A. 红外发射及接收装置电路图分析
HS0038接收的是38KHz载波调制的红外信号,内部有选频电路,用连续的红外信号恐怕得不到正常的输出。
建议发射部分改为38KHz的脉冲红外信号。
B. 红外通信协议的红外通信的软件设计
通信方式
考虑到复红外光制反射的原因,在全双工方式下发送的信号也可能会被本身接收,因此红外通信需采用异步半双工方式,即通信的某一方发送和接收是交替进行的。
通信协议
进行红外通信之前,通信双方首先要根据系统的功能要求制订某种特定的通信协议,然后才能编写相应的通信程序。
C. 用红外遥控器怎么实现调节功放的音量大小,用单片机吗
红外遥控的音频功放设计与制作
1.引言
本项目以单片机为核心,开发设计了具有红外线遥控功能的功率放大器,整个系统构思巧妙,设计合理,实用性强。
2.发射电路原理
要使红外线接收器能够接收到的红外线信号,我们必须红外线发射时具有一定的信号特征。
常用的区分指令信号的特征是频率特征和码组特征,即用不同的频率或不同编码的电信号代表不同的指令。我们这里用到的是码组特征。码分制红外遥控电路就是指令信号产生电路以不同的脉冲编码(不同的脉冲数目及组合)代表不同的指令。对于图1来讲,当不同的指令键被按下时,单片机编码电路产生不同脉冲编码的指令信号,也就是进行编码,然后经调制电路调制,变为编码脉冲调制信号,再由驱动电路驱动红外发射器件发射红外光信号。
本文用到的码分制红外线遥控系统的发射部分原理(如图1)。
在发射部分电路中由于关键的编码部分电路功能本文使用了美国公司Microchip生产的PIC16F84A单片机来实现,因而电路显得非常简洁。使用PIC16F84A单片机的好处还在于我们只要改变单片机里的程序就可以改变电路功能同时也可以实现一个遥控器控制多种机器。
发射部分的原理图(见图2)。
这个电路很简洁,下面我们来简单介绍一下。它一共有K1、K2、K3、K4四个按键。当按下按键K1时单片机PIC16F84A的第六个引脚RB0接地,表示给RB0一个低电平的有效信号。单片机PIC16F84A的6、7、8、9引脚都是它的信号输入端,这4个输入端都是低电平有效,高电平无效的,具体情况将在下一节介绍。单片机PIC16F84A收的K1发来的低电平信号后按照程序的设定在17引脚RA0输出一串二进制码10000000。该信号还很微小不能用来直接推动红外线发光二极管,因此需要放大器放大。
在这里我们用三极管Q1来做放大器,它的型号是C1815,一个NPN型三极管。二进制码信号经过放大后就可以推动红外线发光二极管了。红外线发光二极管D1负责把电信号转换成红外线信号并发射出去。
K2、K3、K4的功效和K1差不多,只是按下K2、K3、K4后,单片机PIC16F84A根据不同的引脚收到的有效信号后在17引脚RA0输出的二进制码不同。接收部分的电路就是根据二进制码的不同来辨别用户到底是按下哪个按键。
电路中的4MHz晶体振荡器和两个22pF的电容是用来为单片机PIC16F84A提供基准频率的。该电路使用4.5V的直流电源,由三节干电池提供。
电阻R1、R2、R3、R4的作用是在按键按下前连接单片机PIC16F84A的输入引脚和电源,使引脚输入高电平。当按键K按下时电阻起分压作用,保证单片机PIC16F84A引脚有低电平输入。
3.接收电路
红外遥控的接收就是由红外接收器件光电二极管或光电三极管接收下来,再把红外光信号转换成电信号。红外遥控接收器由红外线接收器件、前置放大电路、解调电路、指令信号检出电路、记忆及驱动电路、执行电路组成。当红外接收器件收到发射器的红外指令信号时,它将红外光信号变为电信号并送入前置故大器进行放大,再经解调器后,由指令信号检出电路将指令信号检出,最后记忆及驱动电路驱动执行电路,实现各种操作。
红外遥控的接收部分的原理方框图(如图3)。
接收部分电路主要包括直流稳压电源提供电路、红外线接收电路、放大电路、显示电路、
音频功放电路。这个电路显然比上一章的红外线发射电路复杂多了,在这里我们先看一下接收部分的电路图再慢慢分析它的原理。
接收部分的电路图(见图4)。
