名液压传动装置价格 浏览:57
橡胶套制作传动装置 浏览:545
泰安轴承多少钱 浏览:793
上海得淋电动工具配件 浏览:714
仪表盘出来蓝色油箱是什么意思 浏览:129