接收部分电路的显示,音频功放等功能需要较大的功率和电压。因此我们不能用电池做电源,而是要用220V的交流生活用电源。可是220V的电源对于PIC16F84A单片机、DAC0830等芯片来说太高了,而且它们需要的是直流电源。所以我们需要把220V交流电变成几伏的直流电源,这个工作是由直流稳压电源电路完成的。这部分电路由两个部分组成:1.降压整流电路;2.稳压电路、降压整流电路由一个变压器和4个整流二极管组成。如图4.2所示,220V交流电通过变压器T01后从220V的交流电压变成15V左右的交流电压,15V的交流电压经过4个整流二极管整流后,转换成有部分交流成分的直流电压。在这部分电路的制作时要注意两点:
1.变压器初级必须接在220V交流电一端,次级接在电路板上。如果接错轻则烧坏电路板,重则可能伤害到人生安全。初、次级的区分可以通过测变压器的内阻辨别——内阻大的是初级,内阻小的是次级。
2.整流二极管的排列方向必须正确。整流二极管排列错误就会烧坏电容,也有可能会烧坏后面的芯片。
稳压电路由一些电阻电容和稳压芯片7805、7809组成。这部分电路的功能是对上一级电路提供的直流电压进一步整流、稳压、降压,最后产生后面电路需要的5V直流电源和9V直流电压。
如图4.2,R01、R02、R18的作用是分压、限流,它们使电压进一步下降和当后面电路出现短路等毛病时可以限制电路过大保护电路。电容C01、C02、C03等电容的作用的滤波,使电压的波形
更加平稳。这部分电路的关键功能是由稳压芯片7805和7809实现。7805可以把前面的不稳定电压
转换成稳定的5V直流电源,输出给芯片PIC16F84A和CD4511使用。7809可以把前面的不稳定电压转换成稳定的9V直流电源输出给芯片DAC0830使用。
红外接收电路由光电三极管Q03PIC16F84单片机等组成。光电三极管能够把发射部分电路的红外线发光二极管发射出来的红外线信号接收下来,然后转换成相应的电信号输入到单片机PIC16F84A的6号引脚RB0中。
单片机PIC16F84A是接收部分电路的核心部件。它负责对接收到的信号解码、识别,再根据接收到的信号输出控制信号,控制下面电路的驱动电路和显示电路。电容C06、C07、晶体振荡器X01可以产生4MHz的振荡时钟信号为单片机PIC16F84A提供和发射部分的单片机一样的时钟信号,使它们可以同步工作。
放大电路由三极管Q01、Q02和一些电阻电容组成。它们的工作是对单片机PIC16F84A输出的控制信号放大,推动下一级电路工作。
显示电路由芯片CD4511和LED显示管组成。它们的工作是显示单片机输出的信号是否符合设定的程序,方便电路的检测与调试。参考图4芯片CD4511接收的到单片机PIC16F84A发出的信号后就在相应的引脚发出高电平由LED显示管显示出来。
音频功率放大器的类型很多,根据使用器件的不同,可分为纯电子管、晶体管、集成电路、场效应管功率放大器。本项目的音频功放电路选用芯片LM4756,由0AC0830进行D/A变换,控制功率放大器音量大小。
在发射电路中由于关键的编码部分电路功能本设计使用了美国公司Microchip生产的PIC16F84A单片机来实现,因而电路显得非常的简洁。接收电路中也用到PIC16F84A,它负责把接收的信号解码,输出信号来控制音频功放电路和显示电路。使用PIC16F84A单片机的好处还在于我们只要改变单片机里的程序就可以实现电路功能的改变,同时也可以实现一个遥控器控制多种机器。
4.PCB设计与制作
根据电路原理图,运用了Protel99软件对电路进行了PCB设计,包括元器件的布局与布线,最后成功制作PCB板。这是该毕业设计的主要内容之一。
(1)元件的布局:手工布局,一般是遵循相关的元件放在一起的原则,有特殊要求的元件特别处理;例如开关、跳线、去耦电容等。
(2)PCB布线:布线的宗旨是能使线布到最合理最密集,而干扰最小。本设计采用手工布线与自动布线相结合的手段。先对有特殊要求的走线进行预布,例如电源线、地线和信号线等。
然后按照设定的规则自动布线;最后对完成的布线进行逐一的检测。尽量减少过孔,使走线最短,最合理。
设计的PCB布线图(见图5)。
5.测试结果
在接收电路的电源功能上通过调试后在IC117805的输出端输出+5V的直流电压供芯片
PIC16F84A和CD4511使用;在芯片IC127809的输出端输出稳定的+9V的直流电压。电路实现的功能如下:
(1)实现了较远距离的红外线遥控。最远遥控距离为十米左右。
(2)实现了音频功放,最大输出功率高达35W。
D. 红外线通信的原理
大气对红外线辐射的吸收,主要是由大气中的水蒸汽、二氧化碳和高层大气中的臭氧分子造成的。这些大气分子的强烈吸收使大气对红外线辐射的大部分区域是不透明的,只有在某些特定的波长区,红外线辐射才能透过。这些特定的波长区称为红外线辐射的“大气窗口”,它们几乎都集中在25μm以下的近红外和中红外区域,即1.15~1.35,1.45~1.8,1.9~2.5,3.05~4.1,4.5~5.5,7.9~13.2、17~28μm。另外,在波长为300、600μm附近区域,大气也呈现出某些透过特性。
散射是大气对红外线辐射的另一种重要作用。散射有两种不同的类型,即瑞利散射和弥散射。瑞利散射是由大气分子引起的,它对红外线辐射的影响并不特别重要,对于波长大于lμm的辐射的影响常可被忽略。弥散射是由大气中的悬浮粒子如雨、雪、雾、云、灰尘和烟的微粒造成的,这对红外线传输过程中的衰减有重要作用。
红外通信是利用950nm近红外波段的红外线作为传递信息的媒体,即通信信道。发送端将基带二进制信号调制为一系列的脉冲串信号,通过红外发射管发射红外信号。接收端将接收到的光脉转换成电信号,再经过放大、滤波等处理后送给解调电路进行解调,还原为二进制数字信号后输出。常用的有通过脉冲宽度来实现信号调制的脉宽调制(PWM)和通过脉冲串之间的时间间隔来实现信号调制的脉时调制(PPM)两种方法。
简而言之,红外通信的实质就是对二进制数字信号进行调制与解调,以便利用红外信道进行传输;红外通信接口就是针对红外信道的调制解调器。
红外线通信可用于沿海岛屿间的辅助通信,室内通信,近距离遥控,飞机内广播和航天飞机内宇航员间的通信等。
特点
红外线具有容量大,保密性强,抗电磁干扰性能好,设备结构简单、体积小、重量轻、价格低;但在大气信道中传输时易受气候影响的特点。红外线波长范围为0.70μm~lmm,其中300μm~lmm区域的波也称为亚毫米波。大气对红外线辐射传输的影响主要是吸收和散射。
红外线通信系统
红外线通信系统一般由红外线发射系统和接收系统组成。对于客机内的红外线通信系统,采用低功率的近红外线(波长为0.72~1.5μm)传送信号,对人体健康尤其对人的眼睛无任何伤害作用,也不会干扰飞机与陆地之间的无线电通信。其工作过程是:音频信号先被转换成数字信号,再调制在红外线上,通过特制的红外线发射器,使载有音频信号的红外线充满机舱内的每一个角落。每个座位上备有的一副“耳机”,实际上是一只红外线接收机,它能将红外线信号变为电信号,再进而还原成声音;用电池工作,不需要任何外部连线。旅客只要载上这副“耳机”,开启电源,拨动相应的选择开关,就可收听到各种不同的节目。
技术标准
红外线通讯技术包含下列规格:IrPHY、IrLAP、IrLMP、IrCOMM、TinyTP、IrOBEX、IrLAN以及IrSimple。
IrDA1.0标准简称SIR(SerialInfrared,串行红外协议),它是基于HP-SIR开发出来的一种异步的、半双工的红外通信方式,它以系统的异步通信收发器(UniversalAsynchronousReceiver/Transmitter,UART))依托,通过对串行数据脉冲的波形压缩和对所接收的光信号电脉冲的波形扩展这一编解码过程(3/16EnDec)实现红外数据传输。SIR的最高数据速率只有115.2kbps。在1996年,发布了IrDA1.1协议,简称FIR(FastInfrared,快速红外协议),采用4PPM(PulsePositionMolation,脉冲相位调制)编译码机制,最高数据传输速率可达到4Mbps,同时在低速时保留1.0标准的规定。之后,IrDA又推出了最高通信速率在16Mbps的VFIR(VeryFastInfrared)技术,并将其作为补充纳入IrDA1.1标准之中。
IrDA标准都包括三个基本的规范和协议:红外物理层连接规范IrPHY()、红外连接访问协议IrLAP(InfraredLinkAccessProtoco1)和红外连接管理协议IrLMP()。IrPHY规范制订了红外通信硬件设计上的目标和要求;IrLAP和IrLMP为两个软件层,负责对连接进行设置、管理和维护。在IrLAP和IrLMP基础上,针对一些特定的红外通信应用领域,IrDA还陆续发布了一些更高级别的红外协议,如TinyTP、IrOBEX、IrCOMM、IrLAN、IrTran-P和IrBus等等。
IrPHY:是指红外线通信的最低层,物理层。其中重要的规格如下:
距离(标准:1米,低功率传输至低功率:0.2米,标准至低功率:0.3米)
角度(最小圆锥状+-15°)
速度(2.4千位元/秒至16百万位元/秒)
调变(基频带,无载波)
红外线过滤视窗
红外线通信收发器借由一束圆锥状光束范围内的红外线脉波传输,其圆锥状光束自中心算起最小有15度的范围。
红外线通信物理层规范需要至少在一米外还能辨识的光信号的最小光量。
同时,规范中也定义两通讯装置接近时不会过量的最大光量。
在实用阶段,市场上有些装置没有做到一米的传输距离。
同时也有些装置没有预留非常接近时的容忍值。
红外线通信的典型甜区为距离收发器5厘米至60厘米范围之中,在圆锥状光束的中心点处。
红外线通信的资料通讯作动在半双工模式,这是因为装置在发射时会被自己的接收器接收到,因此全双工变得不可行。
两装置间借由快速切换连接便可模拟全双工。
主要装置端控制着连接的时序,但双边可依照实际情况将传输速度切换至最高。
传输速率落在三大分类:SIR、MIR以及FIR。
SIR的速度范围包含了RS-232的速度定义(9600位元/秒,19.2千位元/秒,38.4千位元/秒,57.6千位元/秒,115.2千位元/秒)
装置最常见的传输速率为9600位元/秒,因此此一传输速率为所有在discovery状态与negotiation状态的速率。
MIR(中速率红外线)不是官方名词,有时用来表示0.576百万位元/秒至1.152百万位元/秒的速率范围。
FIR为IrDA物理层标准陈废的名词,虽然如此这个名词却也常用在表示4百万位元/秒速率。
FIR有时也用来表示所有大于SIR标定速率以上的速率。
然而,MIR与FIR使用不同的编码方式,与不同的封包架构。
因此,这两个非官方用词分别了两种不同的物理层实作方式。
未来有更快的传输速率(目前有VFIR),可支援到16百万位元/秒。
有VFIR的商品可用例如TFDU8108可操作在9.6千位元/秒至16百万位元/秒。
UFIR协定正在发展中。此一协定将可支援100百万位元/秒。
E. 基于红外技术的多点集中通信的设计
我来试试。
采用现在电视机用的940nm红外发光管,接收也用这个频率的接收管,这样有发也有接了。接收管如果用TSOP1738之类的红外一体接收器,就不带38K解调了。这样,一个发射管,一个TSOP1738就构成了一对发射/接收。主机和各个终端都要有这样的一对才行。
接下来就是通讯协议了。类似于I2C,发送有地址,有指令(数据)。接收方都要有解析才行。是自己的地址,就应答,不是自己的地址,就不回答。
发射管的发射控制:用CPU定时器产生的38KH方波,与串口输出数据信号“与”一下。程序里编一下也行。就不能用串口输出数据了,就得用口线仿真了。
38K的调制,允许的通讯波特率不能太高,在2400bps左右。
从TSOP1738出来的TTL电平,直接接到RXD上即可。
再高速的通讯,就要用手机上或电脑上用的红外发射接收专用“对管”了,可以支持更高的频率。如HSL7001等器件,它可以实现115K的UART,但调制频率不用我们管。只需连到串口就可以通讯。
F. 在红外音频传输系统中如何加入ad转换模块,原理图如下,大佬帮帮忙
普通AD模块无法完成音频信号的数据采集与转换,除非你有专门类似电脑声卡那种的音频采集板(卡)。
G. 利用红外发射接收原理设计一个无线的耳机、用电脑来发射传输音频信号,另一个无线耳机可接收那种电路图、
看看这个吧:
http://image..com/i?tn=image&ct=201326592&cl=2&lm=-1&fr=&fmq=&pv=&ic=0&z=&se=1&showtab=0&fb=0&width=&height=&face=0&istype=2&word=%BA%EC%CD%E2%B7%A2%C9%E4%B5%E7%C2%B7%CD%BC&s=0
其实就是在图片网站输入“红外发射电路”就能看到很多图片的
H. 简易红外线通信电路的设计制作
简易红外线通信电路的设计,首先将需要发射的语音信号调制到载波信号中,然后以红外反射管发射出去。另一端用光敏电阻或二极管接收,并解调。可以使用555实现调制和解调。
I. 这是一个红外音频传输的电路图
红外接收管VD在电路中需要反置,VD再受到光作用时,方向电流约为20ua,R3为红外接收管VD的偏置电阻,静态时为VD 提供静态工作电流,5v电源供电,静态时应使VD偏置在3v左右,根据公式R3=(5-3)v/0.02ua=100k左右。
不同的红外接收管参数有区别,但是计算方法就是这样的,望采纳哦。